Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.864
Filter
1.
Neuroscience ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964454

ABSTRACT

Genetic variants in genes encoding subunits of the γ-aminobutyric acid-A receptor (GABAAR) have been found to cause neurodevelopmental disorders and epileptic encephalopathy. In a patient with epilepsy and developmental delay, a de novo heterozygous missense mutation c.671T>C (p.F224S) was discovered in the GABRB2 gene, which encodes the ß2 subunit of GABAAR. Based on previous studies on GABRB2 variants, this new GABRB2 variant (F224S) would be pathogenic. To confirm and investigate the effects of this GABRB2 mutation on GABAAR channel function, we conducted transient expression experiments using GABAAR subunits in HEK293T cells. The GABAARs containing mutant ß2 (F224S) subunit showed poor trafficking to the cell membrane, while the expression and distribution of the normal α1 and γ2 subunits were unaffected. Furthermore, the peak current amplitude of the GABAAR containing the ß2 (F224S) subunit was significantly smaller compared to the wild type GABAAR. We propose that GABRB2 variant F224S is pathogenic and GABAARs containing this ß2 mutant reduce response to GABA under physiological conditions, which could potentially disrupt the excitation/inhibition balance in the brain, leading to epilepsy.

2.
World J Surg ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955808

ABSTRACT

BACKGROUND: The superiority between remimazolam and propofol for anesthesia is controversial in elderly patients (≥60 years). This meta-analysis aimed to systematically compare anesthetic effect and safety profile between remimazolam and propofol in elderly patients under any surgery. METHODS: Cochrane Library, Web of Science, and PubMed were searched until December 25, 2023 for relevant randomized controlled trials. RESULTS: Ten studies with 806 patients receiving remimazolam (experimental group) and 813 patients receiving propofol (control group) were included. Time to loss of consciousness [standard mean difference (SMD) (95% confidence interval (CI): 1.347 (-0.362, 3.055), p = 0.122] and recovery time [SMD (95% CI): -0.022 (-0.300, 0.257), p = 0.879] were similar between experimental and control groups. Mean arterial pressure at baseline minus 1 min after induction [SMD (95% CI): -1.800 (-3.250, -0.349), p = 0.015], heart rate at baseline minus 1 min after induction [SMD (95% CI): -1.041 (-1.537, -0.545), p < 0.001], incidences of hypoxemia [relative risk (RR) (95% CI): 0.247 (0.138, 0.444), p < 0.001], respiratory depression [RR (95% CI): 0.458 (0.300, 0.700), p < 0.001], bradycardia [RR (95% CI): 0.409 (0.176, 0.954), p = 0.043], hypotension [RR (95% CI): 0.415 (0.241, 0.714), p = 0.007], and injection pain [RR (95% CI): 0.172 (0.113, 0.263), p < 0.001] were lower in the experimental group compared to the control group. Postoperative nausea and vomiting was not different between groups [RR (95% CI): 1.194 (0.829, 1.718), p = 0.341]. Moreover, this meta-analysis displayed a low risk of bias, minimal publication bias, and good robustness. CONCLUSION: Remimazolam shows comparative anesthetic effect and better safety profile than propofol in elderly patients under any surgery.

3.
Article in English | MEDLINE | ID: mdl-38924763

ABSTRACT

Sodium-ion batteries (SIBs) represent a promising energy storage technology with great safety. Because of their high operating potential, superior structural stability, and prominent thermal stability, polyanion-type phosphates have garnered significant interest in superior prospective cathode materials for SIBs. Nevertheless, the disadvantages of poor intrinsic electronic conductivity, sluggish kinetics, and volume variation during sodiation/desodiation remain great challenges for satisfactory rate performance and cycle stability, which severely hinder their further practical applications. In this work, by adjusting the amounts of pretreated multiwalled carbon nanotubes (CNT) added intentionally at the beginning of the preparation, biphasic polyanion-type phosphate materials (marked as NFC) are synthesized through a one-pot solid state reaction methodology, which are composed of CNT-interwoven Na3V2(PO4)2F3 (NVPF) and a small amount of Na3V2(PO4)3 (NVP). Benefiting from the improved electronic conductivity and unique composition and structure, the optimized sample (labeled as NFC-2) illustrates exceptional cycle stability and remarkable rate performance. The discharge capacities of the NFC-2 electrode are 114.8 and 78.6 mAh g-1 tested at 20 and 5000 mA g-1, respectively. Notably, such an electrode still gives out 75.7% capacity retention upon 10 000 cycles at 5000 mA g-1. In situ X-ray diffraction analysis demonstrates that the NFC-2 cathode has outstanding structural reversibility during charge/discharge cycles. More importantly, such a biphasic material has achieved impressive electrochemical performance within a wide operating temperature range of -20-50 °C. When temperature is decreased to -20 °C, the NFC-2 electrode still delivers an initial discharge capacity of 102.4 mAh g-1 and exhibits a remarkable capacity retention of 97.8% even after 500 cycles at 50 mA g-1. In addition, the sodium-ion full cell assembled by integrating NFC-2 cathode and hard carbon anode shows a satisfying energy density of 431.3 Wh kg-1 at 20 mA g-1 with a better long-term cycle performance. The synergistic effect among high energy NVPF, conductive CNT, and stable NVP may lead to the great improvement in the electrochemical sodium storage performance of the NFC-2 sample. Such biphasic polyanion-type phosphate materials will inject new ideas into the material design for SIBs with excellent electrochemical performance and further promote practical applications of this advanced energy storage technology.

4.
Sensors (Basel) ; 24(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38931695

ABSTRACT

Remote sensing image classification plays a crucial role in the field of remote sensing interpretation. With the exponential growth of multi-source remote sensing data, accurately extracting target features and comprehending target attributes from complex images significantly impacts classification accuracy. To address these challenges, we propose a Canny edge-enhanced multi-level attention feature fusion network (CAF) for remote sensing image classification. The original image is specifically inputted into a convolutional network for the extraction of global features, while increasing the depth of the convolutional layer facilitates feature extraction at various levels. Additionally, to emphasize detailed target features, we employ the Canny operator for edge information extraction and utilize a convolution layer to capture deep edge features. Finally, by leveraging the Attentional Feature Fusion (AFF) network, we fuse global and detailed features to obtain more discriminative representations for scene classification tasks. The performance of our proposed method (CAF) is evaluated through experiments conducted across three openly accessible datasets for classifying scenes in remote sensing images: NWPU-RESISC45, UCM, and MSTAR. The experimental findings indicate that our approach based on incorporating edge detail information outperforms methods relying solely on global feature-based classifications.

5.
Cryobiology ; : 104937, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942068

ABSTRACT

Growing concerns over declining male semen quality and rising infertility have shifted attention to male fertility. Sperm cryopreservation emerges as a crucial tool in preserving male fertility, especially for patients who need proactive preservation, such as cancer patients before undergoing radiation or chemotherapy. Although cryopreservation does not directly address infertility, effective preservation can support future fertility. However, the process may compromise sperm DNA integrity. Despite their impairment, damaged sperm often retain vitality and may still have the potential to fertilize an egg. Nonetheless, if damaged sperm fertilize an egg, excessive DNA damage could impede embryo implantation and development, despite the egg's repair capabilities. Consequently, precise detection of sperm DNA damage is crucial and urgent. To better address the issue of sperm DNA damage detection, we have introduced a novel fluorescence biosensor technology known as the TDT/SD Probe. This technology utilizes terminal deoxynucleotidyl transferase (TdT) and strand displacement probes to accurately detect the number of sperm DNA breakage points during the cryopreservation process. Experimental results reveal that the number of sperm DNA breakpoints significantly increases after both sperm vitrification (8.17×105) and conventional slow freezing (10.80×105), compared to the DNA breakpoints of fresh semen samples (5.19×105). However, sperm vitrification has the least impact on sperm breakage points. This research provides innovative means for further optimizing sperm preservation techniques by offering a novel DNA damage detection method, enabling more precise assessment of sperm DNA damage during the freezing process.

6.
Article in English | MEDLINE | ID: mdl-38936632

ABSTRACT

BACKGROUND: Risk stratification of regional recurrence (RR) is clinically important in the design of adjuvant treatment and surveillance strategies in patients with clinical stage I non-small cell lung cancer (NSCLC) treated with stereotactic body radiotherapy (SBRT). PURPOSE: To develop a radiomics model predicting occult lymph node metastasis (OLNM) using surgical data and apply it to the prediction of RR in SBRT-treated early-stage NSCLC patients. METHODS: Patients with clinical stage I NSCLC who underwent curative surgery with systematic lymph node dissection from January 2013 to December 2018 (the training cohort) and from January 2019 to December 2020 (the validation cohort) were included. A pre-operative CT-based radiomics model, a clinical feature model, and a fusion model predicting OLNM were constructed. The performance of the three models was quantified and compared in the training and validation cohorts. Subsequently, the radiomics model was used to predict RR in a cohort of consecutive SBRT-treated early-stage NSCLC patients from two academic medical centers. RESULTS: A total of 769 patients were included. Eight CT features were identified in the radiomics model, achieving areas under the curves (AUCs) of 0.85 (95% CI 0.81-0.89) and 0.83 (95% CI 0.80-0.88) in the training and validation cohorts, respectively. Nevertheless, adding clinical features did not improve the performance of the radiomics model. With a median follow-up of 40.0 (95% CI 35.2-44.8) months, 32 of the 213 patients in the SBRT cohort developed RR and those in the high-risk group based on the radiomics model had a higher cumulative incidence of RR (p<0.001) and shorter regional recurrence-free survival (p=0.02), progression-free survival (p=0.004) and overall survival (p=0.006) than those in the low-risk group. CONCLUSION: The radiomics model based on pathologically confirmed data effectively identified patients with ONLM, which may be useful in the risk stratification among SBRT-treated patients with clinical stage I NSCLC.

7.
Sci Total Environ ; 946: 174170, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38917903

ABSTRACT

Atmospheric water-soluble organic carbon (WSOC) is a critical component of airborne particulates. It significantly affects the Earth's energy balance, air quality, and human health. Despite its importance, the molecular composition and sources of WSOC remain unclear, particularly in non-urban areas. In this study, we collected total suspended particulate (TSP) samples from three sites in northern China: Erenhot (remote site), Zhangbei (rural site), and Jinan (urban site). The WSOC components were analyzed using high-performance liquid chromatography coupled with high-resolution mass spectrometry. The results showed that the formula numbers of identified compounds exhibited a decreasing trend of Jinan (2647) > Zhangbei (2046) > Erenhot (1399). Among the assigned formulas, CHO compounds were the most abundant category for all three sites, accounting for 33 %-38 % of the identified compounds, followed by the CHON compounds with contributions of 27 %-30 %. In the remote site of Erenhot, CHO compounds were dominated by oxidized unsaturated organic compounds, and CHON compounds were mainly low-oxygenated aliphatic compounds, suggesting a significant influence of primary emissions. In contrast, the urban site of Jinan showed higher contributions of CHO and CHON compounds with elevated oxidation degrees, indicating the influence of more extensive secondary oxidation processes. Atmospheric WSOC in Erenhot and Zhangbei had abundant reduced sulfur-containing species, likely from coal or diesel combustion, while that in Jinan was characterized by aliphatic organosulfates and nitrooxy-organosulfates, which are mainly associated with traffic emissions and biogenetic sources, respectively. These findings reveal significant differences in the molecular composition of WSOC in different atmospheric environments and improve our understanding of the chemical properties, potential sources, and transformations of organic aerosols.

8.
Diabetes Metab ; 50(4): 101547, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852840

ABSTRACT

AIMS: Podocyte injury plays an essential role in the progression of diabetic nephropathy (DN). The associations between the ultrastructural changes of podocyte with proteinuria and the pathological classification of DN proposed by Renal Pathology Society (RPS) have not been clarified in patients with type 2 diabetic nephropathy (T2DN). METHODS: We collected 110 patients with kidney biopsy-confirmed T2DN at Peking University First Hospital from 2017 to 2022. The morphometric analysis on the podocyte foot process width (FPW) and podocyte detachment (PD) as markers of podocyte injury was performed, and the correlations between the ultrastructural changes of podocytes with severity of proteinuria and the RPS pathological classification of DN were analyzed. RESULTS: Mean FPW was significantly broader in the group of T2DN patients with nephrotic proteinuria (565.1 nm) than those with microalbuminuria (437.4 nm) or overt proteinuria (494.6 nm). The cut-off value of FPW (> 506 nm) could differentiate nephrotic proteinuria from non-nephrotic proteinuria with a sensitivity of 75.3% and a specificity of 75.8%. Percentage of PD was significantly higher in group of nephrotic proteinuria (3.2%) than that in microalbuminuria (0%) or overt proteinuria (0.2%). FPW and PD significantly correlated with proteinuria in T2DN (r = 0.473, p < 0.001 and r = 0.656, P < 0.001). FPW and PD correlated with RPS pathological classification of T2DN (r = 0.179, P = 0.014 and r = 0.250, P = 0.001). FPW value was increased significantly with more severe DN classification (P for trend =0.007). The percentage of PD tended to increase with more severe DN classification (P for trend = 0.017). CONCLUSIONS: Podocyte injury, characterized by FPW broadening and PD, was associated with the severity of proteinuria and the pathological classification of DN.

9.
Braz J Psychiatry ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38870426

ABSTRACT

BACKGROUND: Panic disorder (PD) is a common disabling condition characterized by recurrent panic attacks. Emotional and behavioral impairments are associated with functional connectivity (FC) and network abnormalities. We used the whole brain FC, modular networks, and graph-theory analysis to investigate extensive network profiles in PD. METHOD: The functional MRI data from 82 PD and 97 controls were included. Intrinsic FC between each pair of 160 regions, 6 intra-networks, and 15 inter-networks were analyzed. The topological properties were explored. RESULTS: PD patients showed altered FCs within the right insula, between frontal cortex-posterior cingulate cortex (PCC), frontal cortex-cerebellum, and PCC-occipital cortex (corrected P values < 0.001). Lower connections within the Sensorimotor Network (SMN) and SMN-Occipital Network (OCN) were detected (P values < 0.05). Various decreased global and local network features were found in PD (P values < 0.05). In addition, significant correlations were found between PD symptoms and nodal efficiency (Ne) in the insula (r = -0.273, P = 0.016), and the FC of the intra-insula (r = -0.226, P = 0.041). CONCLUSIONS: PD patients present with abnormal functional brain networks, especially the decreased FC and Ne within insula, suggesting that dysfunction of information integration plays an important role in PD.

10.
Microb Biotechnol ; 17(6): e14473, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877615

ABSTRACT

Poly-L-lactic acid (PLLA) is currently the most abundant bioplastic; however, limited environmental biodegradability and few recycling options diminish its value as a biodegradable commodity. Enzymatic recycling is one strategy for ensuring circularity of PLLA, but this approach requires a thorough understanding of enzymatic mechanisms and protein engineering strategies to enhance activity. In this study, we engineer PLLA depolymerizing subtilisin enzymes originating from Bacillus species to elucidate the molecular mechanisms dictating their PLLA depolymerization activity and to improve their function. The surface-associated amino acids of two closely related subtilisin homologues originating from Bacillus subtilis (BsAprE) and Bacillus pumilus (BpAprE) were compared, as they were previously engineered to have nearly identical active sites, but still varied greatly in PLLA depolymerizing activity. Further analysis identified several surface-associated amino acids in BpAprE that lead to enhanced PLLA depolymerization activity when engineered into BsAprE. In silico protein modelling demonstrated increased enzyme surface hydrophobicity in engineered BsAprE variants and revealed a structural motif favoured for PLLA depolymerization. Experimental evidence suggests that increases in activity are associated with enhanced polymer binding as opposed to substrate specificity. These data highlight enzyme adsorption as a key factor in PLLA depolymerization by subtilisins.


Subject(s)
Polyesters , Polyesters/metabolism , Polyesters/chemistry , Adsorption , Polymerization , Bacillus/enzymology , Bacillus/genetics , Subtilisins/chemistry , Subtilisins/genetics , Subtilisins/metabolism , Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Bacillus subtilis/chemistry , Models, Molecular , Protein Engineering , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism
11.
Cell Death Discov ; 10(1): 287, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879568

ABSTRACT

Myocardial infarction, commonly known as a heart attack, is a serious condition caused by the abrupt stoppage of blood flow to a part of the heart, leading to tissue damage. A significant aspect of this condition is reperfusion injury, which occurs when blood flow is restored but exacerbates the damage. This review first addresses the role of the innate immune system, including neutrophils and macrophages, in the cascade of events leading to myocardial infarction and reperfusion injury. It then shifts focus to the critical involvement of CD4+ T helper cells in these processes. These cells, pivotal in regulating the immune response and tissue recovery, include various subpopulations such as Th1, Th2, Th9, Th17, and Th22, each playing a unique role in the pathophysiology of myocardial infarction and reperfusion injury. These subpopulations contribute to the injury process through diverse mechanisms, with cytokines such as IFN-γ and IL-4 influencing the balance between tissue repair and injury exacerbation. Understanding the interplay between the innate immune system and CD4+ T helper cells, along with their cytokines, is crucial for developing targeted therapies to mitigate myocardial infarction and reperfusion injury, ultimately improving outcomes for cardiac patients.

12.
Biotechnol Adv ; : 108396, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906495

ABSTRACT

Cordyceps militaris, widely recognized as a medicinal and edible mushroom in East Asia, contains a variety of bioactive compounds, including cordycepin (COR), pentostatin (PTN) and other high-value compounds. This review explores the potential of developing C. militaris as a cell factory for the production of high-value chemicals and nutrients. This review comprehensively summarizes the fermentation advantages, metabolic networks, expression elements, and genome editing tools specific to C. militaris and discusses the challenges and barriers to further research on C. militaris across various fields, including computational biology, existing DNA elements, and genome editing approaches. This review aims to describe specific and promising opportunities for the in-depth study and development of C. militaris as a new chassis cell. Additionally, to increase the practicability of this review, examples of the construction of cell factories are provided, and promising strategies for synthetic biology development are illustrated.

13.
EBioMedicine ; 105: 105221, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38917512

ABSTRACT

BACKGROUND: Accurate prediction of the optimal dose for ß-lactam antibiotics in neonatal sepsis is challenging. We aimed to evaluate whether a reliable clinical decision support system (CDSS) based on machine learning (ML) can assist clinicians in making optimal dose selections. METHODS: Five ß-lactam antibiotics (amoxicillin, ceftazidime, cefotaxime, meropenem and latamoxef), commonly used to treat neonatal sepsis, were selected. The CDSS was constructed by incorporating the drug, patient, dosage, pharmacodynamic, and microbiological factors. The CatBoost ML algorithm was used to build the CDSS. Real-world studies were used to evaluate the CDSS performance. Virtual trials were used to compare the CDSS-optimized doses with guideline-recommended doses. FINDINGS: For a specific drug, by entering the patient characteristics and pharmacodynamic (PD) target (50%/70%/100% fraction of time that the free drug concentration is above the minimal inhibitory concentration [fT > MIC]), the CDSS can determine whether the planned dosing regimen will achieve the PD target and suggest an optimal dose. The prediction accuracy of all five drugs was >80.0% in the real-world validation. Compared with the PopPK model, the overall accuracy, precision, recall, and F1-Score improved by 10.7%, 22.1%, 64.2%, and 43.1%, respectively. Using the CDSS-optimized doses, the average probability of target concentration attainment increased by 58.2% compared to the guideline-recommended doses. INTERPRETATION: An ML-based CDSS was successfully constructed to assist clinicians in selecting optimal ß-lactam antibiotic doses. FUNDING: This work was supported by the National Natural Science Foundation of China; Distinguished Young and Middle-aged Scholar of Shandong University; National Key Research and Development Program of China.

14.
J Mater Chem B ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38920094

ABSTRACT

In the last few decades, tear-based biosensors for continuous glucose monitoring (CGM) have provided new avenues for the diagnosis of diabetes. The tear CGMs constructed from nanomaterials have been extensively demonstrated by various research activities in this field and are gradually witnessing their most prosperous period. A timely and comprehensive review of the development of tear CGMs in a compartmentalized manner from a nanomaterials perspective would greatly broaden this area of research. However, to our knowledge, there is a lack of specialized reviews and comprehensive cohesive reports in this area. First, this paper describes the principles and development of electrochemical glucose sensors. Then, a comprehensive summary of various advanced nanomaterials recently reported for potential applications and construction strategies in tear CGMs is presented in a compartmentalized manner, focusing on sensing properties. Finally, the challenges, strategies, and perspectives used to design tear CGM materials are emphasized, providing valuable insights and guidance for the construction of tear CGMs from nanomaterials in the future.

15.
J Mater Chem B ; 12(25): 6242-6256, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38842217

ABSTRACT

Designing artificial nano-enzymes for scavenging reactive oxygen species (ROS) in chondrocytes (CHOs) is considered the most feasible pathway for the treatment of osteoarthritis (OA). However, the accumulation of ROS due to the amount of nano-enzymatic catalytic site exposure and insufficient oxygen supply seriously threatens the clinical application of this therapy. Although metal-organic framework (MOF) immobilization of artificial nano-enzymes to enhance active site exposure has been extensively studied, artificial nano-enzymes/MOFs for ROS scavenging in OA treatment are still lacking. In this study, a biocompatible lubricating hydrogel-loaded iron-doped zeolitic imidazolate framework-8 (Fe/ZIF-8/Gel) centrase was engineered to scavenge endogenous overexpressed ROS synergistically generating dissolved oxygen and enhancing sustained lubrication for CHOs as a ternary artificial nano-enzyme. This property enabled the nano-enzymatic hydrogels to mitigate OA hypoxia and inhibit oxidative stress damage successfully. Ternary strategy-based therapies show excellent cartilage repair in vivo. The experimental results suggest that nano-enzyme-enhanced lubricating hydrogels are a potentially effective OA treatment and a novel strategy.


Subject(s)
Chondrocytes , Hydrogels , Reactive Oxygen Species , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Chondrocytes/metabolism , Chondrocytes/drug effects , Chondrocytes/cytology , Reactive Oxygen Species/metabolism , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Osteoarthritis/drug therapy , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cartilage/drug effects , Cartilage/metabolism , Particle Size , Humans , Zeolites/chemistry
16.
Huan Jing Ke Xue ; 45(6): 3234-3246, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897747

ABSTRACT

Effective treatment of pesticide residue-induced pollution in the aqueous environment is the key to improving the water quality of rivers and lakes. Modified biomass material (Fe-Al-PS) was successfully prepared by impregnating Fe and Al bimetallic compounds to peanut shell powder for adsorption of glyphosate isopropylamine salt herbicide residues in aqueous environments. Fe-Al-PS reached adsorption equilibrium for 10 mg·L-1 of glyphosate isopropylamine salt at the adsorbent dosage and adsorption time of 0.14 g and 10 min, respectively, and the removal rates were stabilized at 99.9 % and 99.6 %, respectively. The adsorption process followed the pseudo-secondary kinetic and Freundlich adsorption isotherm models and belonged to multi-molecular layer chemisorption. The removal of glyphosate isopropylamine salt by Fe-Al-PS was greater than 95 % in a wide range of pH (2-11). The thermodynamic results indicated that the adsorption was a spontaneous exothermic process. Fe-Al-PS materials were easy to access and involved simple synthesis and low energy consumption, had high anti-interference ability, were reusable, and could be used not only for the effective removal of glyphosate isopropylamine salt herbicide in real water bodies but also for the removal of inorganic phosphorus.

17.
Phytomedicine ; 131: 155786, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38875812

ABSTRACT

BACKGROUND: Although AMP-activated protein kinase (AMPK) has been extensively studied in cellular processes, the understanding of its substrates, downstream functions, contributions to cell fate and colorectal cancer (CRC) progression remains incomplete. PURPOSE: The aim of this study was to investigate the effects and mechanisms of naringenin on CRC. METHODS: The biological and cellular properties of naringenin and its anticancer activity were evaluated in CRC. In addition, the effect of combined treatment with naringenin and 5-fluorouracil on tumor growth in vitro and in vivo was evaluated. RESULTS: The present study found that naringenin inhibits the proliferation of CRC and promote its apoptosis. Compared with the naringenin group, naringenin combined with 5-fluorouracil had significant effect on inhibiting cell proliferation and promoting its apoptosis. It is showed that naringenin activates AMPK phosphorylation and mitochondrial fusion in CRC. Naringenin combined with 5-fluorouracil significantly reduces cardiotoxicity and liver damage induced by 5-fluorouracil in nude mice bearing subcutaneous CRC tumors, and attenuates colorectal injuries in azoxymethane/DSS dextran sulfate (AOM/DSS)-induced CRC. The combination of these two drugs alters mitochondrial function by increasing reactive oxygen species (ROS) levels and decreasing the mitochondrial membrane potential (MMP), thereby stimulating AMPK/mTOR signaling. Mitochondrial dynamics are thereby regulated by activating the AMPK/p-AMPK pathway, and mitochondrial homeostasis is coordinated through increased mitochondrial fusion and reduced fission to activate apoptosis in cancer cells. CONCLUSIONS: Our data suggest that naringenin is important for inhibiting CRC proliferation, possibly through the AMPK pathway, to regulate mitochondrial function and induce apoptosis in CRC.


Subject(s)
AMP-Activated Protein Kinases , Apoptosis , Cell Proliferation , Colorectal Neoplasms , Flavanones , Fluorouracil , Mice, Nude , Mitochondria , Reactive Oxygen Species , Flavanones/pharmacology , Colorectal Neoplasms/drug therapy , Animals , AMP-Activated Protein Kinases/metabolism , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Reactive Oxygen Species/metabolism , Fluorouracil/pharmacology , Mice , Cell Line, Tumor , Male , Mice, Inbred BALB C , Phosphorylation/drug effects , Antineoplastic Agents, Phytogenic/pharmacology
18.
Sci Total Environ ; 945: 174093, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906307

ABSTRACT

Black carbon (BC) and brown carbon (BrC) over the high-altitude Tibetan Plateau (TP) can significantly influence regional and global climate change as well as glacial melting. However, obtaining plateau-scale in situ observations is challenging due to its high altitude. By integrating reanalysis data with on-site measurements, the spatial distribution of BC and BrC can be accurately estimated using the random forest algorithm (RF). In our study, the on-site observations of BC and BrC were successively conducted at four sites from 2018 to 2021. Ground-level BC and BrC concentrations were then obtained at a spatial resolution of 0.25° × 0.25° for three periods (including Periods-1980, 2000, and 2020) using RF and multi-source data. The highest annual concentrations of BC (1363.9 ± 338.7 ng/m3) and BrC (372.1 ± 96.2 ng/m3) were observed during Period-2000. BC contributed a dominant proportion of carbonaceous aerosol, with concentrations 3-4 times higher than those of BrC across the three periods. The ratios of BrC to BC decreased from Period-1980 to Period-2020, indicating the increasing importance of BC over the TP. Spatial distributions of plateau-scale BC and BrC concentrations showed heightened levels in the southeastern TP, particularly during Period-2000. These findings significantly enhance our understanding of the spatio-temporal distribution of light-absorbing carbonaceous aerosol over the TP.

19.
Shock ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904460

ABSTRACT

ABSTRACT: Sepsis, a complex and multifaceted condition, is a common occurrence with serious implications for critically ill patients in the Intensive Care Unit (ICU). The YWHAH gene encodes the 14-3-3n protein, a member of the 14-3-3 protein family. While existing research primarily focuses on the role of 14-3-3n in conditions such as schizophrenia and various cancers, our study revealed that the expression of the YWHAH gene remained relatively stable in both infected individuals and healthy controls. Through Venn plot analysis following weighted gene correlation network analysis (WGCNA), we observed a potential association between elevated YWHAH expression and the transition from infection to sepsis. In a comprehensive analysis of public single-cell transcriptome databases, the expression of YWHAH was found to be distinctive in cases of sepsis and infection. These findings were corroborated through an in vitro analysis utilizing real-time polymerase chain reaction. This study represents the initial identification of variations in YWHAH gene expression between patients with infection and sepsis, potentially offering insights for the development of early detection and treatment strategies for sepsis.

20.
Appl Opt ; 63(11): 2950-2956, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38856393

ABSTRACT

We propose a low loss, wideband silicon transverse magnetic (TM) polarizer with high polarization extinction ratio and low reflection based on subwavelength grating. By arranging and optimizing a mutually perpendicular subwavelength grating with different duty cycles as the core and cladding, efficient waveguiding and radiation can be achieved for the TM and transverse electric (TE) injection, respectively. In simulation, the proposed TM polarizer has a footprint of 40µm×16.68µm, an insertion loss <0.7d B, a polarization extinction ratio ≥20d B, and an unwanted TE reflection <-17.4d B in the wavelength range of 1230-1700 nm. Moreover, the fabrication tolerance of the proposed device is also investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...