Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.419
Filter
1.
Article in English | MEDLINE | ID: mdl-38963922

ABSTRACT

Efficient photocatalytic solar CO2 reduction presents a challenge because visible-to-near-infrared (NIR) low-energy photons account for over 50% of solar energy. Consequently, they are unable to instigate the high-energy reaction necessary for dissociating C═O bonds in CO2. In this study, we present a novel methodology leveraging the often-underutilized photo-to-thermal (PTT) conversion. Our unique two-dimensional (2D) carbon layer-embedded Mo2C (Mo2C-Cx) MXene catalyst in black color showcases superior near-infrared (NIR) light absorption. This enables the efficient utilization of low-energy photons via the PTT conversion mechanism, thereby dramatically enhancing the rate of CO2 photoreduction. Under concentrated sunlight, the optimal Mo2C-C0.5 catalyst achieves CO2 reduction reaction rates of 12000-15000 µmol·g-1·h-1 to CO and 1000-3200 µmol·g-1·h-1 to CH4. Notably, the catalyst delivers solar-to-carbon fuel (STF) conversion efficiencies between 0.0108% to 0.0143% and the STFavg = 0.0123%, the highest recorded values under natural sunlight conditions. This innovative approach accentuates the exploitation of low-frequency, low-energy photons for the enhancement of photocatalytic CO2 reduction.

2.
World J Hepatol ; 16(6): 920-931, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38948441

ABSTRACT

BACKGROUND: Studies with large size samples on the liver histological changes of indeterminate phase chronic hepatitis B (CHB) patients were not previously conducted. AIM: To assess the liver histological changes in the indeterminate phase CHB patients using liver biopsy. METHODS: The clinical and laboratory data of 1532 untreated CHB patients were collected, and all patients had least once liver biopsy from January 2015 to December 2021. The significant differences among different phases of CHB infection were compared with t-test, and the risk factors of significant liver histological changes were analyzed by the multivariate logistic regression analysis. RESULTS: Among 1532 untreated CHB patients, 814 (53.13%) patients were in the indeterminate phase. Significant liver histological changes (defined as biopsy score ≥ G2 and/or ≥ S2) were found in 488/814 (59.95%) CHB patients in the indeterminate phase. Significant liver histological changes were significant differences among different age, platelets (PLTs), and alanine aminotransferase (ALT) subgroup in indeterminate patient. Multivariate logistic regression analysis indicated that age ≥ 40 years old [adjust odd risk (aOR), 1.44; 95% confidence interval (CI): 1.06-1.97; P = 0.02], PLTs ≤ 150 × 109/L (aOR, 2.99; 95%CI: 1.85-4.83; P < 0.0001), and ALT ≥ upper limits of normal (aOR, 1.48; 95%CI: 1.08, 2.05, P = 0.0163) were independent risk factors for significant liver histological changes in CHB patients in the indeterminate phase. CONCLUSION: Our results suggested that significant liver histological changes were not rare among the untreated CHB patients in indeterminate phase, and additional strategies are urgently required for the management of these patients.

3.
Am J Transplant ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914281

ABSTRACT

Decreasing the graft size in living donor liver transplantation (LDLT) increases the risk of early allograft dysfunction. Graft-to-recipient-weight-ratio (GRWR) of 0.8 is considered the threshold. There is evidence that smaller volume grafts may also provide equally good outcomes, the cut-off of which remains unknown. In this retrospective multi-center study, 92 adult LDLT with a final GRWR<=0.6 performed at 12 international liver transplant (LT) centers over a 3-year period were included. Perioperative data including preoperative status, portal flow hemodynamics (PFH) and portal flow modulation (PFM), development of SFSS, morbidity and mortality was collated and analyzed. Thirty-two (36.7%) patients developed SFSS and this was associated with increased 30-day, 90-day and one-year mortality. Pre-operative MELD and inpatient status were independent predictors for SFSS (p<0.05). Pre-LT renal dysfunction was an independent predictor of survival (Hazard ratio- 3.1;95% ci 1.1,8.9, p=0.035). PFH or PFM were not predictive of SFSS or survival. We report the largest ever multi-center study of LDLT outcomes using ultralow-GRWR grafts and for the first-time validate the ILTS-iLDLT-LTSI consensus definition and grading of SFSS. Pre-operative recipient condition rather than GRWR and PFH were independent predictors of SFSS. Algorithms to predict SFSS and LT outcomes should incorporate recipient factors along with GRWR.

5.
Clin Cardiol ; 47(6): e24305, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38884449

ABSTRACT

BACKGROUND: The coronary artery disease-reporting and data system (CAD-RADS) 2.0 is used to standardize the reporting of coronary computed tomography angiography (CCTA) results. Artificial intelligence software can quantify the plaque composition, fat attenuation index, and fractional flow reserve. OBJECTIVE: To analyze plaque features of varying severity in patients with a combination of CAD-RADS stenosis and plaque burden categorization and establish a random forest classification model. METHODS: The data of 100 patients treated between April 2021 and February 2022 were retrospectively collected. The most severe plaque observed in each patient was the target lesion. Patients were categorized into three groups according to CAD-RADS: CAD-RADS 1-2 + P0-2, CAD-RADS 3-4B + P0-2, and CAD-RADS 3-4B + P3-4. Differences and correlations between variables were assessed between groups. AUC, accuracy, precision, recall, and F1 score were used to evaluate the diagnostic performance. RESULTS: A total of 100 patients and 178 arteries were included. The differences of computed tomography fractional flow reserve (CT-FFR) (H = 23.921, p < 0.001), the volume of lipid component (H = 12.996, p = 0.002), the volume of fibro-lipid component (H = 8.692, p = 0.013), the proportion of lipid component volume (H = 22.038, p < 0.001), the proportion of fibro-lipid component volume (H = 11.731, p = 0.003), the proportion of calcification component volume (H = 11.049, p = 0.004), and plaque type (χ2 = 18.110, p = 0.001) was statistically significant. CONCLUSION: CT-FFR, volume and proportion of lipid and fibro-lipid components of plaques, the proportion of calcified components, and plaque type were valuable for CAD-RADS stenosis + plaque burden classification, especially CT-FFR, volume, and proportion of lipid and fibro-lipid components. The model built using the random forest was better than the clinical model (AUC: 0.874 vs. 0.647).


Subject(s)
Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease , Coronary Stenosis , Coronary Vessels , Fractional Flow Reserve, Myocardial , Plaque, Atherosclerotic , Severity of Illness Index , Humans , Male , Female , Fractional Flow Reserve, Myocardial/physiology , Retrospective Studies , Computed Tomography Angiography/methods , Middle Aged , Coronary Angiography/methods , Coronary Stenosis/physiopathology , Coronary Stenosis/diagnostic imaging , Coronary Stenosis/diagnosis , Coronary Artery Disease/physiopathology , Coronary Artery Disease/diagnosis , Coronary Artery Disease/diagnostic imaging , Coronary Vessels/diagnostic imaging , Coronary Vessels/physiopathology , Vascular Calcification/diagnostic imaging , Vascular Calcification/physiopathology , Aged
6.
Int Immunopharmacol ; 137: 112289, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889505

ABSTRACT

Fms-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase (RTK) primarily expressed in hematopoietic stem cells and dendritic cells (DCs). While FLT3 plays a critical role in the proliferation, development and maintenance of DCs, thus influencing immune responses under both normal and pathological conditions, there also exists some evidence that FLT3+DC may be involved with immune responses in liver transplantation (LT). In this study, results from single-cell sequencing data analysis revealed a clear relationship between FLT3+DCs and Regulatory T cells (Tregs) in liver tissue of LT recipients. In peripheral blood samples of LT patients, levels of FLT3+DCs were decreased post-LT-surgery, while Tregs were increased. In a LT mouse model, levels of FLT3+DCs in the liver and bone marrow exhibited an initial time-dependent decrease followed by an increase after LT surgery. Results as obtained with co-culture experiments using mature BMDCs and CD4+ T cells revealed fluctuations in Tregs in response to FLT3 inhibitors and the FLT3 ligand. These findings suggest that FLT3+DCs could emerge as a novel target for mitigating immune rejection in LT.

7.
NPJ Vaccines ; 9(1): 109, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879650

ABSTRACT

Marek's disease virus (MDV) is a highly pathogenic and oncogenic alpha herpesvirus that causes Marek's disease (MD), which is one of the most important immunosuppressive and rapid-onset neoplastic diseases in poultry. The onset of MD lymphomas and other clinical diseases can be efficiently prevented by vaccination; these vaccines are heralded as the first demonstration of a successful vaccination strategy against a cancer. However, the persistent evolution of epidemic MDV strains towards greater virulence has recently resulted in frequent outbreaks of MD in vaccinated chicken flocks worldwide. Herein, we provide an overall review focusing on the discovery and identification of the strategies by which MDV evades host immunity and attacks the immune system. We have also highlighted the decrease in the immune efficacy of current MD vaccines. The prospects, strategies and new techniques for the development of efficient MD vaccines, together with the possibilities of antiviral therapy in MD, are also discussed.

8.
Eur J Surg Oncol ; 50(9): 108474, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38870874

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) patients with peritoneal metastasis (CRC-PM) have a worse prognosis than those with liver and lung metastases. Cytoreductive surgery (CRS) followed by hyperthermic intraperitoneal chemotherapy (HIPEC) is an effective locoregional treatment for CRC-PM. To date, the prognostic analysis of CRS/HIPEC mostly focuses on clinical and pathological characteristics; however, genetic characteristics, such as RAS/BRAF mutation status, are not sufficient. This study aimed to systematically assess the correlation between RAS/BRAF status and PM risk, as well as the prognostic efficacy of CRS/HIPEC for CRC. METHOD: This study was written in accordance with the 2020 guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols. We searched PubMed, EMBASE, and the Cochrane library with the following keywords: "Peritoneal Neoplasms," "raf Kinases" and "ras Proteins". The fixed-effects model and inverse variance method were used for analysis. Odds ratios (OR) and 95 % confidence intervals (CI) were used to reflect the risk of PM associated with RAS/BRAF mutations. Hazard ratios (HR) and 95 % CI were used to evaluate the effects of RAS/BRAF mutations on the prognosis of CRS/HIPEC. RESULT: Eighteen articles included 5567 patients. In the risk analysis of PM, patients with BRAF mutation were more likely to have PM than those with wild-type BRAF (OR = 2.28, 95 % CI = 1.73-3.01, P < 0.001, I2 = 0 %). In contrast, there was no significant difference in the effect of RAS mutation and wild-type on PM of CRC (OR = 1.28, 95 % CI = 0.99-1.66, P = .06, I2 = 0 %). In a prognostic analysis of CRS/HIPEC, RAS mutation predicted poor overall survival (HR = 1.68, 95 % CI = 1.39-2.02, P < 0.001, I2 = 1 %) and disease-free survival (HR = 1.61, 95 % CI = 1.34-1.94, P < 0.001, I2 = 42 %). The results for BRAF mutation was consistent with the prognostic impact of RAS mutation's overall survival (HR = 2.57, 95 % CI = 1.93-3.44, P < 0.001, I2 = 0 %) and disease-free survival (HR = 1.90, 95 % CI = 1.40-2.56, P < 0.001, I2 = 82 %). CONCLUSION: BRAF mutation, rather than RAS mutation, was a high-risk factor for CRC-PM. And both BRAF and RAS mutations negatively affected the prognosis of CRS/HIPEC in CRC-PM patients. Our results could provide suggestions for the selection of comprehensive treatment for CRC-PM with RAS/BRAF mutations.

9.
Neuroscience ; 551: 196-204, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38810690

ABSTRACT

Memory consolidation refers to a process by which labile newly formed memory traces are progressively strengthened into long term memories and become more resistant to interference. Recent work has revealed that spontaneous hippocampal activity during rest, commonly referred to as "offline" activity, plays a critical role in the process of memory consolidation. Hippocampal reactivation occurs during sharp-wave ripples (SWRs), which are events associated with highly synchronous neural firing in the hippocampus and modulation of neural activity in distributed brain regions. Memory consolidation occurs primarily through a coordinated communication between hippocampus and neocortex. Cortical slow oscillations drive the repeated reactivation of hippocampal memory representations together with SWRs and thalamo-cortical spindles, inducing long-lasting cellular and network modifications responsible for memory stabilization.In this review, we aim to comprehensively cover the field of "reactivation and memory consolidation" research by detailing the physiological mechanisms of neuronal reactivation and firing patterns during SWRs and providing a discussion of more recent key findings. Several mechanistic explanations of neuropsychiatric diseases propose that impaired neural replay may underlie some of the symptoms of the disorders. Abnormalities in neuronal reactivation are a common phenomenon and cause pathological impairment in several diseases, such as Alzheimer's disease (AD), epilepsy and schizophrenia. However, the specific pathological changes and mechanisms of reactivation in each disease are different. Recent work has also enlightened some of the underlying pathological mechanisms of neuronal reactivation in these diseases. In this review, we further describe how SWRs, ripples and slow oscillations are affected in Alzheimer's disease, epilepsy, and schizophrenia. We then compare the differences of neuronal reactivation and discuss how different reactivation abnormalities cause pathological changes in these diseases. Aberrant neural reactivation provides insights into disease pathogenesis and may even serve as biomarkers for early disease progression and treatment response.

10.
Drug Dev Res ; 85(3): e22200, 2024 May.
Article in English | MEDLINE | ID: mdl-38747107

ABSTRACT

In this study, we analyzed and verified differentially expressed genes (DEGs) in ROS and KEAP1 crosstalk in oncogenic signatures using GEO data sets (GSE4107 and GSE41328). Multiple pathway enrichment analyses were finished based on DEGs. The genetic signature for colorectal adenocarcinoma (COAD) was identified by using the Cox regression analysis. Kaplan-Meier survival and receiver operating characteristic curve analysis were used to explore the prognosis value of specific genes in COAD. The potential immune signatures and drug sensitivity prediction were also analyzed. Promising small-molecule agents were identified and predicted targets of α-hederin in SuperPred were validated by molecular docking. Also, expression levels of genes and Western blot analysis were conducted. In total, 48 genes were identified as DEGs, and the hub genes such as COL1A1, CXCL12, COL1A2, FN1, CAV1, TIMP3, and IGFBP7 were identified. The ROS and KEAP1-associated gene signatures comprised of hub key genes were developed for predicting the prognosis and evaluating the immune cell responses and immune infiltration in COAD. α-hederin, a potential anti-colorectal cancer (CRC) agent, was found to enhance the sensitivity of HCT116 cells, regulate CAV1 and COL1A1, and decrease KEAP1, Nrf2, and HO-1 expression significantly. KEAP1-related genes could be an essential mediator of ROS in CRC, and KEAP1-associated genes were effective in predicting prognosis and evaluating individualized CRC treatment. Therefore, α-hederin may be an effective chemosensitizer for CRC treatments in clinical settings.


Subject(s)
Colorectal Neoplasms , Kelch-Like ECH-Associated Protein 1 , Reactive Oxygen Species , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Oleanolic Acid/pharmacology , Oleanolic Acid/analogs & derivatives , Molecular Docking Simulation , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Cell Death/drug effects , Cell Line, Tumor , Prognosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
11.
Phys Rev Lett ; 132(18): 184003, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38759176

ABSTRACT

Controlling active transport of water through membrane channels is essential for advanced nanofluidic devices. Despite advancements in water nanopump design using techniques like short-range invasion and subnanometer-level control, challenges remain facilely and remotely realizing massive waters active transport. Herein, using molecular dynamic simulations, we propose an ultrahigh-flux nanopump, powered by frequency-specific terahertz stimulation, capable of unidirectionally transporting massive water through asymmetric-wettability membrane channels at room temperature without any external pressure. The key physics behind this terahertz-powered water nanopump is revealed to be the energy flow resulting from the asymmetric optical absorption of water.

12.
J Immunother ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809517

ABSTRACT

The infiltration of CD8+ T cells in the tumor microenvironment is associated with better survival and immunotherapy response. However, their roles in gastric cancer have not been explored so far. In here, the profiles of GC gene expression were collected from The Cancer Genome Atlas database. Single-cell transcriptomic data originated from GSE134520. Cell clustering, annotation, and CD8+ T-cell differential genes were from the TISCH database. We determined 896 CD8+ T-cell differential genes by scRNA-seq analysis. After integrating immune-related genes, 174 overlapping genes were obtained and a novel risk model was subsequently built. The performance of CD8+ T-cell-associated gene signature was assessed in the training and external validation sets. The gene signature showed independent risk factors of overall survival for GC. A quantitative nomogram was built to enhance the clinical efficacy of this signature. Furthermore, low-risk individuals showed higher mutation status, higher immune checkpoint expression, low Tumour Immune Dysfunction and Exclusion (TIDE) scores, and higher IPS-PD-1 combined IPS-CTLA4 scores, indicating a greater response to immunotherapy. In addition, analysis of IMvigor210 immunotherapy cohort demonstrated that low-risk individuals had a favorable response to prognosis and immunotherapy. In conclusion, we generated a CD8+ T-cell-related signature that can serve as a promising tool for personalized prognosis prediction and guiding decisions regarding immunotherapy in GC patients.

13.
Small Methods ; : e2400349, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38794853

ABSTRACT

MicroRNA (miRNA) molecules play crucial roles in a variety of diseases, making miRNA targeting a burgeoning field in medicinal chemistry. Ribonuclease targeting chimeras (RIBOTACs) present a compelling approach for RNA degradation. However, small molecule-based RIBOTAC requires an expensive and time-consuming screening process, and is difficult to directly target miRNA due to its short length lacking secondary structure. Antisense oligonucleotide (ASO)-based RIBOTAC is easy to design but with poor cell permeability. While both of them lack the specificity for tumor targeting. In this study, the first Aptamer-RIBOTAC (ARIBOTAC) chimera is designed based on ASO to achieve precise degradation of miRNA in a tumor cell-specific manner for precise cancer therapy. This chimera exhibits a remarkable ability to specifically identify and enter cancer cells, trigger localized activation of endogenous RNase L, and selectively cleave miRNAs that are complementary to ASO. The efficacy and universality of the ARIBOTAC strategy both in vitro and in vivo by degrading oncogenic miR-210-3p and miR-155-5p are validated. These findings underscore the potential of the ARIBOTAC strategy as a promising avenue for cancer therapy by precisely targeting cancer-associated miRNAs.

14.
BMC Genomics ; 25(1): 539, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822248

ABSTRACT

Squamous promoter binding protein-like (SPL) genes encode plant-specific transcription factors (TFs) that play essential roles in modulating plant growth, development, and stress response. Pea (Pisum sativum L.) is a coarse grain crop of great importance in food production, biodiversity conservation and molecular genetic research, providing genetic information and nutritional resources for improving agricultural production and promoting human health. However, only limited researches on the structure and functions of SPL genes exist in pea (PsSPLs). In this study, we identified 22 PsSPLs and conducted a genome-wide analysis of their physical characteristics, chromosome distribution, gene structure, phylogenetic evolution and gene expression patterns. As a result, the PsSPLs were unevenly distributed on the seven chromosomes of pea and harbored the SBP domain, which is composed of approximately 76 amino acid residues. The phylogenetic analysis revealed that the PsSPLs clustered into eight subfamilies and showed high homology with SPL genes in soybean. Further analysis showed the presence of segmental duplications in the PsSPLs. The expression patterns of 22 PsSPLs at different tissues, developmental stages and under various stimulus conditions were evaluated by qRT-PCR method. It was found that the expression patterns of PsSPLs from the same subfamily were similar in different tissues, the transcripts of most PsSPLs reached the maximum peak value at 14 days after anthesis in the pod. Abiotic stresses can cause significantly up-regulated PsSPL19 expression with spatiotemporal specificity, in addition, four plant hormones can cause the up-regulated expression of most PsSPLs including PsSPL19 in a time-dependent manner. Therefore, PsSPL19 could be a key candidate gene for signal transduction during pea growth and development, pod formation, abiotic stress and plant hormone response. Our findings should provide insights for the elucidating of development regulation mechanism and breeding for resistance to abiotic stress pea.


Subject(s)
Gene Expression Regulation, Plant , Phylogeny , Pisum sativum , Plant Proteins , Stress, Physiological , Transcription Factors , Pisum sativum/genetics , Pisum sativum/growth & development , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Multigene Family , Gene Expression Profiling , Chromosomes, Plant/genetics
15.
J Bone Oncol ; 46: 100605, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38742151

ABSTRACT

Chondrosarcoma (CHS) is a malignant bone tumor with insensitivity to both radiotherapy and chemotherapy, and a high recurrence rate. However, the latent mechanism of recurrent CHS (Re-CHS) remains elusive. Here, we discovered that FBXO22 was highly expressed in clinical samples of Re-CHS. FBXO22 played a significant role in various cancers. However, the role of FBXO22 in Re-CHS remained unclear. Our research demonstrated that suppressing FBXO22 abated the proliferation and migration of CHS cells and facilitated their apoptosis. In addition, suppressing FBXO22 raised the expression of PD-L1 in Re-CHS. All these findings provide new evidence for using FBXO22 and PD-L1 as combined targets to prevent and treat Re-CHS, which may prove to be a novel strategy for immunotherapy of CHS, especially Re-CHS.

16.
Small Methods ; : e2400375, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607945

ABSTRACT

Proteins as crucial components of cells are responsible for the majority of cellular processes. Sensitive and efficient protein detection enables a more accurate and comprehensive investigation of cellular phenotypes and life activities. Here, a protein sequencing method with high multiplexing, high throughput, high cell utilization, and integration based on digital microfluidics (DMF-Protein-seq) is proposed, which transforms protein information into DNA sequencing readout via DNA-tagged antibodies and labels single cells with unique cell barcodes. In a 184-electrode DMF-Protein-seq system, ≈1800 cells are simultaneously detected per experimental run. The digital microfluidics device harnessing low-adsorbed hydrophobic surface and contaminants-isolated reaction space supports high cell utilization (>90%) and high mapping reads (>90%) with the input cells ranging from 140 to 2000. This system leverages split&pool strategy on the DMF chip for the first time to overcome DMF platform restriction in cell analysis throughput and replace the traditionally tedious bench-top combinatorial barcoding. With the benefits of high efficiency and sensitivity in protein analysis, the system offers great potential for cell classification and drug monitoring based on protein expression at the single-cell level.

17.
Phys Chem Chem Phys ; 26(15): 11686-11694, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38563417

ABSTRACT

Freshwater scarcity is a pressing global concern, and water desalination has emerged as a promising solution. Metal-organic framework (MOF) membranes have demonstrated exceptional potential in this regard. However, previous efforts to improve the permeability of MOFs have primarily focused on chemical modifications and synthesis rather than exploring physical methods. Using molecular dynamics simulations, we propose that the use of terahertz waves at a specific frequency of 7.5 ± 1.0 THz significantly enhances water permeability across MOF membranes, up to 27-fold, while maintaining effective ion rejection capabilities throughout the process. The mechanism behind this enhancement involves the resonance between the terahertz wave and the hydrogen bond vibrations of water within the MOF. This resonance amplifies the rotational kinetic energy of water molecules, disrupting the hydrogen bonds and causing a phase transition from quasi 1D square ice to a gas-like phase. Additionally, the diffusion behavior shifts from Fickian diffusion to sub-diffusion, resulting in improved water permeation across the MOF membrane. This study highlights the potential of terahertz waves as a physical tool to enhance the permeability of MOFs in water desalination, providing new avenues for efficient water treatment and resource sustainability.

18.
World J Gastrointest Surg ; 16(3): 731-739, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38577073

ABSTRACT

BACKGROUND: Hemorrhoids are among the most common and frequently encountered chronic anorectal diseases in anorectal surgery. They are venous clusters formed by congestion, expansion, and flexion of the venous plexus in the lower part of the rectum. Mixed hemorrhoids bleed easily and recurrently, and this can result in severe anemia. Hence, they may have a negative effect on the health of the patient and surgical treatment is required. Milligan-Morgan hemorrhoidectomy has been widely used since 1937 for the treatment of grade III and IV hemorrhoids. However, most patients experience different degrees of postoperative pain that may cause anxiety. AIM: To assess the factors influencing pain scores and quality of life (QoL) in patients with mixed hemorrhoids post-surgery. METHODS: The clinical data of patients with mixed hemorrhoids who underwent Milligan-Morgan hemorrhoidectomy were collected retrospectively. The basic characteristics of the enrolled patients with mixed hemorrhoids were recorded, and based on the Goligher clinical grading system, the hemorrhoids were classified as grades III or IV. The endpoint of this study was the disappearance of pain in all patients. Quantitative data were presented as mean ± SD, such as age, pain score, and QoL score. Student's t-test was used to compare the groups. RESULTS: A total of 164 patients were enrolled. The distribution of the visual analog scale pain scores of all patients at 3, 7, 14 and 28 d after surgery showed that post-surgery pain was significantly reduced with the passage of time. Fourteen days after the operation, the pain had completely disappeared in some patients. Twenty-eight days after the surgery, none of the patients experienced any pain. Comparing the World Health Organization Quality of Life - BREF self-reporting questionnaire scores of patients between 14 and 28 d after surgery, we observed that the quality-of-life scores of the patients post-surgery had significantly improved. There were six items that were compared at 14- and 28-d post-surgery. The mean QoL score 28 d after surgery (4.79 ± 0.46) was higher than that at 14 d post-surgery (3.79 ± 0.57). The mean health condition score 28 d after surgery (4.80 ± 0.41) was also higher than that at 14 d post-surgery (4.01 ± 0.62). The mean physical health score 28 d after surgery (32.10 ± 2.96) was significantly higher than that at 14 d post-surgery (23.41 ± 2.85). The mean psychological health score 28 d after surgery (27.22 ± 1.62) was significantly higher than that at 14 d post-surgery (21.37 ± 1.70). The mean social relations score 28 d after surgery (12.21 ± 1.59) was significantly higher than that at 14 d post-surgery (6.32 ± 1.66). The mean surrounding environment score 28 d after surgery (37.13 ± 2.88) was significantly higher than that at 14 d post-surgery (28.42 ± 2.86). The differences in quality-of-life scores at day 14 and day 28 post-surgery were observed to be statistically significant (P < 0.001). CONCLUSION: Milligan-Morgan hemorrhoidectomy can significantly improve the postoperative QoL of patients. Age, sex, and the number of surgical resections were important factors influencing Milligan-Morgan hemorrhoidectomy.

19.
Org Lett ; 26(18): 3727-3732, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38678575

ABSTRACT

Photoexcitation electron donor-acceptor (EDA) complexes provide an effective approach to produce radicals under mild conditions, while the catalytic version of EDA complex photoactivation remains scarce. Herein, we report a visible-light-induced organophotocatalytic pathway for the cyanoalkylation of azauracils using inexpensive and readily available 1,4-diazabicyclo[2.2.2]octane (DABCO) as a catalytic electron donor. This synthetic method exhibits exceptional compatibility with various functional groups and presents 34 examples in high yields. The efficient cyanoalkylation offers an environmentally friendly and sustainable route toward enhancing the structural and functional diversity of azauracils.

SELECTION OF CITATIONS
SEARCH DETAIL
...