Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Synth Biol ; 13(8): 2328-2334, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39038190

ABSTRACT

DNA libraries are critical components of many biological assays. These libraries are often kept in plasmids that are amplified in E. coli to generate sufficient material for an experiment. Library uniformity is critical for ensuring that every element in the library is tested similarly and is thought to be influenced by the culture approach used during library amplification. We tested five commonly used culturing methods for their ability to uniformly amplify plasmid libraries: liquid, semisolid agar, cell spreader-spread plates with high or low colony density, and bead-spread plates. Each approach was evaluated with two library types: a random 80-mer library, representing high complexity and low coverage of similar sequence lengths, and a human TF ORF library, representing low complexity and high coverage of diverse sequence lengths. We found that no method was better than liquid culture, which produced relatively uniform libraries regardless of library type. However, when libraries were transformed with high coverage, the culturing method had minimal impact on uniformity or amplification bias. Plating libraries was the worst approach by almost every measure for both library types and, counterintuitively, produced the strongest biases against long sequence representation. Semisolid agar amplified most elements of the library uniformly but also included outliers with orders of magnitude higher abundance. For amplifying DNA libraries, liquid culture, the simplest method, appears to be best.


Subject(s)
Escherichia coli , Gene Library , Plasmids , Plasmids/genetics , Escherichia coli/genetics , Humans
2.
Nat Methods ; 21(6): 1033-1043, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38684783

ABSTRACT

Signaling pathways that drive gene expression are typically depicted as having a dozen or so landmark phosphorylation and transcriptional events. In reality, thousands of dynamic post-translational modifications (PTMs) orchestrate nearly every cellular function, and we lack technologies to find causal links between these vast biochemical pathways and genetic circuits at scale. Here we describe the high-throughput, functional assessment of phosphorylation sites through the development of PTM-centric base editing coupled to phenotypic screens, directed by temporally resolved phosphoproteomics. Using T cell activation as a model, we observe hundreds of unstudied phosphorylation sites that modulate NFAT transcriptional activity. We identify the phosphorylation-mediated nuclear localization of PHLPP1, which promotes NFAT but inhibits NFκB activity. We also find that specific phosphosite mutants can alter gene expression in subtle yet distinct patterns, demonstrating the potential for fine-tuning transcriptional responses. Overall, base editor screening of PTM sites provides a powerful platform to dissect PTM function within signaling pathways.


Subject(s)
Protein Processing, Post-Translational , Phosphorylation , Humans , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Signal Transduction , HEK293 Cells , Proteomics/methods , High-Throughput Screening Assays/methods , T-Lymphocytes/metabolism , Jurkat Cells , NF-kappa B/metabolism
3.
Nat Struct Mol Biol ; 31(3): 559-567, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38448573

ABSTRACT

Genomes encode for genes and non-coding DNA, both capable of transcriptional activity. However, unlike canonical genes, many transcripts from non-coding DNA have limited evidence of conservation or function. Here, to determine how much biological noise is expected from non-genic sequences, we quantify the regulatory activity of evolutionarily naive DNA using RNA-seq in yeast and computational predictions in humans. In yeast, more than 99% of naive DNA bases were transcribed. Unlike the evolved transcriptome, naive transcripts frequently overlapped with opposite sense transcripts, suggesting selection favored coherent gene structures in the yeast genome. In humans, regulation-associated chromatin activity is predicted to be common in naive dinucleotide-content-matched randomized DNA. Here, naive and evolved DNA have similar co-occurrence and cell-type specificity of chromatin marks, challenging these as indicators of selection. However, in both yeast and humans, extreme high activities were rare in naive DNA, suggesting they result from selection. Overall, basal regulatory activity seems to be the default, which selection can hone to evolve a function or, if detrimental, repress.


Subject(s)
Saccharomyces cerevisiae , Transcriptome , Humans , Saccharomyces cerevisiae/genetics , Genome , DNA , Chromatin
SELECTION OF CITATIONS
SEARCH DETAIL