Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.954
Filter
1.
Neural Regen Res ; 20(1): 116-129, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-38767481

ABSTRACT

Acute ischemic stroke is a clinical emergency and a condition with high morbidity, mortality, and disability. Accurate predictive, diagnostic, and prognostic biomarkers and effective therapeutic targets for acute ischemic stroke remain undetermined. With innovations in high-throughput gene sequencing analysis, many aberrantly expressed non-coding RNAs (ncRNAs) in the brain and peripheral blood after acute ischemic stroke have been found in clinical samples and experimental models. Differentially expressed ncRNAs in the post-stroke brain were demonstrated to play vital roles in pathological processes, leading to neuroprotection or deterioration, thus ncRNAs can serve as therapeutic targets in acute ischemic stroke. Moreover, distinctly expressed ncRNAs in the peripheral blood can be used as biomarkers for acute ischemic stroke prediction, diagnosis, and prognosis. In particular, ncRNAs in peripheral immune cells were recently shown to be involved in the peripheral and brain immune response after acute ischemic stroke. In this review, we consolidate the latest progress of research into the roles of ncRNAs (microRNAs, long ncRNAs, and circular RNAs) in the pathological processes of acute ischemic stroke-induced brain damage, as well as the potential of these ncRNAs to act as biomarkers for acute ischemic stroke prediction, diagnosis, and prognosis. Findings from this review will provide novel ideas for the clinical application of ncRNAs in acute ischemic stroke.

2.
Talanta ; 279: 126664, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39098238

ABSTRACT

In this study, titanium dioxide (TiO2) nanofilms with nanoparticle structure were grown in situ on metallic aluminum (Al) sheets using a simple sol-hydrothermal method. Al sheets were chosen because they can form Schottky junctions with TiO2 during the calcination process, thus achieving a tight bonding between the nanoparticles and the solid substrate, which cannot be achieved with conventional glass substrates. The substrates synthesized with different contents of titanium butoxide [Ti(OBu)4] were investigated using 4-mercaptobenzoic acid as a probe molecule, and the results showed that the substrate with 9 % of the total volume of Ti(OBu)4 had the highest surface-enhanced Raman scattering (SERS) performance. As a low-cost SERS substrate that is simple to synthesize, it has excellent signal reproducibility, with a relative standard deviation of 4.51 % for the same substrate and 6.43 % for different batches of synthesized substrates. Meanwhile, the same batch of substrate can be stored at room temperature for at least 20 weeks and still maintain stable SERS signals. In addition, the synthetic substrate was used to quantitatively detect urea with a detection limit of 4.23 × 10-3 mol/L, which is comparable to the application of noble metal substrates. The feasibility of this method was verified in human urine, and the results were consistent with the clinical results, indicating that this method has great potential for clinical application.

3.
Article in English | MEDLINE | ID: mdl-39105797

ABSTRACT

Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, pose significant health challenges and economic burdens worldwide. Recent studies have emphasized the potential therapeutic value of activating silent information regulator-1 (SIRT1) in treating these conditions. Resveratrol, a compound known for its ability to potently activate SIRT1, has demonstrated promising neuroprotective effects by targeting the underlying mechanisms of neurodegeneration. In this review, we delve into the crucial role of resveratrol-mediated SIRT1 upregulation in improving neurodegenerative diseases. The role of the activation of SIRT1 by resveratrol was reviewed. Moreover, network pharmacology was used to elucidate the possible mechanisms of resveratrol in these diseases. Activation of SIRT1 by resveratrol had positive effects on neuronal function and survival and alleviated the hallmark features of these diseases, such as protein aggregation, oxidative stress, neuroinflammation, and mitochondrial dysfunction. In terms of network pharmacology, the signaling pathways by which resveratrol protects against different neurodegenerative diseases were slightly different. Although the precise mechanisms underlying the neuroprotective effects of resveratrol and SIRT1 activation remain under investigation, these findings offer valuable insights into potential therapeutic strategies for neurodegenerative diseases.

4.
J Community Health ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110361

ABSTRACT

Despite higher income and education, there are profound health disparities among Asian Americans. These disparities are highlighted in particular by screening behaviors for cancer. Between 1998 and 2008, cancer rates increased threefold among Indian Americans, raising concern that cancer screening in this group may be especially low. To better understand cancer screening behavior, we collected data from a total of 157 self-identifying Indian Americans residing in the greater Philadelphia area. Nearly all participants reported having health insurance (98.7%), and most had received a physical exam within a year (87.3%). Only17.4% of the participants were referred for mammography, while 30% of participants over age 30 were referred for ovarian cancer screening. Just 4 participants were recommended for pancreatic cancer screening. The findings contribute new information to the understanding of health needs of Indian Americans residing in the greater Philadelphia region and reveal a need for greater focus on preventive care.

5.
Adv Mater ; : e2408560, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39139000

ABSTRACT

Near-infrared (NIR)-responsive metal-free carbon co-catalysts that convert glucose into H2O2 to generate reactive oxygen species (ROS) are developed from phosphorus-doped carbon nitride (P-C3N4) and graphene quantum dots (GQD) composites, for enhanced photocatalytic cancer therapy by light exposure in the targeted tumor microenvironment. Upon irradiation, the NIR light is converted by GQD with up-conversion function into visible light to excite P-C3N4 for photocatalytic conversion of glucose into H2O2, which subsequently decomposes into ROS. ROS thus generated exhibits an excellent anticancer efficacy for efficient cancer therapy with minimal side effects, as evidenced by both in vitro and in vivo studies. This study demonstrates, for the first time, a cancer therapeutic of GQD/P-C3N4 composite that utilizes a two-step cascade effect using initially NIR-triggered GQD nanoparticles to activate P-C3N4 to photocatalytically generate ROS for effective and targeted cancer therapy.

6.
Nat Commun ; 15(1): 6961, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138183

ABSTRACT

Despite advancements in antiretroviral therapy (ART) suppressing HIV-1 replication, existing antiviral drugs pose limitations, including lifelong medication, frequent administration, side effects and viral resistance, necessitating novel HIV-1 treatment approaches. CD4, pivotal for HIV-1 entry, poses challenges for drug development due to neutralization and cytotoxicity concerns. Nevertheless, Ibalizumab, the sole approved CD4-specific antibody for HIV-1 treatment, reignites interest in exploring alternative anti-HIV targets, emphasizing CD4's potential value for effective drug development. Here, we explore anti-CD4 nanobodies, particularly Nb457 from a CD4-immunized alpaca. Nb457 displays high potency and broad-spectrum activity against HIV-1, surpassing Ibalizumab's efficacy. Strikingly, engineered trimeric Nb457 nanobodies achieve complete inhibition against live HIV-1, outperforming Ibalizumab and parental Nb457. Structural analysis unveils Nb457-induced CD4 conformational changes impeding viral entry. Notably, Nb457 demonstrates therapeutic efficacy in humanized female mouse models. Our findings highlight anti-CD4 nanobodies as promising HIV-1 therapeutics, with potential implications for advancing clinical treatment against this global health challenge.


Subject(s)
CD4 Antigens , Camelids, New World , HIV Antibodies , HIV Infections , HIV-1 , Single-Domain Antibodies , HIV-1/immunology , HIV-1/drug effects , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/immunology , Animals , CD4 Antigens/immunology , CD4 Antigens/metabolism , Humans , HIV Infections/immunology , HIV Infections/drug therapy , HIV Infections/virology , Camelids, New World/immunology , HIV Antibodies/immunology , HIV Antibodies/pharmacology , Mice , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Protein Conformation , Female , Virus Internalization/drug effects , HEK293 Cells , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Antibodies, Monoclonal
7.
J Hazard Mater ; 477: 135440, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39111179

ABSTRACT

Biochar amendment is a promising strategy for mitigating antibiotic resistance genes (ARGs) in soil and plants, but its effects on ARGs at field scale are not fully understood. Here, field trials were executed utilizing two plant varieties, Brassica juncea and Lolium multiflorum, with four types of biochar to investigate changes in ARGs and microbiome in soil, rhizosphere, root endophytes, and leaf endophytes. Results showed that biochar altered ARG distribution in soil and plant, and restrained their transmission from soil and rhizosphere to endophytes. A reduction of 1.2-2.2 orders of magnitude in the quantity of ARGs was observed in root and leaf endophytes following biochar addition, while no significant changes were observed in soil and rhizosphere samples. Procrustes and network analyses revealed significant correlations between microbial communities and mobile genetic elements with ARGs (P < 0.05). Besides, redundancy and variation partitioning analysis indicated that bacterial communities may play a dominant role in shaping the ARGs profile, contributing to 43 % of the variation observed in ARGs. These field results suggest that biochar amendment alone may not fully alleviate ARGs in soil, but it has a significant beneficial impact on food safety and human health by effectively reducing ARGs in plant endophytes.


Subject(s)
Charcoal , Drug Resistance, Microbial , Microbiota , Rhizosphere , Soil Microbiology , Microbiota/drug effects , Microbiota/genetics , Drug Resistance, Microbial/genetics , Lolium/microbiology , Lolium/genetics , Lolium/drug effects , Soil/chemistry , Mustard Plant/genetics , Mustard Plant/microbiology , Bacteria/genetics , Bacteria/drug effects , Plant Roots/microbiology , Endophytes/genetics , Endophytes/drug effects , Genes, Bacterial , Plant Leaves/microbiology
8.
Health Commun ; : 1-13, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39129664

ABSTRACT

This study examines the relationship between parental interactions, digital media usage, and health literacy among 19,386 elementary students (ages 6-11) in Guangdong Province, China, using the framework of parental mediation theory. Path analysis revealed that increased digital media usage is associated with decreased health literacy, particularly for short video platforms, which exhibit a significant negative correlation (ß = -.335). Parental interaction was found to significantly reduce the use of instant messaging apps (ß = -.007) and short video platforms (ß = -.008), with the influence being moderated by the student's residence status (boarding or non-boarding). The findings highlight the importance of frequent parental interaction in limiting digital media usage and enhancing health literacy among children. This study suggests that parental mediation theory should pay closer attention to environmental or living status factors, as they can significantly influence its mechanisms of action. Overall, this research contributes to the discourse on digital behavior in childhood and offers evidence-based insights for improving educational and health literacy strategies.

9.
ACS Omega ; 9(31): 33482-33493, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39130578

ABSTRACT

As the core of a hypersonic propulsion system, the effective mixing efficiency of fuel and air in a supersonic combustor is crucial for its performance. This study focuses on a cold supersonic flow and employs computational fluid dynamics (CFD) techniques combined with Euler-Lagrange method's discrete-phase model (DPM) for multiphase flows, K-H and R-T (Kelvin-Helmholtz and Rayleigh-Taylor) mixing and atomization models, turbulence models, and surface evaporation models to investigate the injection, atomization, and mixing characteristics of kerosene in supersonic airflow. In order to enhance the mixing efficiency between kerosene and air while reducing flow losses, this study examines a staggered dual-jet injection scheme, with the dual jets arranged at the center of the cavity and having a dual-jet spacing of 10 and 20 mm, respectively. Starting from the interaction mechanism between jets, the impact of different staggered dual-jet spacings on the kerosene jet penetration height, span expansion area, angle of the shock wave, and Sauter mean diameter distribution was analyzed. The results show that a short dual-jet spacing (10 mm) leads to greater penetration height, wider span expansion, and a larger angle of the shock wave. When the dual-jet spacing is shorter, the interaction between the fuel jet and the cavity shear layer is stronger, resulting in an improved fuel mixing efficiency. The achievements of this study are consistent with previous experimental measurements and the literature, demonstrating a strong theoretical foundation for optimizing the design of hypersonic engines by deepening the understanding of the fundamental atomization mechanisms of kerosene jets in cold-state supersonic flows. Moreover, these results hold practical significance in improving the efficiency of kerosene combustion and enhancing the performance of flame stabilization devices.

10.
Food Chem X ; 23: 101510, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38947341

ABSTRACT

We prepared tea tree essential oil microcapsules, and the microcapsules and pullulan were coated on kraft paper to prepare an antibacterial paper. The antibacterial activity, structural characterization, and thermal stability of the prepared microcapsules and packaging paper were then tested. We found that the retention rate of microcapsules reached 87.1% after a 70 min of high-temperature treatment. The minimum inhibitory concentrations of microcapsules to S. aureus and E. coli were 112 mg/mL and 224 mg/mL, and the bacteriostatic zones of the packaging paper to E. coli and S. aureus were 17.49 mm and 22.75 mm, respectively. The prepared microcapsules were irregular. The paper coating was formed via hydrogen bonding, which filled the pores of paper fibers. When compared with the base paper, the roughness of the paper was reduced to 7.16 nm (Rq) and 5.61 nm (Ra), and no thermal decomposition occurred at <288 °C, which together implies a good application prospect.

11.
World J Stem Cells ; 16(6): 728-738, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38948093

ABSTRACT

BACKGROUND: Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease that affects premature infants. Although mounting evidence supports the therapeutic effect of exosomes on NEC, the underlying mechanisms remain unclear. AIM: To investigate the mechanisms underlying the regulation of inflammatory response and intestinal barrier function by umbilical cord mesenchymal stem cell (UCMSCs) exosomes, as well as their potential in alleviating NEC in neonatal mice. METHODS: NEC was induced in 5-d-old C57BL/6 pups through hypoxia and gavage feeding of formula containing lipopolysaccharide (LPS), after which the mice received human UCMSC exosomes (hUCMSC-exos). The control mice were allowed to breastfeed with their dams. Ileal tissues were collected from the mice and analyzed by histopathology and immunoblotting. Colon tissues were collected from NEC neonates and analyzed by immunofluorescence. Molecular biology and cell culture approaches were employed to study the related mechanisms in intestinal epithelial cells. RESULTS: We found that autophagy is overactivated in intestinal epithelial cells during NEC, resulting in reduced expression of tight junction proteins and an increased inflammatory response. The ability of hUCMSC-exos to ameliorate NEC in a mouse model was dependent on decreased intestinal autophagy. We also showed that hUCMSC-exos alleviate the inflammatory response and increase migration ability in intestinal epithelial cells induced by LPS. CONCLUSION: These results contribute to a better understanding of the protective mechanisms of hUCMSC-exos against NEC and provide a new theoretical and experimental foundation for NEC treatment. These findings also enhance our understanding of the role of the autophagy mechanism in NEC, offering potential avenues for identifying new therapeutic targets.

12.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 588-595, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948296

ABSTRACT

Objective: Female fertility gradually decreases with the increase in women's age. The underlying reasons include the decline in the quantity and quality of oocytes. Oocyte aging is an important manifestation of the decline in oocyte quality, including in vivo oocyte aging before ovulation and in vitro oocyte aging after ovulation. Currently, few studies have been done to examine oocyte aging, and the relevant molecular mechanisms are not fully understood. Therefore, we used zebrafish as a model to investigate oocyte aging. Three different age ranges of female zebrafish were selected to mate with male zebrafish of the best breeding age. In this way, we studied the effects of maternal age-related oocyte aging on fertility and investigated the potential molecular mechanisms behind maternal age-related fertility decline. Methods: Eight female zebrafish aged between 158 and 195 d were randomly selected for the 6-month age group (180±12) d, 8 female zebrafish aged between 330 and 395 d were randomly selected for the 12-month age group (360±22) d, and 8 female zebrafish aged between 502 and 583 d were randomly selected for the 18-month age group (540±26) d. Male zebrafish of (180±29) d were randomly selected from zebrafish aged between 158 and 195 d and mated with female zebrafish in each group. Each mating experiment included 1 female zebrafish and 1 male zebrafish. Zebrafish embryos produced by the mating experiments were collected and counted. The embryos at 4 hours post-fertilization were observed under the microscope, the total number of embryos and the number of unfertilized embryos were counted, and the fertilization rate was calculated accordingly. The numbers of malformed embryos and dead embryos were counted 24 hours after fertilization, and the rates of embryo malformation and mortality were calculated accordingly. The primary outcome measure was the embryo fertilization rate, and the secondary outcome measures were the number of embryos per spawn (the total number of embryos laid within 1.5 hours after the beginning of mating and reproduction of the zebrafish), embryo mortality, and embryo malformation rate. The outcome measures of each group were compared. The blastocyst embryos of female zebrafish from each group born after mating with male zebrafish in their best breeding period were collected for transcriptomics analysis. Fresh oocytes of female zebrafish in each group were collected for transcriptomics analysis to explore the potential molecular mechanisms of maternal age-related fertility decline. Results: Compared with that of the 6-month group (94.9%±3.6%), the embryo fertilization rate of the 12-month group (92.3%±4.2%) showed no significant difference, but that of the 18-month group (86.8%±5.5%) decreased significantly (P<0.01). In addition, the fertilization rate in the 18-month group was significantly lower than that in the 12-month group (P<0.05). Compared with that of the 6-month group, the embryo mortality of the female zebrafish in the 12-month group and that in the 18-month group were significantly higher than that in the 6-month group (P<0.000 1, P<0.001). There was no significant difference in the number of embryos per spawn or in the embryo malformation rate among the three groups. The results of the transcriptomics analysis of blastocyst embryos showed that some genes, including dusp5, bdnf, ppip5k2, dgkg, aldh3a2a, acsl1a, hal, mao, etc, were differentially expressed in the 12-month group or the 18-month group compared with their expression levels in the 6-month group. According to the KEGG enrichment analysis, these differentially expressed genes (DEGs) were significantly enriched in the MAPK signaling pathway, the phosphatidylinositol signaling system, and the fatty acid degradation and histidine metabolism pathway (P<0.05). The analysis of the expression trends of the genes expressed differentially among the three groups (the 6-month group, the 12-month group, and the 18-month group in turn) showed that the gene expression trends of fancc, fancg, fancb, and telo2, which were involved in Fanconi anemia pathway, were statistically significant (P<0.05). In the results of oocyte transcriptomics analysis, the genes that were differentially expressed in the 12-month group or the 18-month group compared with the 6-month group were mainly enriched in cell adhesion molecules and the protein digestion and absorption pathway (P<0.05). The results of the trends of gene expression in the zebrafish oocytes of the three groups (the 6-month group, the 12-month group, and the 18-month group in turn) showed that three kinds of gene expression trends of declining fertility with growing maternal age had significant differences (P<0.05). Further analysis of the three significantly differential expression trends showed 51 DEGs related to mitochondria and 5 DEGs related to telomere maintenance and DNA repair, including tomm40, mpc2, nbn, tti1, etc. Conclusion: With the increase in the maternal age of the zebrafish, the embryo fertilization rate decreased significantly and the embryo mortality increased significantly. In addition, with the increase in the maternal age of the zebrafish, the expression of mitochondria and telomere-related genes, such as tomm40, mpc2, nbn, and tti1, in female zebrafish oocytes decreased gradually. Maternal age may be a factor contributing to the decrease in oocyte fertilization ability and the increase in early embryo mortality. Maternal age-related oocyte aging affects the fertility and embryo development of the offspring.


Subject(s)
Fertility , Oocytes , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/physiology , Oocytes/physiology , Female , Fertility/genetics , Male , Transcriptome , Maternal Age , Aging/physiology , Aging/genetics , Models, Animal
13.
Transl Lung Cancer Res ; 13(6): 1365-1375, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38973948

ABSTRACT

Background: Small cell lung cancer (SCLC) is highly malignant and has a higher risk of recurrence even in patients who undergo early surgery. However, a subgroup of patients survived for many years. So far, the factors that determine the long-term survivorship remain largely unknown. To determine the genetic characteristics of long-term survival (LTS) after surgery in SCLC, we performed comprehensive comparative genomic profiling and tumor mutation burden (TMB) analysis of resected tumor tissues from patients with LTS and short-term survival (STS) after surgery. Methods: The present study screened 11 patients from 52 patients with SCLC who underwent surgery at Zhejiang Cancer Hospital from April 2008 to December 2017. A total of six LTS patients (≥4 years) with stage IIB or IIIA SCLC and five STS patients (<2 years) with stage IA or IB SCLC were included in the study. The STS patients were used as a control. All the patients underwent resection without neoadjuvant therapy. We assessed the genomic profiles of the resected tumor tissues and calculated the TMB using next-generation sequencing. We then analyzed and compared the molecular characteristics between the LTS and STS groups. Results: Our data indicated that tumor tissues from patients with LTS harbor a high TMB. The median TMB for LTS patients was high (approximately 16.4 mutations/Mb), while that for STS patients was low (approximately 8.5 mutations/Mb). The median TMB of patients with LTS and STS showed a trend of significant difference (P=0.08). Gene alterations characterized the survival differences between the two groups. The FAT3 mutation was only found in the LTS group, and the P value determined by Fisher's exact test was 0.06. Conclusions: A high non-synonymous TMB and the FAT3 mutation could potentially influence LTS after SCLC resection. This study provides valuable information about the molecular differences between LTS and STS patients. Studies with larger sample sizes need to be conducted to confirm our findings in the future.

14.
Surg Endosc ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977502

ABSTRACT

BACKGROUND: The safety and efficacy of robotic liver resection (RLR) for patients with hepatocellular carcinoma (HCC) have been reported worldwide. However, the exact role of RLR in HCC patients with liver cirrhosis is not sufficiently determined. METHODS: We conducted a retrospective study on consecutive patients with cirrhosis or non-cirrhosis who received RLR for HCC from 2018 to 2023. Data on patients' demographics and perioperative outcomes were collected and analyzed. Propensity score matching (PSM) analysis was performed. Multivariate logistic regression analysis was performed to determine the risk factors of prolonged postoperative length of stay (LOS) and morbidity. RESULTS: Of the 571 patients included, 364 (64%) had cirrhosis. Among the cirrhotic patients, 48 (13%) were classified as Child-Pugh B. After PSM, the cirrhosis and non-cirrhosis group (n = 183) had similar operative time, estimated blood loss, postoperative blood transfusion, LOS, overall morbidity (p > 0.05). In addition, the intraoperative and postoperative outcomes were similar between the two groups in the subgroup analyses of patients with tumor size ≥ 5 cm, major hepatectomy, and high/expert IWATE difficulty grade. However, patients with Child-Pugh B cirrhosis had longer LOS and more overall morbidity than that of Child-Pugh A. Child-Pugh B cirrhosis, ASA score > 2, longer operative time, and multiple tumors were risk factors of prolonged LOS or morbidity in patients with cirrhosis. CONCLUSION: The presence of Child-Pugh A cirrhosis didn't significantly influence the difficulty and perioperative outcomes of RLR for selected patients with HCC. However, even in high-volume center, Child-Pugh B cirrhosis was a risk factor for poor postoperative outcomes.

15.
World J Clin Cases ; 12(19): 3785-3790, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38994292

ABSTRACT

BACKGROUND: Chronic sinusitis is a kind of chronic suppurative inflammation of the sinus mucosa. Nasal endoscopy is a good method to treat nasal polyps. However postoperative rehabilitation and care should not be neglected. AIM: To investigate the Effect of nursing intervention on the rehabilitation of patients with chronic sinusitis and nasal polyps (CSNPS) after nasal endoscopy. METHODS: A total of 129 patients with CSNPS hospitalized from February 2017 to February 2019 were studied. Using the digital parity method, we investigated nursing cooperation strategies for endoscopic surgery. The comparison group (64 cases): Surgical nursing was carried out with traditional nursing measures; experimental group (65 cases): Surgical nursing was carried out by traditional nursing countermeasures + comprehensive nursing measures. We compared postoperative recovery rates, nursing satisfaction rates, and nasal cavity ratings between the two groups. RESULTS: Experimental group patients with CSNPS had a significantly higher recovery rate (98.46%) compared to the control group (79.69%). This difference was statistically significant (χ 2 = 11.748, P < 0.05). Additionally, the satisfaction rate with treatment was also significantly higher in the experimental group (98.46%) compared to the control group (79.69%), with a statistically significant difference (χ 2 = 11.748, P < 0.05). Before nursing, there was no significant difference in sinus nasal cavity scores between the experimental group (20.29 ± 7.25 points) and the control group (20.30 ± 7.27 points) (t = 0.008, P > 0.05). However, after nursing, the sinus nasal cavity score in the experimental group (8.85 ± 3.22 points) was significantly lower than that in the control group (14.99 ± 5.02 points) (t = 8.282, P < 0.05). CONCLUSION: Comprehensive nursing intervention in patients with CSNPS can significantly improve the total recovery rate after endoscopic surgery.

16.
Aesthetic Plast Surg ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995348

ABSTRACT

BACKGROUND: In Asia, the demand for cosmetic facial treatments has surged due to technological advancements, increased social acceptability, and affordability. Poly-L-lactic acid (PLLA) fillers, known for their biocompatibility and biodegradability, have emerged as a popular choice for facial contouring, yet studies specifically addressing their use in Asian populations are scarce. METHODS: This retrospective study examined 30 Chinese patients who underwent facial contouring with PLLA fillers, focusing on product composition, injection techniques, and safety measures. A comprehensive clinical evaluation was performed, including the Global Aesthetic Improvement Scale (GAIS) and Global Impression of Change Scale (GICS) for effectiveness and patient satisfaction, respectively. RESULTS: No significant difference in GAIS scores was observed between injectors and blinded evaluators over a 12-month period, indicating consistent effectiveness. Patient satisfaction remained high, with GICS scores reflecting positive outcomes. The safety profile was favorable, with no serious adverse events reported. The study highlighted the importance of anatomical knowledge to avoid complications, particularly in areas prone to blindness. CONCLUSIONS: PLLA fillers offer a safe, effective option for facial contour correction in the Asian population, achieving high patient satisfaction and maintaining results over time. The study underscores the need for tailored approaches in cosmetic procedures for Asians, considering their unique facial structures and aesthetic goals. Further research with larger, multicenter cohorts is recommended to validate these findings and explore long-term effects. LEVEL OF EVIDENCE III: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

17.
Environ Sci Pollut Res Int ; 31(31): 44385-44400, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38954330

ABSTRACT

Animal farming wastewater is one of the most important sources of ammonia nitrogen (NH4+-N) emissions. Electro-oxidation can be a viable solution for removing NH4+-N in wastewater. Compared with other treatment methods, electro-oxidation has the advantages of i) high removal efficiency, ii) smaller size of treatment facilities, and iii) complete removal of contaminant. In this study, a previously prepared DSA (W, Ti-doped IrO2) was used for electro-oxidation of synthetic mariculture and livestock wastewater. The DSA was tested for chlorine evolution reaction (CER) activity, and the reaction kinetics was investigated. CER current efficiency reaches 60-80% in mariculture wastewater and less than 20% in livestock wastewater. In the absence of NH4+-N, the generation of active chlorine follows zero-order kinetics and its consumption follows first-order kinetics, with cathodic reduction being its main consumption pathway, rather than escape or conversion to ClO3-. Cyclic voltammetry experiments show that NH4+-N in the form of NH3 can be oxidized directly on the anode surface. In addition, the generated active chlorine combines with NH4+-N at a fast rate near the anode, rather than in the bulk solution. In electrolysis experiments, the NH4+-N removal rate in synthetic mariculture wastewater (30-40 mg/L NH4+-N) and livestock wastewater (~ 450 mg/L NH4+-N) is 112.9 g NH4+-N/(m2·d) and 186.5 g NH4+-N/(m2·d), respectively, which is much more efficient than biological treatment. The specific energy consumption (SEC) in synthetic mariculture wastewater is 31.5 kWh/kg NH4+-N, comparable to other modified electro-catalysts reported in the literature. However, in synthetic livestock wastewater, the SEC is as high as 260 kWh/kg NH4+-N, mainly due to the suppression of active chlorine generation by HCO3- and the generation of NO3- as a by-product. Therefore, we conclude that electro-oxidation is suitable for mariculture wastewater treatment, but is not recommended for livestock wastewater. Electrolysis prior to urea hydrolysis may enhance the treatment efficiency in livestock wastewater.


Subject(s)
Ammonia , Livestock , Oxidation-Reduction , Waste Disposal, Fluid , Wastewater , Wastewater/chemistry , Animals , Ammonia/chemistry , Waste Disposal, Fluid/methods , Nitrogen/chemistry , Water Pollutants, Chemical/chemistry , Titanium/chemistry
18.
Medicine (Baltimore) ; 103(28): e38841, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996136

ABSTRACT

This study aimed to assess the utility of second-look ultrasonography (US) in differentiating breast imaging reporting and data system (BI-RADS) 4 calcifications initially detected on mammography (MG). BI-RADS 4 calcifications have a wide range of positive predictive values. We hypothesized that second-look US would help distinguish BI-RADS 4 calcifications without clinical manifestations and other abnormalities on MG. This study included 1622 pure BI-RADS 4 calcifications in 1510 women (112 patients with bilateral calcifications). The cases were randomly divided into training (85%) and testing (15%) datasets. Two nomograms were developed to differentiate BI-RADS 4 calcifications in the training dataset: the MG-US nomogram, based on multifactorial logistic regression and incorporated clinical information, MG, and second-look US characteristics, and the MG nomogram, based on clinical information and mammographic characteristics. Calibration of the MG-US nomogram was performed using calibration curves. The discriminative ability and clinical utility of both nomograms were compared using the area under the receiver operating characteristic curve (AUC) and the decision analysis curve (DCA) in the test dataset. The clinical information and imaging characteristics were comparable between the training and test datasets. The bias-corrected calibration curves of the MG-US nomogram closely approximate the ideal line for both datasets. In the test dataset, the MG-US nomogram exhibited a higher AUC than the MG nomogram (0.899 vs 0.852, P = .01). DCA demonstrated the superiority of the MG-US nomogram over the MG nomogram. Second-look US features, including ultrasonic calcifications, lesions, and moderate or marked color flow, were valuable for distinguishing BI-RADS 4 calcifications without clinical manifestations and other abnormalities on MG.


Subject(s)
Breast Neoplasms , Calcinosis , Mammography , Ultrasonography, Mammary , Humans , Female , Middle Aged , Mammography/methods , Calcinosis/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Ultrasonography, Mammary/methods , Adult , Aged , Nomograms , ROC Curve , Diagnosis, Differential , Retrospective Studies
19.
Environ Pollut ; 358: 124532, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996991

ABSTRACT

Sulfonamide antibiotics and polycyclic aromatic hydrocarbons (PAHs) often coexist in soil, leading to compound pollution through various pathways. This study focuses on sulfamethazine (SMZ) and PAHs (fluoranthene) as the subject for compound pollution research. Using a soil-groundwater simulation system, we investigated the migration characteristics of SMZ under coexistence with fluoranthene (Fla) and observed variations in the abundance of antibiotic resistance genes (ARGs). Through molecular docking simulations and isothermal adsorption experiments, we discovered that Fla bound with SMZ via π-π interactions, resulting in a 20.9% increase in the SMZ soil-water partition coefficient. Under compound conditions, the concentration of SMZ in surface soil could reach 1.4 times that of SMZ added alone, with an 13.4% extension in SMZ half-life. The deceleration of SMZ's vertical migration rate placed additional stress on surface soil microbiota, leading to a proliferation of ARGs by 66.3%-125.8%. Moreover, under compound pollution, certain potential hosts like Comamonadaceae and Gemmatimonas exhibited a significant positive correlation with resistance genes such as sul 1 and sul 2. These findings shed light on the impact of PAHs on sulfonamide antibiotic migration and the abundance of ARGs. They also provide theoretical insights for the development of technologies aimed at mitigating compound pollution in soil.

SELECTION OF CITATIONS
SEARCH DETAIL