Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339055

ABSTRACT

MicroRNAs are small regulatory molecules that control gene expression. An emerging property of muscle miRNAs is the cooperative regulation of transcriptional and epitranscriptional events controlling muscle phenotype. miR-155 has been related to muscular dystrophy and muscle cell atrophy. However, the function of miR-155 and its molecular targets in muscular dystrophies remain poorly understood. Through in silico and in vitro approaches, we identify distinct transcriptional profiles induced by miR-155-5p in muscle cells. The treated myotubes changed the expression of 359 genes (166 upregulated and 193 downregulated). We reanalyzed muscle transcriptomic data from dystrophin-deficient patients and detected overlap with gene expression patterns in miR-155-treated myotubes. Our analysis indicated that miR-155 regulates a set of transcripts, including Aldh1l, Nek2, Bub1b, Ramp3, Slc16a4, Plce1, Dync1i1, and Nr1h3. Enrichment analysis demonstrates 20 targets involved in metabolism, cell cycle regulation, muscle cell maintenance, and the immune system. Moreover, digital cytometry confirmed a significant increase in M2 macrophages, indicating miR-155's effects on immune response in dystrophic muscles. We highlight a critical miR-155 associated with disease-related pathways in skeletal muscle disorders.


Subject(s)
MicroRNAs , Muscular Dystrophy, Duchenne , Humans , Muscle, Skeletal/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle Fibers, Skeletal/metabolism , Cell Differentiation/genetics , Muscular Dystrophy, Duchenne/genetics
2.
Biol Trace Elem Res ; 200(4): 1872-1882, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34482504

ABSTRACT

In recent decades, the scientific community has widely debated the contamination of fish in the Amazon region by mercury species. As the diet of riverside populations in the Amazon region is based mainly on fish, these populations are exposed to mercurial species that can cause serious and irreversible damage to their health. The risks of consuming fish exposed to mercurial species in the Amazon region have motivated toxicological investigations. However, the effect of mercurial species on protein and enzyme levels is still controversial. In this work, analytical and bioanalytical techniques Two-dimensional polyacrylamide gel electrophoresis [2D-PAGE] Graphite Furnace Atomic Absorption Spectrometry [GFAAS], and Mass Spectrometry in Sequence with Electrospray Ionization [ESI-MS/MS] were used to identify proteins associated with mercury (metal-binding protein) in muscle and liver tissues of the fish species Pinirampus pirinampu from the Madeira River, in the Brazilian Amazon. Enzymatic and lipid peroxidation analyses were also used to assess changes related to oxidative stress. Determinations of total mercury by GFAAS indicated higher concentrations in liver tissue (555 ± 19.0 µg kg-1) when compared to muscle tissue (60 ± 2.0 µg kg-1). The fractionation process of tissue proteomes by 2D-PAGE and subsequent mapping of mercury by GFAAS in the protein spots of the gels identified the presence of mercury in three spots of the liver tissue (concentrations in the range of 0.800 to 1.90 mg kg-1). The characterization of protein spots associated with mercury by ESI-MS/MS identified the enzymes triosephosphate isomerase A, adenylate kinase 2 mitochondrial, and glyceraldehyde-3-phosphate dehydrogenase as possible candidates for mercury exposure biomarkers. The muscle tissue did not show protein spots associated with mercury. Enzymatic activity decreased proportionally to the increase in mercury concentrations in the tissues.


Subject(s)
Catfishes , Mercury , Water Pollutants, Chemical , Animals , Biomarkers/metabolism , Brazil , Catfishes/metabolism , Fishes/metabolism , Mercury/analysis , Mercury/toxicity , Oxidative Stress , Rivers/chemistry , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
3.
Cells ; 10(12)2021 12 14.
Article in English | MEDLINE | ID: mdl-34944037

ABSTRACT

Interleukin-6 (IL-6) is a pro-inflammatory cytokine associated with skeletal muscle wasting in cancer cachexia. The control of gene expression by microRNAs (miRNAs) in muscle wasting involves the regulation of thousands of target transcripts. However, the miRNA-target networks associated with IL6-induced muscle atrophy remain to be characterized. Here, we show that IL-6 promotes the atrophy of C2C12 myotubes and changes the expression of 20 miRNAs (5 up-regulated and 15 down-regulated). Gene Ontology analysis of predicted miRNAs targets revealed post-transcriptional regulation of genes involved in cell differentiation, apoptosis, migration, and catabolic processes. Next, we performed a meta-analysis of miRNA-published data that identified miR-497-5p, a down-regulated miRNAs induced by IL-6, also down-regulated in other muscle-wasting conditions. We used miR-497-5p mimics and inhibitors to explore the function of miR-497-5p in C2C12 myoblasts and myotubes. We found that miR-497-5p can regulate the expression of the cell cycle genes CcnD2 and CcnE1 without affecting the rate of myoblast cellular proliferation. Notably, miR-497-5p mimics induced myotube atrophy and reduced Insr expression. Treatment with miR-497-5p inhibitors did not change the diameter of the myotubes but increased the expression of its target genes Insr and Igf1r. These genes are known to regulate skeletal muscle regeneration and hypertrophy via insulin-like growth factor pathway and were up-regulated in cachectic muscle samples. Our miRNA-regulated network analysis revealed a potential role for miR-497-5p during IL6-induced muscle cell atrophy and suggests that miR-497-5p is likely involved in a compensatory mechanism of muscle atrophy in response to IL-6.


Subject(s)
Interleukin-6/adverse effects , MicroRNAs/metabolism , Muscle Cells/metabolism , Muscular Atrophy/genetics , Animals , Cachexia/etiology , Cell Line , Cell Proliferation/drug effects , Cell Proliferation/genetics , Gene Expression Regulation/drug effects , Insulin/metabolism , Mice , MicroRNAs/genetics , Models, Biological , Muscle Cells/drug effects , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscular Atrophy/pathology , Neoplasms/complications , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Reproducibility of Results , Signal Transduction/drug effects
4.
Cancers (Basel) ; 12(3)2020 03 18.
Article in English | MEDLINE | ID: mdl-32197468

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is extremely aggressive, has an unfavorable prognosis, and there are no biomarkers for early detection of the disease or identification of individuals at high risk for morbidity or mortality. The cellular and molecular complexity of PDAC leads to inconsistences in clinical validations of many proteins that have been evaluated as prognostic biomarkers of the disease. The tumor secretome, a potential source of biomarkers in PDAC, plays a crucial role in cell proliferation and metastasis, as well as in resistance to treatments, which together contribute to a worse clinical outcome. The massive amount of proteomic data from pancreatic cancer that has been generated from previous studies can be integrated and explored to uncover secreted proteins relevant to the diagnosis and prognosis of the disease. The present study aimed to perform an integrated meta-analysis of PDAC proteome and secretome public data to identify potential biomarkers of the disease. Our meta-analysis combined mass spectrometry data obtained from two systematic reviews of the pancreatic cancer literature, which independently selected 20 studies of the secretome and 35 of the proteome. Next, we predicted the secreted proteins using seven in silico tools or databases, which identified 39 secreted proteins shared between the secretome and proteome data. Notably, the expression of 31 genes of these secretome-related proteins was upregulated in PDAC samples from The Cancer Genome Atlas (TCGA) when compared to control samples from TCGA and The Genotype-Tissue Expression (GTEx). The prognostic value of these 39 secreted proteins in predicting survival outcome was confirmed using gene expression data from four PDAC datasets (validation set). The gene expression of these secreted proteins was able to distinguish high- and low-survival patients in nine additional tumor types from TCGA, demonstrating that deregulation of these secreted proteins may also contribute to the prognosis in multiple cancers types. Finally, we compared the prognostic value of the identified secreted proteins in PDAC biomarkers studies from the literature. This analysis revealed that our gene signature performed equally well or better than the signatures from these previous studies. In conclusion, our integrated meta-analysis of PDAC proteome and secretome identified 39 secreted proteins as potential biomarkers, and the tumor gene expression profile of these proteins in patients with PDAC is associated with worse overall survival.

5.
Biol Trace Elem Res ; 197(2): 667-675, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31925742

ABSTRACT

Recent studies have demonstrated the association of mercury (Hg) with some fish proteins, milk, and hair from individuals exposed to the element in the Amazon. However, few studies involve identifying biomarkers of mercury exposure. Therefore, the present study aimed to identify potential biomarkers of Hg exposure in fish. For this, the muscular tissues of two species of fish (Prochilodus lineatus and Mylossoma duriventre) that feed the Amazonian human population were analyzed. Through the analyses obtained by graphite furnace atomic absorption spectrometry (GFAAS), it was possible to identify four protein SPOTS where mercury was present. These SPOTS, identified by mass spectrometry (ESI-MS/MS), included parvalbumin and ubiquitin-40S ribosomal protein S27a, and these being metalloproteins with biomarker characteristics. In addition, the results show the intense Hg/protein ratio observed in the two proteins, which makes metalloproteins strong candidates for biomarkers of mercury exposure. Graphical Abstract.


Subject(s)
Mercury , Animals , Biomarkers , Brazil , Fishes , Food Contamination/analysis , Humans , Mercury/analysis , Mercury/toxicity , Parvalbumins , Tandem Mass Spectrometry , Ubiquitin
6.
Sci Total Environ ; 711: 134547, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31812405

ABSTRACT

Fish is an important source of protein, vitamins, and minerals. However, this food is also a major source of human exposure to toxic contaminants such as mercury. Thus, this paper aimed to evaluate mercury-binding proteins for possible application as biomarkers of mercury contamination in hepatic and renal tissues of Plagioscion squamosissimus (carnivorous fish) and Colossoma macropomum (omnivorous fish) from the Amazon region using metalloproteomic approach. The proteome of hepatic and renal tissues of fish species was separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), and the mercury concentrations in protein spots were determined by graphite furnace atomic absorption spectrometry (GFAAS). Finally, the protein spots associated to mercury were characterized by electrospray ionization mass spectrometry (ESI-MS/MS). The activity of antioxidant enzymes (SOD, CAT, GPx, and GST) and lipid peroxidation (LPO) were also determined. The results showed that the highest concentrations of mercury were found in the carnivorous species (P. squamosissimus) and that the accumulation pattern of this metal was higher in hepatic tissues than in renal tissues for both species. A tendency was observed for greater enzymatic activity in the hepatic and renal tissues of P. squamosissimus, the species with the highest concentration of mercury. Only GPx activity in the kidney and GST in the liver were lower for the P. squamosissimus species, and this finding can be explained by the interaction of mercury with these enzymes. The data obtained by ESI-MS/MS allowed for the characterization of the protein spots associated to mercury, revealing proteins involved in energy metabolism, biomolecules transport, protein synthesis and degradation, cell differentiation, gene regulation, and the antioxidant system. The results obtained in the present study can contribute to understanding the physiological processes underlying mercury toxicity and have provided new perspectives on possible candidates for mercury contamination biomarkers in fish.


Subject(s)
Liver , Animals , Biomarkers , Carrier Proteins , Humans , Mercury , Proteomics , Tandem Mass Spectrometry , Water Pollutants, Chemical
7.
Cancers (Basel) ; 11(9)2019 08 26.
Article in English | MEDLINE | ID: mdl-31455042

ABSTRACT

Cachexia is a syndrome characterized by an ongoing loss of skeletal muscle mass associated with poor patient prognosis in non-small cell lung cancer (NSCLC). However, prognostic cachexia biomarkers in NSCLC are unknown. Here, we analyzed computed tomography (CT) images and tumor transcriptome data to identify potentially secreted cachexia biomarkers (PSCB) in NSCLC patients with low-muscularity. We integrated radiomics features (pectoralis muscle, sternum, and tenth thoracic (T10) vertebra) from CT of 89 NSCLC patients, which allowed us to identify an index for screening muscularity. Next, a tumor transcriptomic-based secretome analysis from these patients (discovery set) was evaluated to identify potential cachexia biomarkers in patients with low-muscularity. The prognostic value of these biomarkers for predicting recurrence and survival outcome was confirmed using expression data from eight lung cancer datasets (validation set). Finally, C2C12 myoblasts differentiated into myotubes were used to evaluate the ability of the selected biomarker, interleukin (IL)-8, in inducing muscle cell atrophy. We identified 75 over-expressed transcripts in patients with low-muscularity, which included IL-6, CSF3, and IL-8. Also, we identified NCAM1, CNTN1, SCG2, CADM1, IL-8, NPTX1, and APOD as PSCB in the tumor secretome. These PSCB were capable of distinguishing worse and better prognosis (recurrence and survival) in NSCLC patients. IL-8 was confirmed as a predictor of worse prognosis in all validation sets. In vitro assays revealed that IL-8 promoted C2C12 myotube atrophy. Tumors from low-muscularity patients presented a set of upregulated genes encoding for secreted proteins, including pro-inflammatory cytokines that predict worse overall survival in NSCLC. Among these upregulated genes, IL-8 expression in NSCLC tissues was associated with worse prognosis, and the recombinant IL-8 was capable of triggering atrophy in C2C12 myotubes.

8.
Int J Mol Sci ; 20(8)2019 Apr 22.
Article in English | MEDLINE | ID: mdl-31013615

ABSTRACT

Cancer cachexia is a multifactorial syndrome that leads to significant weight loss. Cachexia affects 50%-80% of cancer patients, depending on the tumor type, and is associated with 20%-40% of cancer patient deaths. Besides the efforts to identify molecular mechanisms of skeletal muscle atrophy-a key feature in cancer cachexia-no effective therapy for the syndrome is currently available. MicroRNAs are regulators of gene expression, with therapeutic potential in several muscle wasting disorders. We performed a meta-analysis of previously published gene expression data to reveal new potential microRNA-mRNA networks associated with muscle atrophy in cancer cachexia. We retrieved 52 differentially expressed genes in nine studies of muscle tissue from patients and rodent models of cancer cachexia. Next, we predicted microRNAs targeting these differentially expressed genes. We also include global microRNA expression data surveyed in atrophying skeletal muscles from previous studies as background information. We identified deregulated genes involved in the regulation of apoptosis, muscle hypertrophy, catabolism, and acute phase response. We further predicted new microRNA-mRNA interactions, such as miR-27a/Foxo1, miR-27a/Mef2c, miR-27b/Cxcl12, miR-27b/Mef2c, miR-140/Cxcl12, miR-199a/Cav1, and miR-199a/Junb, which may contribute to muscle wasting in cancer cachexia. Finally, we found drugs targeting MSTN, CXCL12, and CAMK2B, which may be considered for the development of novel therapeutic strategies for cancer cachexia. Our study has broadened the knowledge of microRNA-regulated networks that are likely associated with muscle atrophy in cancer cachexia, pointing to their involvement as potential targets for novel therapeutic strategies.


Subject(s)
Cachexia/etiology , Gene Regulatory Networks , MicroRNAs/genetics , Neoplasms/complications , Neoplasms/genetics , Cachexia/metabolism , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Neoplasms/metabolism , Protein Interaction Mapping , Protein Interaction Maps , Reproducibility of Results , Transcriptome
9.
Biol Trace Elem Res ; 187(1): 291-300, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29740802

ABSTRACT

Predator fish can accumulate high levels of mercury, which qualifies them as potential indicators of this toxic metal. The predatory species Brachyplatystoma filamentosum, popularly known as filhote, is among the most consumed species in the Brazilian Amazon. Continuing the metalloproteomic studies of mercury in Amazonian fishes that have been developed in the last 5 years, the present paper provides the data of protein characterization associated with mercury in muscle and liver samples of filhote (Brachyplatystoma filamentosum) collected in the Madeira River, Brazilian Amazon. The mercury concentration in the muscle and liver samples was determined by graphite furnace atomic absorption spectrometry (GFAAS). The protein fraction was extracted in an aqueous medium, and later, a fractional precipitation procedure was performed to obtain the protein pellets. Then, the proteome of the tissue samples of this fish species was separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), and a mercury mapping of the protein spots was carried out by GFAAS after acid digestion. Protein spots that had mercury were characterized by mass spectrometry with electrospray ionization in sequence (ESI-MS/MS) after tryptic digestion. It was possible to characterize 11 mercury-associated protein spots that presented biomarker characteristics and could be used to monitor mercury in fish species of the Amazon region. Thus, the metalloproteomic strategies used in the present study allowed us to characterize 11 mercury-associated protein spots. It should be noted that the protein spots identified as GFRP, TMEM186, TMEM57B, and BHMT, which have coordination sites for elements with characteristics of soft acids, such as mercury, can be used as biomarkers of mercury contamination in monitoring studies of this toxic metal in fish species from the Amazon region.


Subject(s)
Food Contamination/analysis , Mercury/analysis , Metalloproteins/analysis , Proteomics , Rivers/chemistry , Water Pollutants, Chemical/analysis , Animals , Biomarkers/analysis , Brazil , Catfishes , Spectrophotometry, Atomic
10.
Gene ; 676: 9-15, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-29990505

ABSTRACT

Several studies have demonstrated dysregulated cardiac microRNAs (miRNAs) following cardiac stress and development of cardiac hypertrophy and failure. miRNAs are also differentially expressed in the inflammation that occurs in heart failure and, among these inflammatory-related miRNAs, the miR-155 has been implicated in the regulation of cardiac hypertrophy. Despite these data showing the role of miRNA-155 in cardiomyocyte hypertrophy under a hypertrophic stimulus, it is also important to understand the endogenous regulation of this miRNA without a hypertrophic stimulus to fully appreciate its function in this cell type. The first aim of the present study was to determine whether, without a hypertrophic stimulus, miR-155 overexpression induces H9c2 cardiac cells hypertrophy in vitro. The second objective was to determine whether osteoglycin (Ogn), a key regulator of heart mass in rats, mice, and humans, is post-transcriptionally regulated by miR-155 with a potential role in inducing H9c2 cells hypertrophy. Here, we show that, without a hypertrophic stimulus, miR-155 significantly repressed Ogn protein levels, but induce neither alteration in morphological phenotype nor in the expression of the molecular markers that fully characterize pathological hypertrophy of H9c2 cells. However, most importantly, Ogn silencing in H9c2 cells mimicked the effects of miR-155 overexpression in inducing cellular architecture changes that were characterized by a transition of the cell shape from fusiform to rounded. This is a new role of the post-transcriptional regulation of Ogn by miR-155 in the maintenance of the cardiac cell morphology in physiological and pathological conditions.


Subject(s)
Intercellular Signaling Peptides and Proteins/metabolism , MicroRNAs/genetics , Myoblasts, Cardiac/cytology , Animals , Cell Line , Gene Expression Regulation , Gene Silencing , Intercellular Signaling Peptides and Proteins/genetics , Myoblasts, Cardiac/metabolism , Rats
11.
Biochem Biophys Res Commun ; 503(1): 109-115, 2018 09 03.
Article in English | MEDLINE | ID: mdl-29852164

ABSTRACT

Duchenne Muscular Dystrophy (DMD) is characterized by muscle extracellular matrix disorganization due to the increased collagen deposition leading to fibrosis that significantly exacerbates disease progression. Fractal dimension analysis is a method that quantifies tissue/cellular disorganization and characterizes complex structures. The first objective of the present study was use fractal analysis to evaluate extracellular matrix disorganization in mdx mice soleus muscle. Next, we mimic a hyper-proliferation of fibrogenic cells by co-culturing NIH3T3 fibroblasts and C2C12 myoblasts to test whether fibroblasts induce disorganization in myoblast arrangement. Here, we show mdx presented high skeletal muscle disorganization as revealed by fractal analysis. Similarly, this method revealed that myoblasts co-cultured with fibroblast also presented cellular arrangement disorganization. We also reanalyzed skeletal muscle microarrays transcriptomic data from mdx and DMD patients that revealed transcripts related to extracellular matrix organization. This analysis also identified Osteoglycin, which was validated as a potential regulator of ECM organization in mdx dystrophic muscles. Our results demonstrate that fractal dimension is useful tool for the analysis of skeletal muscle disorganization in DMD and also reveal a fibroblast-myoblast cross-talk that contributes to "in vitro" myoblast disarrangement.


Subject(s)
Fractals , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Animals , Cell Proliferation , Coculture Techniques , Disease Models, Animal , Extracellular Matrix/genetics , Extracellular Matrix/pathology , Fibroblasts/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Myoblasts, Skeletal/metabolism , Myoblasts, Skeletal/pathology , NIH 3T3 Cells , Up-Regulation
12.
Biol Trace Elem Res ; 183(1): 164-171, 2018 May.
Article in English | MEDLINE | ID: mdl-28828596

ABSTRACT

This study presents data on the extraction and characterization of proteins associated with mercury in the muscle and liver tissues of jaraqui (Semaprochilodus spp.) from the Madeira River in the Brazilian Amazon. Protein fractionation was carried out by two-dimensional electrophoresis (2D-PAGE). Mercury determination in tissues, pellets, and protein spots was performed by graphite furnace atomic absorption spectrometry (GFAAS). Proteins in the spots that showed mercury were characterized by electrospray ionization tandem mass spectrometry (ESI-MS/MS). The highest mercury concentrations were found in liver tissues and pellets (426 ± 6 and 277 ± 4 µg kg-1), followed by muscle tissues and pellets (132 ± 4 and 86 ± 1 µg kg-1, respectively). Mercury quantification in the protein spots allowed us to propose stoichiometric ratios in the range of 1-4 mercury atoms per molecule of protein in the protein spots. The proteins characterized in the analysis by ESI-MS/MS were keratin, type II cytoskeletal 8, parvalbumin beta, parvalbumin-2, ubiquitin-40S ribosomal S27a, 39S ribosomal protein L36 mitochondrial, hemoglobin subunit beta, and hemoglobin subunit beta-A/B. The results suggest that proteins such as ubiquitin-40S ribosomal protein S27a, which have specific domains, possibly zinc finger, can be used as biomarkers of mercury, whereas mercury and zinc present characteristics of soft acids.


Subject(s)
Characiformes/metabolism , Fish Proteins/metabolism , Liver/metabolism , Mercury/toxicity , Muscle, Skeletal/metabolism , Animals , Biomarkers/metabolism
13.
Biol Trace Elem Res ; 184(2): 517-522, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29196873

ABSTRACT

This paper presents a slurry sampling method for total mercury determination by graphite furnace atomic absorption spectrometry (GFAAS) in tissue of fish from the Amazon. The tissue samples were lyophilized and macerated, and then the slurry samples were prepared by putting 20 mg of tissue, added to a solution containing Triton X-100, Suprapur HNO3, and zirconium nitrate directly in sampling vials of a spectrometer. Mercury standard solutions were prepared under the same conditions as the slurry samples. The slurry samples and the mercury standard solutions were sonicated for 20 s. Twenty microliters of slurry samples were injected into the graphite tube, which contained an internal wall lined with tungsten carbide. Under these conditions, it was possible to thermally stabilize the mercury up to an atomization temperature of 1700 °C. The method was validated by mercury determination in reference materials DORM-4 and DOLT-4. The LOD and LOQ were 0.014 and 0.045 mg kg-1, respectively, and recovery percentages in relation to the concentration values were certified in the order of 98%.


Subject(s)
Fishes , Liver/chemistry , Mercury/analysis , Muscles/chemistry , Animals , Brazil , Graphite/chemistry , Hot Temperature , Mercury/standards , Reference Standards , Reproducibility of Results , Spectrophotometry, Atomic/methods
14.
Biol Trace Elem Res ; 183(1): 172, 2018 05.
Article in English | MEDLINE | ID: mdl-29094280

ABSTRACT

In the affiliation section, Luiz Fabricio Zara's affiliation "Pontifical Catholic University of Goiás (PUC), Goiânia, GO, Brazil" was incorrect. The correct affiliation is College of Planaltina, UnB - University of Brasília, Distrito Federal, Brazil.

15.
PLoS One ; 12(11): e0188464, 2017.
Article in English | MEDLINE | ID: mdl-29161332

ABSTRACT

Skeletal myogenesis is a regulated process in which mononucleated cells, the myoblasts, undergo proliferation and differentiation. Upon differentiation, the cells align with each other, and subsequently fuse to form terminally differentiated multinucleated myotubes. Previous reports have identified the protein osteoglycin (Ogn) as an important component of the skeletal muscle secretome, which is expressed differentially during muscle development. However, the posttranscriptional regulation of Ogn by microRNAs during myogenesis is unknown. Bioinformatic analysis showed that miR-155 potentially targeted the Ogn transcript at the 3´-untranslated region (3´ UTR). In this study, we tested the hypothesis that miR-155 inhibits the expression of the Ogn to regulate skeletal myogenesis. C2C12 myoblast cells were cultured and miR-155 overexpression or Ogn knockdown was induced by transfection with miR-155 mimic, siRNA-Ogn, and negative controls with lipofectamine for 15 hours. Near confluence (80-90%), myoblasts were induced to differentiate myotubes in a differentiation medium. Luciferase assay was used to confirm the interaction between miR-155 and Ogn 3'UTR. RT-qPCR and Western blot analyses were used to confirm that the differential expression of miR-155 correlates with the differential expression of myogenic molecular markers (Myh2, MyoD, and MyoG) and inhibits Ogn protein and gene expression in myoblasts and myotubes. Myoblast migration and proliferation were assessed using Wound Healing and MTT assays. Our results show that miR-155 interacts with the 3'UTR Ogn region and decrease the levels of Ogn in myotubes. The overexpression of miR-155 increased MyoG expression, decreased myoblasts wound closure rate, and decreased Myh2 expression in myotubes. Moreover, Ogn knockdown reduced the expression levels of MyoD, MyoG, and Myh2 in myotubes. These results reveal a novel pathway in which miR-155 inhibits Ogn expression to regulate proliferation and differentiation of C2C12 myoblast cells.


Subject(s)
Intercellular Signaling Peptides and Proteins/genetics , MicroRNAs/genetics , Muscle Development/genetics , RNA Processing, Post-Transcriptional/genetics , Animals , Cell Differentiation/genetics , Cell Proliferation/genetics , Gene Expression Regulation , Intercellular Signaling Peptides and Proteins/metabolism , Mice , MicroRNAs/metabolism , Muscle, Skeletal/growth & development , Muscle, Skeletal/metabolism , Myoblasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...