Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Thromb Haemost ; 120(3): 437-448, 2020 Mar.
Article En | MEDLINE | ID: mdl-32135566

The clinical diagnosis of von Willebrand disease (VWD), particularly type 1, can be complex because several genetic and environmental factors affect von Willebrand factor (VWF) plasma levels. An estimated 60% of the phenotypic variation is attributable to hereditary factors, with the ABO blood group locus being the most influential. However, recent studies provide strong evidence that nonsynonymous single nucleotide variants (SNVs) contribute to VWF and factor VIII phenotypic variability in healthy individuals. This study aims to investigate the role of common VWF SNVs on VWD phenotype by analyzing data from 219 unrelated patients included in the "Molecular and Clinical Profile of von Willebrand Disease in Spain project." To that end, generalized linear mixed-effects regression models were fitted, and additive and epistatic analyses, and haplotype studies were performed, considering five VWD-related measures (bleeding score, VWF:Ag, VWF:RCo, factor VIII:C, and VWF:CB). According to these analyses, homozygotes: for p.Thr789Ala(C) would be expected to show 39% higher VWF:Ag levels; p.Thr1381Ala(C), 27% lower VWF:Ag levels; and p.Gln852Arg(C), 52% lower VWF:RCo levels. Homozygotes for both p.Thr789Ala(C) and p.Gln852Arg(T) were predicted to show 185% higher VWF:CB activity, and carriers of two copies of the p.Thr1381Ala(T)/p.Gln852Arg(T) haplotype would present a 100% increase in VWF:RCo activity. These results indicate a substantial effect of common VWF variation on VWD phenotype. Although additional studies are needed to determine the true magnitude of the effects of SNVs on VWF, these findings provide new evidence regarding the contribution of common variants to VWD, which should be taken into account to enhance the accuracy of the diagnosis and classification of this condition. ClinicalTrials.gov identifier: NCT02869074.


Mutation, Missense , Polymorphism, Single Nucleotide , von Willebrand Diseases/blood , von Willebrand Diseases/genetics , von Willebrand Factor/genetics , Adult , Computer Simulation , Factor VIII/genetics , Factor VIII/metabolism , Female , Haplotypes , Hemorrhage , Heterozygote , Homozygote , Humans , Male , Middle Aged , Phenotype , Prospective Studies , Registries , Regression Analysis , Spain , Young Adult , von Willebrand Factor/chemistry
2.
Haematologica ; 104(3): 587-598, 2019 03.
Article En | MEDLINE | ID: mdl-30361419

Large studies in von Willebrand disease patients, including Spanish and Portuguese registries, led to the identification of >250 different mutations. It is a challenge to determine the pathogenic effect of potential splice site mutations on VWF mRNA. This study aimed to elucidate the true effects of 18 mutations on VWF mRNA processing, investigate the contribution of next-generation sequencing to in vivo mRNA study in von Willebrand disease, and compare the findings with in silico prediction. RNA extracted from patient platelets and leukocytes was amplified by RT-PCR and sequenced using Sanger and next generation sequencing techniques. Eight mutations affected VWF splicing: c.1533+1G>A, c.5664+2T>C and c.546G>A (p.=) prompted exon skipping; c.3223-7_3236dup and c.7082-2A>G resulted in activation of cryptic sites; c.3379+1G>A and c.7437G>A) demonstrated both molecular pathogenic mechanisms simultaneously; and the p.Cys370Tyr missense mutation generated two aberrant transcripts. Of note, the complete effect of three mutations was provided by next generation sequencing alone because of low expression of the aberrant transcripts. In the remaining 10 mutations, no effect was elucidated in the experiments. However, the differential findings obtained in platelets and leukocytes provided substantial evidence that four of these would have an effect on VWF levels. In this first report using next generation sequencing technology to unravel the effects of VWF mutations on splicing, the technique yielded valuable information. Our data bring to light the importance of studying the effect of synonymous and missense mutations on VWF splicing to improve the current knowledge of the molecular mechanisms behind von Willebrand disease. clinicaltrials.gov identifier:02869074.


Gene Silencing , Introns , Mutation, Missense , RNA Splicing , von Willebrand Factor/genetics , Alleles , Base Sequence , Blood Platelets/metabolism , Computational Biology , Exons , Female , Gene Frequency , Genotype , High-Throughput Nucleotide Sequencing , Humans , Leukocytes/metabolism , Male , RNA Splice Sites , RNA, Messenger/genetics , von Willebrand Diseases/genetics
3.
PLoS One ; 13(6): e0197876, 2018.
Article En | MEDLINE | ID: mdl-29924855

The multimeric analysis (MA) of plasma von Willebrand factor (VWF) evaluates structural integrity and helps in the diagnosis of von Willebrand disease (VWD). This assay is a matter of controversy, being considered by some investigators cumbersome and only slightly informative. The centralised study 'Molecular and Clinical Profile of von Willebrand Disease in Spain (PCM-EVW-ES)' has been carried out by including the phenotypic assessment and the genetic analysis by next generation sequencing (NGS) of the VWF gene (VWF). The aim of the present study was to evaluate the role of MA to the diagnosis of these patients and their potential discrepancies. Two hundred and seventy out of 480 patients centrally diagnosed with VWD had normal multimers, 168 had abnormal multimers and 42 a total absence of multimers. VWF MA was of great significance in the diagnosis of 83 patients (17.3%), it was also of help in the diagnosis achieved in 365 additional patients (76%) and was not informative in 32 cases (6.7%). With regard to discrepancies, 110 out of 480 (23%) patients centrally diagnosed with VWD presented some kind of discordance between VWF:RCo/VWF:Ag and/or VWF:CB/VWF:Ag ratios, multimeric study and/or genetic results. The VWF MA was key in the presence of novel mutations as well as in cases with phenotypic discrepancies. A comparison between the contribution of MA and VWF:CB showed a clearly higher contribution of the former in the diagnostic process. These data seem to reinforce the relevance of the VWF MA in VWD diagnosis, despite all its limitations.


High-Throughput Nucleotide Sequencing , von Willebrand Diseases/diagnosis , von Willebrand Diseases/genetics , von Willebrand Factor/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Genotype , Humans , Male , Middle Aged , Phenotype , Spain , Young Adult
...