Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.056
Filter
1.
Heliyon ; 10(14): e34039, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39104488

ABSTRACT

This study delves into the intricate relationship between economic growth and its ecological repercussions, employing a comprehensive assessment of ecological footprint across 131 nations. The time period considered for the research spans from 2009 to 2019. Utilizing the CS-ARDL methodology, the results indicate a correlation between reducing ecological footprint and bolstering private sector domestic credit. Additionally, a relationship between diminishing private sector domestic credit of banks and augmenting private sector domestic credit within the financial sector has been identified. In conjunction with other indicators of financial advancement, the significance of domestic lending to the private sector has been underscored. The study reveals a notable reduction in human population's adverse impact on the environment. However, increased levels of energy consumption, foreign direct investment and per capita GDP are associated with an improvement in global quality of life. Particularly noteworthy is the validation of the "pollution haven hypothesis" in the global economic context. The implications of this research are substantial; suggesting that global economic dynamics may support efforts towards environmental conservation. However, outcomes may vary across regions or countries, particularly regarding the emphasis placed by the financial sector on environmental preservation. This study comprehensively examines the complex nexus between economic progress and its ecological consequences, keeping in consideration factors such as financial growth, urbanization, energy consumption and Foreign Direct Investment (FDI).

2.
Nat Commun ; 15(1): 6652, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39103368

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) is a redox cofactor and signal central to cell metabolisms. Disrupting NAD homeostasis in plant alters growth and stress resistance, yet the underlying mechanisms remain largely unknown. Here, by combining genetics with multi-omics, we discover that NAD+ deficiency in qs-2 caused by mutation in NAD+ biosynthesis gene-Quinolinate Synthase retards growth but induces biosynthesis of defense compounds, notably aliphatic glucosinolates that confer insect resistance. The elevated defense in qs-2 is resulted from activated jasmonate biosynthesis, critically hydroperoxidation of α-linolenic acid by the 13-lipoxygenase (namely LOX2), which is escalated via the burst of chloroplastic ROS-singlet oxygen (1O2). The NAD+ deficiency-mediated JA induction and defense priming sequence in plants is recapitulated upon insect infestation, suggesting such defense mechanism operates in plant stress response. Hence, NAD homeostasis is a pivotal metabolic checkpoint that may be manipulated to navigate plant growth and defense metabolism for stress acclimation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cyclopentanes , NAD , Oxylipins , Cyclopentanes/metabolism , Oxylipins/metabolism , NAD/metabolism , NAD/biosynthesis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Homeostasis , Animals , Mutation , Lipoxygenase/metabolism , Lipoxygenase/genetics , Glucosinolates/metabolism , Glucosinolates/biosynthesis , Reactive Oxygen Species/metabolism , Stress, Physiological
3.
Macromol Rapid Commun ; : e2400515, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122478

ABSTRACT

The utilization of (cationic) reversible addition-fragmentation chain transfer (RAFT) polymerization in photoinduced three-dimensional (3D) printing has emerged as a robust technique for fabricating a variety of stimuli-responsive materials. However, methods for precisely adjusting the mechanical properties of these materials remain limited, thereby constraining their broader applicability. In this study, a facile way is introduced to modulate the mechanical properties of 3D printed objects by mixing two chain transfer agents (CTAs) within a radical-promoted cationic RAFT (RPC-RAFT) polymerization-based 3D printing process. Through systematic investigations employing tensile testing and dynamic mechanical analysis (DMA), the influence of CTA concentration and molar ratio between two CTAs on the mechanical behavior of the printed objects are explored. These findings demonstrate that higher concentrations of CTAs or a greater molar ratio of the more active CTA within the mixed CTAs result in decreased Young's modulus and glass transition temperatures of the printed objects. Moreover, the tensile failure strain increased with the increasing CTA content, i.e., the samples became more ductile. This methodology broadens the toolbox available for tailoring the mechanical properties of 3D printed materials.

4.
IEEE Trans Med Imaging ; PP2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949934

ABSTRACT

Deep learning approaches for multi-label Chest X-ray (CXR) images classification usually require large-scale datasets. However, acquiring such datasets with full annotations is costly, time-consuming, and prone to noisy labels. Therefore, we introduce a weakly supervised learning problem called Single Positive Multi-label Learning (SPML) into CXR images classification (abbreviated as SPML-CXR), in which only one positive label is annotated per image. A simple solution to SPML-CXR problem is to assume that all the unannotated pathological labels are negative, however, it might introduce false negative labels and decrease the model performance. To this end, we present a Multi-level Pseudo-label Consistency (MPC) framework for SPML-CXR. First, inspired by the pseudo-labeling and consistency regularization in semi-supervised learning, we construct a weak-to-strong consistency framework, where the model prediction on weakly-augmented image is treated as the pseudo label for supervising the model prediction on a strongly-augmented version of the same image, and define an Image-level Perturbation-based Consistency (IPC) regularization to recover the potential mislabeled positive labels. Besides, we incorporate Random Elastic Deformation (RED) as an additional strong augmentation to enhance the perturbation. Second, aiming to expand the perturbation space, we design a perturbation stream to the consistency framework at the feature-level and introduce a Feature-level Perturbation-based Consistency (FPC) regularization as a supplement. Third, we design a Transformer-based encoder module to explore the sample relationship within each mini-batch by a Batch-level Transformer-based Correlation (BTC) regularization. Extensive experiments on the CheXpert and MIMIC-CXR datasets have shown the effectiveness of our MPC framework for solving the SPML-CXR problem.

5.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 324-328, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38953255

ABSTRACT

Objective To assess the influences of self-and interviewer-administered methods on the scores of anxiety and depression questionnaires among the patients with sports injuries.Methods A total of 532 participants with sports injuries treated in the Sports Medicine Center of West China Hospital,Sichuan University from November 2022 to May 2023 were included.They were randomly assigned to either the interviewer-administered group (n=270) or the self-administered group (n=262) to complete the generalized anxiety disorder (GAD-7) and the patient health questionnaire (PHQ-9) scales.The total scores and prevalence rates of anxiety and depression were compared between the two groups.Results There was no statistically significant difference in gender,occupation,or surgical site between the two groups (all P>0.05).The self-administered group had higher scores of GAD-7 and PHQ-9 scales than the interviewer-administered group (P<0.001,P<0.001).A greater proportion of participants in the self-administered group than in the interview-administered group met the criteria for mild to moderate anxiety and depression (P<0.001,P=0.002).The prevalence rates of moderate to severe anxiety (GAD-7≥10) and depression (PHQ-9≥10) showed no statistically significant difference between the two groups (P=0.761,P=0.086).Conclusion This study demonstrates that the participants in the self-administered group are more likely to report mild to moderate symptoms of anxiety and depression than those in the interviewer-administered group.


Subject(s)
Anxiety , Depression , Humans , Surveys and Questionnaires , Depression/epidemiology , Depression/diagnosis , Female , Anxiety/epidemiology , Male , Adult , Athletic Injuries/psychology , Athletic Injuries/epidemiology , China/epidemiology , Middle Aged , Young Adult
6.
Int J Hyperthermia ; 41(1): 2328113, 2024.
Article in English | MEDLINE | ID: mdl-38964750

ABSTRACT

PURPOSE: This study aimed to investigate the efficacy and safety of ultrasound-guided percutaneous radiofrequency ablation (RFA) for the treatment of synovial hyperplasia in the knee joints of antigen-induced arthritis (AIA) model rabbits. METHODS: Forty Japanese large-eared white rabbits were divided into AIA and control groups. After successful induction of the AIA model, the knee joints were randomly assigned to RFA and non-RFA groups. The RFA group underwent ultrasound-guided RFA to treat synovial hyperplasia in the knee joint. Dynamic observation of various detection indices was conducted to evaluate the safety and effectiveness of the RFA procedure. RESULTS: Successful synovial ablation was achieved in the RFA group, with no intraoperative or perioperative mortality. Postoperative the circumference of the knee joint reached a peak before decreasing in the third week after surgery. The incidence and diameter of postoperative skin ulcers were not significantly different compared to the non-RFA group (p > .05). Anatomical examination revealed an intact intermuscular fascia around the ablated area in the RFA group. The ablated synovial tissue initially presented as a white mass, which subsequently liquefied into a milky white viscous fluid. Gross articular cartilage was observed, along with liquefied necrosis of the synovium on pathological histology and infiltration of inflammatory cells in the surrounding soft tissue. CONCLUSION: The experimental results demonstrated that ultrasound-guided RFA of the knee in the treatment of synovial hyperplasia in AIA model animals was both effective and safe.


Subject(s)
Hyperplasia , Radiofrequency Ablation , Animals , Rabbits , Radiofrequency Ablation/methods , Hyperplasia/surgery , Hyperplasia/pathology , Synovial Membrane/pathology , Synovial Membrane/diagnostic imaging , Ultrasonography/methods , Male , Ultrasonography, Interventional/methods
7.
Chemistry ; : e202401727, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979891

ABSTRACT

The development of innovative synthetic strategies to create functional polycaprolactones is highly demanded for advanced material applications. In this contribution, we reported a facile synthetic strategy to prepare a class of CL-based monomers (R-TO) derived from epoxides. They readily polymerize via well-controlled ring-opening polymerization (ROP) to afford a series of polyesters P(R-TO) with high molecular weight (Mn up to 350 kDa). Sequential addition copolymerization of MTO and L-lactide (L-LA) allowed to access of a series of ABA triblock copolymers with composition-dependent mechanical properties. Notably, P(L-LA)100-b-P(MTO)500-b-P(L-LA)100 containing the amorphous P(MTO) segment as a soft midblock and crystalline P(L-LA) domain as hard end block behaved as an excellent thermoplastic elastomer (TPE) with high elongation at break (1438 ± 204%), tensile strength (23.5 ± 1.7 MPa), and outstanding elastic recovery (>88%).

8.
Front Psychol ; 15: 1385178, 2024.
Article in English | MEDLINE | ID: mdl-38984272

ABSTRACT

Introduction: This meta-analysis investigates the relationship between coach leadership behaviors and athlete satisfaction and group cohesion within the realm of Chinese sports. The study also explores player sex and player classification as potential moderating variables. The primary focus is on evaluating the impact of coaching behaviors, as measured by the Leadership Scale for Sports, on athlete satisfaction and group cohesion. Methods: Standard literature searches from China National Knowledge Infrastructure and Wanfang academic databases produced 26 studies encompassing a total of 319 effect sizes and a participant pool of 7,121 athletes across various sports. Results: Using the Comprehensive Meta-Analysis (CMA) to examine relevant data, results reveal a moderate and positive association between coach leadership and athlete satisfaction (ES = 0.412). Specifically, training and instruction (ES = 0.531), positive feedback (ES = 0.526), social support, and democratic decision-making exhibit positive effects, while autocratic behavior demonstrates a marginal positive effect. Similarly, a moderate positive relationship is identified between coach leadership and overall group cohesion (ES = 0.275), with training and instruction (ES = 0.396), social support (ES = 0.356), positive feedback, and democratic behavior positively influencing cohesion. Conversely, autocratic behavior has a small negative impact on cohesion. Furthermore, female athletes (ES = 0.603) and professional players (ES = 0.544) display stronger positive associations between coach leadership and satisfaction. Conclusion: These findings highlight the significance of diverse coaching behaviors aligned with player characteristics for fostering positive athlete satisfaction and group cohesion within the Chinese sports context, offering valuable guidance to Chinese coaches aiming to enhance their coaching strategies.

9.
Plant Commun ; : 101040, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39001607

ABSTRACT

Understanding the behavior of endogenous proteins is crucial for functional genomics, yet their dynamic characterization in plants presents substantial challenges. While mammalian studies have leveraged in-locus tagging with the luminescent HiBiT peptide and genome editing for rapid quantification of native proteins, this approach remained unexplored in plants. Here, we introduce the in-locus HiBiT tagging of rice proteins and demonstrate its feasibility in plants. We found that although traditional HiBiT blotting works in rice, it failed to detect two of the three tagged proteins, which is attributed to the low luminescence activity in plants. To overcome this limitation, we engaged in extensive optimization, culminating in a new luciferin substrate coupled with a refined reaction protocol that enhanced luminescence by up to 6.9-fold. This innovation led to the development of TagBIT (tagging with HiBiT), a robust method for high-sensitivity protein characterization in plants. Our application of TagBIT to seven rice genes illustrates its versatility on endogenous proteins, enabling antibody-free protein blotting, real-time protein quantification via luminescence, in-situ visualization using a cross-breeding strategy, and effective immunoprecipitation for protein interaction analysis. The heritable nature of this system, confirmed across T1 to T3 generations, positions TagBIT as a powerful tool for protein study in plant biology.

10.
Cancer Lett ; 598: 217104, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38969163

ABSTRACT

Results of measurable residual disease (MRD)-testing by next-generation sequencing (NGS) correlate with relapse risk in adults with B-cell acute lymphoblastic leukemia (ALL) receiving chemotherapy or an allotransplant from a human leukocyte antigen (HLA)-identical relative or HLA-matched unrelated donor. We studied cumulative incidence of relapse (CIR) and survival prediction accuracy using a NGS-based MRD-assay targeting immunoglobulin genes after 2 courses of consolidation chemotherapy cycles in 93 adults with B-cell ALL most receiving HLA-haplotype-matched related transplants. Prediction accuracy was compared with MRD-testing using multi-parameter flow cytometry (MPFC). NGS-based MRD-testing detected residual leukemia in 28 of 65 subjects with a negative MPFC-based MRD-test. In Cox regression multi-variable analyses subjects with a positive NGS-based MRD-test had a higher 3-year CIR (Hazard Ratio [HR] = 3.37; 95 % Confidence Interval [CI], 1.34-8.5; P = 0.01) and worse survival (HR = 4.87 [1.53-15.53]; P = 0.007). Some data suggest a lower CIR and better survival in NGS-MRD-test-positive transplant recipients but allocation to transplant was not random. Our data indicate MRD-testing by NGS is more accurate compared with testing by MPFC in adults with B-cell ALL in predicting CIR and survival. (Registered in the Beijing Municipal Health Bureau Registration N 2007-1007 and in the Chinese Clinical Trial Registry [ChiCTR-OCH-10000940 and ChiCTROPC-14005546]).

11.
J Integr Plant Biol ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39031490

ABSTRACT

Generation of crops with low phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP6)) is an important breeding direction, but such plants often display less desirable agronomic traits. In this study, through ethyl methanesulfonate-mediated mutagenesis, we found that inositol 1,3,4-trisphosphate 5/6-kinase 4 (ITPK4), which is essential for producing InsP6, is a critical regulator of salt tolerance in Arabidopsis. Loss of function of ITPK4 gene leads to reduced root elongation under salt stress, which is primarily because of decreased root meristem length and reduced meristematic cell number. The itpk4 mutation also results in increased root hair density and increased accumulation of reactive oxygen species during salt exposure. RNA sequencing assay reveals that several auxin-responsive genes are down-regulated in the itpk4-1 mutant compared to the wild-type. Consistently, the itpk4-1 mutant exhibits a reduced auxin level in the root tip and displays compromised gravity response, indicating that ITPK4 is involved in the regulation of the auxin signaling pathway. Through suppressor screening, it was found that mutation of Multidrug Resistance Protein 5 (MRP5)5 gene, which encodes an ATP-binding cassette (ABC) transporter required for transporting InsP6 from the cytoplasm into the vacuole, fully rescues the salt hypersensitivity of the itpk4-1 mutant, but in the itpk4-1 mrp5 double mutant, InsP6 remains at a very low level. These results imply that InsP6 homeostasis rather than its overall amount is beneficial for stress tolerance in plants. Collectively, this study uncovers a pair of gene mutations that confer low InsP6 content without impacting stress tolerance, which offers a new strategy for creating "low-phytate" crops.

12.
Medicine (Baltimore) ; 103(30): e38980, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058856

ABSTRACT

Liver cancer with portal vein tumor thrombus (PVTT) is a frequent finding and is related to poor prognosis. Surgical resection provides a more promising prognosis in selected patients. The purpose of this study was to explore the application of 3D (3-dimensional) visualization and image fusion technology in liver cancer with PVTT surgery. 12 patients were treated with surgery between March 2019 and August 2022. The preoperative standard liver volume (SLV), estimated future liver remnant (FLR), FLR/SLV, 3D visualization models, PVTT classification, operation programs, surgical results, and prognosis were collected and analyzed. Twelve patients who had complete data of 3D visualization and underwent hemihepatectomy combined with portal vein tumor thrombectomy. The operation plan was formulated by 3D visualization and was highly consistent with the actual surgery. The SLV was 1208.33 ±â€…63.22 mL, FLR was 734.00 mL and FLR/SLV was 61.62 ±â€…19.38%. The accuracy of classification of PVTT by 3D visualization was 100%, Cheng type Ⅱa (4 cases), Ⅱb (2 cases), Ⅲa (4 cases), and Ⅲb (2 cases). The 3D visualization model was a perfect fusion with the intraoperative live scene and precise guidance for hepatectomy. No patient was suffering from postoperative liver failure and without procedure­associated death. 6 patients died of tumor recurrence, and 2 patients died of other reasons. The 12-month cumulative survival rate was 25.9%. 3D visualization and image fusion technology could be used for precise assessment of FLR, classification of PVTT, surgery navigation, and which was helpful in improving the safety of hepatectomy.


Subject(s)
Hepatectomy , Imaging, Three-Dimensional , Liver Neoplasms , Portal Vein , Thrombectomy , Humans , Portal Vein/surgery , Portal Vein/pathology , Portal Vein/diagnostic imaging , Liver Neoplasms/surgery , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Liver Neoplasms/mortality , Male , Female , Middle Aged , Imaging, Three-Dimensional/methods , Hepatectomy/methods , Thrombectomy/methods , Aged , Adult , Venous Thrombosis/diagnostic imaging , Venous Thrombosis/surgery , Venous Thrombosis/etiology , Prognosis , Tomography, X-Ray Computed/methods
13.
Antioxidants (Basel) ; 13(7)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39061917

ABSTRACT

Cyprinus carpio is a significant freshwater species with substantial nutritional and economic value. Rice-carp co-culture represents one of its principal cultivation methods. However, in the system, the optimal farming density for carp and the impact of high stocking density on their muscle nutritional composition have yet to be explored. Thus, the objective of the current study was to investigate the influences of stocking density on the muscle nutrient profiles and metabolism of C. carpio in rice-fish co-culture systems. Common carp were cultured at three stocking densities, low density (LD), medium density (MD), and high density (HD), over a period of 60 days. Following this, comprehensive analyses incorporating physiological, biochemical, and multi-omics sequencing were conducted on the muscle tissue of C. carpio. The results demonstrated that HD treatment led to a reduction in the antioxidant capacity of C. carpio, while resulting in elevated levels of various fatty acids in muscle tissue, including saturated fatty acids (SFAs), omega-3 polyunsaturated fatty acids (n-3 PUFAs), and omega-6 polyunsaturated fatty acids (n-6 PUFAs). The metabolome analysis showed that HD treatment caused a marked reduction in 43 metabolites and a significant elevation in 30 metabolites, primarily linked to lipid and amino acid metabolism. Additionally, transcriptomic analysis revealed that the abnormalities in lipid metabolism induced by high-stocking-density treatment may be associated with significant alterations in the PPAR signaling pathway and adipokine signaling pathway. Overall, our findings indicate that in rice-fish co-culture systems, high stocking density disrupted the balance of antioxidant status and lipid metabolism in the muscles of C. carpio.

14.
Angew Chem Int Ed Engl ; : e202409588, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060222

ABSTRACT

The wrinkles are pervasive in ultrathin two-dimensional (2D) materials, but the regulation of wrinkles is rarely explored systematically. However, the regulation of wrinkles at nanometer scale is merely explored. Here, we employed a series of carboxylic acids (from formic acid to octanoic acid) to control the wrinkles of Zr-BTB (BTB = 1, 3, 5-(4-carboxylphenyl)-benzene) metal-organic framework (MOF) nanosheet. The wrinkles at the micrometer scale were observed with transmission electron microscopy. Furthermore, high-angle annular dark-field (HAADF) images showed lattice distortion in many nanoscale regions, which was precisely matched to the nano-wrinkles. With the changes of hydrophilicity/hydrophobicity, MOF-MOF and MOF-solvent interactions were synergistically regulated and wrinkles with different sizes were obtained, which was supported by HAADF, molecular dynamics and density functional theory calculation. Different wrinkle sizes resulted in different pore sizes between the Zr-BTB nanosheet interlayers, providing highly-oriented thin films and the successive optimization of kinetic diffusion pathways, proved by grazing-incidence wide-angle X-ray scattering and nitrogen adsorption. The most suitable wrinkle pore from Zr-BTB-C4 exhibited highly efficient chromatographic separation of the substituted benzene isomers. Our work provides a rational route for the modulation of nanoscale wrinkles and their stacked pores of MOF nanosheets and improves the separation abilities of MOFs.

15.
Mol Plant ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39049493

ABSTRACT

Gene upregulation through genome editing is important for plant research and breeding. Targeted insertion of short transcriptional enhancers (STEs) into gene promoters may offer a universal solution akin to transgene-mediated overexpression, while avoiding the drawbacks associated with transgenesis. Here, we introduce an "in-locus activation" technique in rice that leverages specifically screened STEs for refined, heritable, and multiplexed gene upregulation. To address the scarcity of potent enhancers, we developed a large-scale mining approach and discovered a suite of STEs capable of enhancing gene expression in rice protoplasts. The in-locus integration of these STEs into eight rice genes resulted in substantial transcriptional enhancements, with up to 869.1-fold increases in the edited plants. Employing a variety of STEs, we achieved delicate control of gene expression, enabling the fine-tuning of key phenotypic traits such as plant height. Our approach also enabled efficient multiplexed gene upregulation, with up to four genes simultaneously activated, significantly enhancing the nicotinamide mononucleotide (NMN) metabolic pathway. Importantly, heritability studies from the T0 to T3 generations confirmed the stable and heritable nature of STE-driven gene activation. Coupled with our STE-mining technique, in-locus activation holds great promise to make gene upregulation a major application of genome editing in plant research and breeding.

16.
Int J Phytoremediation ; : 1-10, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39049592

ABSTRACT

Electrolytic manganese slag (EMR) is a solid waste generated in the manganese hydrometallurgy process. It not only takes up significant land space but also contains Mn2+, which can lead to environmental contamination. There is a need for research on the treatment and utilization of EMR. Improved EMR substrate for Pennisetum sinese Roxb growth was determined in pot planting experiments. The study tested the effects of leaching solution, microorganisms, leaf cell structures, and growth data. Results indicated a substrate of 45% EMR, 40% phosphogypsum, 5% Hericium erinaceus fungi residue, 5% quicklime, and 5% dolomite sand significantly increased the available phosphorus content (135.54 ± 2.88 µg·g-1) by 17.95 times, compared to pure soil, and enhanced the relative abundance of dominant bacteria. After 240 days, the plant height (147.00 ± 0.52 cm), number of tillers (6), and aerial dry weight (144.00 ± 15.99g) of Pennisetum sinese Roxb increased by 5.81%, 200%, and 32.58%, respectively. Analyses of leaves and leaching solution revealed that the highest leaf Mn content (46.84 ± 2.91 µg·g-1) being 3.38 times higher than in pure soil, and the leaching solution Mn content (0.66 ± 0.13 µg·g-1) was lowest. Our study suggested P. sinese Roxb grown in an improved EMR substrate could be a feasible option for solidification treatment and resource utilization of EMR.


The waste solid resource utilization was achieved.The growth and ecological restoration value of Pennisetum sinese Roxb in an improved EMR substrate was found.An optimal ratio of improved EMR substrate was proposed.

17.
Sci Signal ; 17(843): eadk0231, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954637

ABSTRACT

The Hippo pathway is generally understood to inhibit tumor growth by phosphorylating the transcriptional cofactor YAP to sequester it to the cytoplasm and reduce the formation of YAP-TEAD transcriptional complexes. Aberrant activation of YAP occurs in various cancers. However, we found a tumor-suppressive function of YAP in clear cell renal cell carcinoma (ccRCC). Using cell cultures, xenografts, and patient-derived explant models, we found that the inhibition of upstream Hippo-pathway kinases MST1 and MST2 or expression of a constitutively active YAP mutant impeded ccRCC proliferation and decreased gene expression mediated by the transcription factor NF-κB. Mechanistically, the NF-κB subunit p65 bound to the transcriptional cofactor TEAD to facilitate NF-κB-target gene expression that promoted cell proliferation. However, by competing for TEAD, YAP disrupted its interaction with NF-κB and prompted the dissociation of p65 from target gene promoters, thereby inhibiting NF-κB transcriptional programs. This cross-talk between the Hippo and NF-κB pathways in ccRCC suggests that targeting the Hippo-YAP axis in an atypical manner-that is, by activating YAP-may be a strategy for slowing tumor growth in patients.


Subject(s)
Adaptor Proteins, Signal Transducing , Carcinoma, Renal Cell , Cell Proliferation , Kidney Neoplasms , Protein Serine-Threonine Kinases , Transcription Factors , YAP-Signaling Proteins , Humans , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Transcription Factors/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Animals , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Mice , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Hippo Signaling Pathway , Signal Transduction , TEA Domain Transcription Factors/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , Mice, Nude , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Serine-Threonine Kinase 3
18.
Org Biomol Chem ; 22(29): 5982-5986, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38984917

ABSTRACT

An unprecedented trifunctionalization of CC bonds in 2-(1-azidovinyl)-1,1'-biphenyls has been successfully achieved using the NCS/AgNO2 system, leading to the preparation of 6-(dichloro(nitro)methyl)phenanthridines in moderate to good yields. In this process, the NCS/AgNO2 system serves as a NO2 radical initiator as well as a chloro group source. The present protocol is a rare example of the selective construction of densely functionalized phenanthridine derivatives in a one-pot manner.

19.
Chem Asian J ; : e202400648, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946109

ABSTRACT

Photoinduced 3D printing via photocontrolled reversible-deactivation radical polymerization (photoRDRP) techniques has emerged as a robust technique for creating polymeric materials. However, methods for precisely adjusting the mechanical properties of these materials remain limited. In this study, we present a facile approach for adjusting the mechanical properties of 3D-printed objects by adjusting the polymer dispersity within a Norrish type I photoinitiated reversible addition-fragmentation chain transfer (NTI-RAFT) polymerization-based 3D printing process. We investigated the effects of varying the concentrations and molar ratios of trithiocarbonate (BTPA) and xanthate (EXEP) on the mechanical properties of the printed materials. Our findings demonstrate that increased concentrations of RAFT agents or higher proportions of the more active BTPA lead to a decrease in Young's modulus and glass transition temperatures, along with an increase in elongation at break, which can be attributed to the enhanced homogeneity of the polymer network. Using a commercial LCD printer, the NTI-RAFT-based 3D printing system effectively produced materials with tailored mechanical properties, highlighting its potential for practical applications.

20.
Cell ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39013470

ABSTRACT

Allogeneic chimeric antigen receptor (CAR)-T cells hold great promise for expanding the accessibility of CAR-T therapy, whereas the risks of allograft rejection have hampered its application. Here, we genetically engineered healthy-donor-derived, CD19-targeting CAR-T cells using CRISPR-Cas9 to address the issue of immune rejection and treated one patient with refractory immune-mediated necrotizing myopathy and two patients with diffuse cutaneous systemic sclerosis with these cells. This study was registered at ClinicalTrials.gov (NCT05859997). The infused cells persisted for over 3 months, achieving complete B cell depletion within 2 weeks of treatment. During the 6-month follow-up, we observed deep remission without cytokine release syndrome or other serious adverse events in all three patients, primarily shown by the significant improvement in the clinical response index scores for the two diseases, respectively, and supported by the observations of reversal of inflammation and fibrosis. Our results demonstrate the high safety and promising immune modulatory effect of the off-the-shelf CAR-T cells in treating severe refractory autoimmune diseases.

SELECTION OF CITATIONS
SEARCH DETAIL