Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Expert Opin Ther Targets ; 28(5): 401-418, 2024 May.
Article in English | MEDLINE | ID: mdl-38871633

ABSTRACT

INTRODUCTION: Inflammasome complexes, especially NLRP3, have gained great attention as a potential therapeutic target in mood disorders. NLRP3 triggers a caspase 1-dependent release of the inflammatory cytokines IL-1ß and IL-18, and seems to interact with purinergic and kynurenine pathways, all of which are implicated in mood disorders development and progression. AREAS COVERED: Emerging evidence supports NLRP3 inflammasome as a promising pharmacological target for mood disorders. We discussed the available evidence from animal models and human studies and provided a reflection on drawbacks and perspectives for this novel target. EXPERT OPINION: Several studies have supported the involvement of NLRP3 inflammasome in MDD. However, most of the evidence comes from animal models. The role of NLRP3 inflammasome in BD as well as its anti-manic properties is not very clear and requires further exploration. There is evidence of anti-manic effects of P2×R7 antagonists associated with reduction in the brain levels of IL-1ß and TNF-α in a murine model of mania. The involvement of other NLRP3 inflammasome expressing cells besides microglia, like astrocytes, and of other inflammasome complexes in mood disorders also deserves further investigation. Preclinical and clinical characterization of NLRP3 and other inflammasomes in mood disorders is needed before considering translational approaches, including clinical trials.


Subject(s)
Disease Models, Animal , Inflammasomes , Molecular Targeted Therapy , Mood Disorders , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mood Disorders/drug therapy , Mood Disorders/physiopathology , Mice , Bipolar Disorder/drug therapy , Bipolar Disorder/physiopathology , Purinergic P2X Receptor Antagonists/pharmacology , Purinergic P2X Receptor Antagonists/administration & dosage , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/physiopathology
2.
Article in English | MEDLINE | ID: mdl-38048936

ABSTRACT

The factor RasGEF1b is a Ras guanine exchange factor involved in immune responses. Studies have also implicated RasGEF1b in the CNS development. It is still limited the understanding of the role of RasGEF1b in CNS functioning. Using RasGEF1b deficient mice (RasGEF1b-cKO), we investigated the impact of this gene deletion in behavior, cognition, brain neurochemistry and microglia morphology. We showed that RasGEF1b-cKO mice display spontaneous hyperlocomotion and anhedonia. RasGEF1b-cKO mice also exhibited compulsive-like behavior that was restored after acute treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine (5 mg/kg). A down-regulation of mRNA of dopamine receptor (Drd1, Drd2, Drd4 and Drd5) and serotonin receptor genes (5Htr1a, 5Htr1b and 5Htr1d) was observed in hippocampus of RasGEF1b-cKO mice. These mice also had reduction of Drd1 and Drd2 in prefrontal cortex and 5Htr1d in striatum. In addition, morphological alterations were observed in RasGEF1b deficient microglia along with decreased levels of hippocampal BDNF. We provided original evidence that the deletion of RasGEF1b leads to unique behavioral features, implicating this factor in CNS functioning.


Subject(s)
Brain , Selective Serotonin Reuptake Inhibitors , Animals , Mice , Cognition , Fluoxetine/pharmacology , Prefrontal Cortex , Receptors, Dopamine D5
3.
Vet Microbiol ; 285: 109845, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37634288

ABSTRACT

Bovine alpha herpesvirus-5 (BoAHV-5) is related to the development of meningoencephalitis in cattle. Very little is known about the molecular pathways involved in the central nervous system (CNS) damage associated with inflammation during BoHV-5 infection in mice. To better identify the specific immunological pathways triggered by BoAHV-5 infection in mice, we evaluated the mRNA expression of 84 genes involved in innate and adaptive immune responses. We compared gene expression changes in the cerebrum from noninfected and infected mice with BoHV-5 at a 1 × 107 TCID50. Then, we analyzed the association of these genes with neurological signs, neuropathology, and activation of glial cells in response to BoHV-5 infection. Three days after BoAHV-5 infection, increased expression of TNF, IL-2, CXCL10, CXCR3, CCR4, CCL5, IFN-γ, IL-10, IRF7, STAT1, MX1, GATA 3 C3, LIZ2, caspase-1 and IL-1b was found. We also observed the upregulated expression of the CD8a, TBX21 and CD40LG genes and the downregulated expression of the CD4 gene after BoAHV-5 infection. In addition, BoHV-5-infected animals showed higher levels of all the evaluated inflammatory mediators (TNF, IFN-γ and IL-10) on day 3 postinfection. BoAHV-5-infected animals showed neurological changes along with meningoencephalitis, neuropil vacuolation, hemorrhage and reactive gliosis. Astrogliosis and microgliosis, indicated by increased expression of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba-1), were found throughout the neuropil in infected brains. Moreover, cleaved caspase-3 immunopositive glio-inflammatory cells were visualized around some blood vessels in areas of neuroinflammation in the cerebrum. In agreement on that we found higher cleaved caspase-3 and Iba-1 expression evaluated by western blot analysis in the brains of infected mice compared to control mice. In conclusion, our results revealed.

5.
Protein Pept Lett ; 29(12): 1042-1050, 2022.
Article in English | MEDLINE | ID: mdl-36028967

ABSTRACT

BACKGROUND: Hepatic encephalopathy (HE) is a neuropsychiatric syndrome that involves cognitive and motor dysfunctions due to hepatic failure. The clinical and experimental studies suggest that the angiotensin (Ang) converting enzyme (ACE), Ang II, and angiotensin type 1 receptor (AT1R), which compose the classical pathway of the renin-angiotensin system (RAS), exacerbate neuroinflammation in different neurologic diseases. Conversely, Ang-(1-7), ACE2, and Mas receptor, which integrate the alternative RAS axis, have been shown as promising therapeutic targets in neuropsychiatric disorders, leading to neuroprotection. OBJECTIVE: This study aimed to investigate the potential participation of the RAS components in thioacetamide (TAA)-induced HE in mice. METHODS: We also evaluated the levels of neurotrophic factors, pro-inflammatory cytokines, and chemokine in the central nervous system of TAA-induced HE in mice. Mice were submitted to acute liver failure induced by TAA administration by intraperitoneal route. Measurements of RAS components (ACE, Ang II, ACE2 and Ang1-7) and neurotrophic factors (BDNF, GDNF and NGF) were obtained by ELISA assay. Pro-inflammatory cytokines (TNF, IFN-γ, IL-6, IL-12p70) and the chemokine (CCL2) were quantified by cytometric bead array. The student's t-test was applied for statistical analysis. RESULTS: Mice presented increased cortical levels of ACE, while Ang-(1-7) levels were decreased in cortical and hippocampal samples compared to controls. Moreover, HE mice had an increase in the Ang II/Ang-(1-7) ratio along with reduced levels of neural growth factor (NGF) in the prefrontal cortex. They also showed elevated levels of IFN-γ and CCL2 in the prefrontal cortex and of TNF, IL-6, IL-12, and CCL2 in the hippocampus compared with controls. CONCLUSION: This study suggested that the reduction of components of the alternative RAS axis was associated with the deleterious effects of neuroinflammation and lower neuroprotective effects of NGF during TAA-induced HE.


Subject(s)
Hepatic Encephalopathy , Neuroprotective Agents , Mice , Animals , Renin , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Angiotensin-Converting Enzyme 2 , Nerve Growth Factor/metabolism , Neuroinflammatory Diseases , Interleukin-6/metabolism , Peptidyl-Dipeptidase A/metabolism , Angiotensin II/metabolism , Peptide Fragments/metabolism , Thioacetamide , Hippocampus/metabolism , Frontal Lobe/metabolism
6.
Curr Neurovasc Res ; 14(2): 125-131, 2017.
Article in English | MEDLINE | ID: mdl-28294064

ABSTRACT

BACKGROUND: Stroke is the second leading cause of death and a major cause of disability of adults worldwide. Inflammatory processes are known to contribute to the pathophysiology of cerebral ischemia, especially following reperfusion. Chemokines and their receptors are involved in migration of leukocytes and have been implicated in the pathogenesis of ischemic stroke. OBJECTIVE: In the present study, we investigated the effects of C-C chemokine receptor type 5 (CCR5) deficiency on neurological outcome, brain damage and expression of pro-inflammatory chemokines: chemokine (C-X-C motif) ligand 1 (CXCL1), chemokine (CC motif) ligand 3 (CCL3) and chemokine (C-C motif) ligand 5 (CCL5), and the brain-derived neurotrophic factor (BDNF). METHODS: Adult male C57BL/6 (wild-type) (WT) and CCR5 deficient mice were subjected to transient cerebral ischemia induced by 25 min of bilateral common carotid artery occlusion (BCCAO) followed by 24 hours of reperfusion. Mice were divided into four groups: WT sham group, which underwent sham operation; WT ischemic group, which was subjected to transient bilateral common carotid artery occlusion, CCR5-/- sham group, which underwent sham operation, and CCR5-/- ischemic group, which was subjected to transient BCCAO. RESULTS: In CCR5 deficiency, we observed a significant improvement in the neurological deficits associated with decreased brain infarcted area as evaluated by triphenyltetrazolium chloride (TTC). Moreover, CCR5 deficiency revealed decreased percentage of necrotic cavities areas and frequency of ischemic neurons by histometric analysis. In addition, CCR5-/- ischemic animals showed lower brain levels of the chemokine CXCL1 and higher levels of BDNF by ELISA, compared with WT BCCAo mice. CONCLUSION: Taken together, our results suggest a potential neuroprotection in the absence of CCR5 receptor during global brain ischemia and reperfusion injury.


Subject(s)
Brain Ischemia/metabolism , Brain Ischemia/therapy , Gene Expression Regulation/genetics , Receptors, CCR5/deficiency , Reperfusion Injury/metabolism , Reperfusion Injury/therapy , Animals , Brain/pathology , Brain Ischemia/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Gene Expression Regulation/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Growth Factors/metabolism , Neurologic Examination , Receptors, CCR5/genetics , Reperfusion Injury/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...