Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.015
Filter
1.
Front Psychiatry ; 15: 1335554, 2024.
Article in English | MEDLINE | ID: mdl-38957739

ABSTRACT

Background: Mobile phone addiction (MPA) greatly affects the biological clock and sleep quality and is emerging as a behavioral disorder. The saliva microbiota has been linked to circadian rhythms, and our previous research revealed dysrhythmic saliva metabolites in MPA subjects with sleep disorders (MPASD). In addition, acupuncture had positive effects. However, the dysbiotic saliva microbiota in MPASD patients and the restorative effects of acupuncture are unclear. Objectives: To probe the circadian dysrhythmic characteristics of the saliva microbiota and acupunctural restoration in MPASD patients. Methods: MPASD patients and healthy volunteers were recruited by the Mobile Phone Addiction Tendency Scale (MPATS) and the Pittsburgh Sleep Quality Index (PSQI). Saliva samples were collected every 4 h for 72 h. After saliva sampling, six MPDSD subjects (group M) were acupuncturally treated (group T), and subsequent saliva sampling was conducted posttreatment. Finally, all the samples were subjected to 16S rRNA gene sequencing and bioinformatic analysis. Results: Significantly increased MPATS and PSQI scores were observed in MPDSD patients (p< 0.01), but these scores decreased (p<0.001) after acupuncture intervention. Compared with those in healthy controls, the diversity and structure of the saliva microbiota in MPASD patients were markedly disrupted. Six genera with circadian rhythms were detected in all groups, including Sulfurovum, Peptostreptococcus, Porphyromonas and Prevotella. There were five genera with circadian rhythmicity in healthy people, of which the rhythmicities of the genera Rothia and Lautropia disappeared in MPASD patients but effectively resumed after acupuncture intervention. Conclusions: This work revealed dysrhythmic salivary microbes in MPASD patients, and acupuncture, as a potential intervention, could be effective in mitigating this ever-rising behavioral epidemic.

2.
Water Sci Technol ; 90(1): 1-17, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007303

ABSTRACT

Reverse osmosis (RO) membrane fouling and biological contamination problems faced by seawater desalination systems are microbiologically related. We used full-length 16S rRNA gene sequencing to assess the bacterial community structure and chlorine-resistant bacteria (CRB) associated with biofilm growth in different treatment processes under the winter mode of a chlorinated seawater desalination system in China. At the outset of the winter mode, certain CRB, such as Acinetobacter, Pseudomonas, and Bacillus held sway over the bacterial community structure, playing a pivotal role in biofouling. At the mode's end, Deinococcus and Paracoccus predominated, with Pseudomonas and Roseovarius following suit, while certain CRB genera still maintained their dominance. RO and chlorination are pivotal factors in shaping the bacterial community structure and diversity, and increases in total heterotrophic bacterial counts and community diversity in safety filters may adversely affect the effectiveness of subsequent RO systems. Besides, the bacterial diversity and culturable biomass in the water produced by the RO system remain high, and some conditionally pathogenic CRBs pose a certain microbial risk as a source of drinking water. Targeted removal of these CRBs will be an important area of research for advancing control over membrane clogging and ensuring water quality safety in the future.


Subject(s)
Bacteria , Biofouling , Halogenation , Nuclear Power Plants , RNA, Ribosomal, 16S , Water Purification , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Water Purification/methods , Seawater/microbiology , Chlorine/chemistry
3.
Cureus ; 16(6): e62744, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39036232

ABSTRACT

Campylobacter gracilis inhabits the gingival sulcus and has been reported to cause various periodontal diseases; it has rarely been reported to cause bacteremia. We describe a case of a two-year-old boy who presented with a consciousness disorder and was transferred to our hospital for treatment of a brain abscess. Magnetic resonance imaging (MRI) showed a 6-cm brain abscess in the right frontal lobe. Urgent drainage and antibiotic administration resulted in a favorable clinical course, and the patient was discharged on the 34th day of hospitalization. Streptococcus anginosus and C. gracilis were identified in the pus. Brain abscesses caused by C. gracilis have rarely been reported, which makes this a valuable case.

4.
Sci Rep ; 14(1): 15677, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977718

ABSTRACT

Liver fibrosis is an important pathological process in chronic liver disease and cirrhosis. Recent studies have found a close association between intestinal microbiota and the development of liver fibrosis. To determine whether there are differences in the intestinal microbiota between rhesus macaques with liver fibrosis (MG) and normal rhesus macaques (MN), fecal samples were collected from 8 male MG and 12 male MN. The biological composition of the intestinal microbiota was then detected using 16S rRNA gene sequencing. The results revealed statistically significant differences in ASVs and Chao1 in the alpha-diversity and the beta-diversity of intestinal microbiota between MG and MN. Both groups shared Prevotella and Lactobacillus as common dominant microbiota. However, beneficial bacteria such as Lactobacillus were significantly less abundant in MG (P = 0.02). Predictive functional analysis using PICRUSt2 gene prediction revealed that MG exhibited a higher relative abundance of functions related to substance transport and metabolic pathways. This study may provide insight into further exploration of the mechanisms by which intestinal microbiota affect liver fibrosis and its potential future use in treating liver fibrosis.


Subject(s)
Gastrointestinal Microbiome , Liver Cirrhosis , Macaca mulatta , Metagenomics , RNA, Ribosomal, 16S , Animals , Macaca mulatta/microbiology , Gastrointestinal Microbiome/genetics , Liver Cirrhosis/microbiology , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Male , RNA, Ribosomal, 16S/genetics , Metagenomics/methods , Feces/microbiology , Metagenome , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification
5.
Res Vet Sci ; 176: 105354, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38981836

ABSTRACT

Studies on the bacterial composition of seminal samples have primarily focused on species isolated from semen and their effects on fertility and reproductive health. Culture-independent techniques, such as 16S rRNA gene sequencing and shotgun metagenomics, have revolutionized our ability to identify unculturable bacteria, which comprise >90% of the microbiome. These techniques allow for comprehensive analysis of microbial communities in seminal samples, shedding light on their interactions and roles. In this study, we characterized the taxonomic diversity of seminal microbial communities in healthy stallions using 16S rRNA gene sequencing. Semen samples were collected from four stallions during the reproductive season, and DNA was extracted for sequencing. The results revealed a diverse array of bacterial taxa, with Firmicutes, Bacteroidota, and Proteobacteria being predominant phyla. At the family and genus levels, significant variations were observed among individuals, with individual variability in microbial richness and diversity standing out. Moreover, each stallion showed a distinct microbial fingerprint, indicating the presence of a characteristic microbial core for each stallion. These results underscore the importance of considering individual microbial profiles in understanding reproductive health and fertility outcomes.


Subject(s)
RNA, Ribosomal, 16S , Semen , Animals , Horses/microbiology , Male , Semen/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Metagenomics , Microbiota , DNA, Bacterial/genetics
6.
Sci Rep ; 14(1): 16339, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014002

ABSTRACT

The market value of vanilla beans (Vanilla planifolia) is constantly increasing due to their natural aroma and flavor properties that improve after a curing process, where bacteria colonization plays a critical role. However, a few publications suggest that bacteria play a role in the curing process. Hence, this study aimed to isolate Bacillus sp. that could be used for fermenting V. planifolia while analyzing their role in the curing process. Bacillus velezensis ZN-S10 identified with 16S rRNA sequencing was isolated from conventionally cured V. planifolia beans. A bacteria culture solution of B. velezensis ZN-S10 (1 mL of 1 × 107 CFU mL-1) was then coated on 1 kg of non-cured vanilla pods that was found to ferment and colonize vanilla. PCA results revealed distinguished bacterial communities of fermented vanilla and the control group, suggesting colonization of vanilla. Phylogenetic analysis showed that ZN-S10 was the dominant Bacillus genus member and narrowly correlated to B. velezensis EM-1 and B. velezensis PMC206-1, with 78% and 73% similarity, respectively. The bacterial taxonomic profiling of cured V. planifolia had a significant relative abundance of Firmicutes, Proteobacteria, Cyanobacteria, Planctomycetes, and Bacteroidetes phyla according to the predominance. Firmicutes accounted for 55% of the total bacterial sequences, suggesting their colonization and effective fermentation roles in curing vanilla.


Subject(s)
Bacillus , Phylogeny , RNA, Ribosomal, 16S , Vanilla , Bacillus/genetics , Bacillus/isolation & purification , Bacillus/metabolism , Bacillus/classification , Vanilla/microbiology , Vanilla/metabolism , RNA, Ribosomal, 16S/genetics , Fermentation , Food Microbiology
7.
Neurogastroenterol Motil ; : e14874, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39031023

ABSTRACT

BACKGROUND: The aim of this study was to investigate the frequency dependence of electroacupuncture (EA) in alleviating chronic visceral pain in patients with irritable bowel syndrome (IBS) and the differences in the gut microbiota and metabolites as potential mechanisms to explain frequency dependence. METHODS: A visceral hyperalgesia model was established by colorectal instillation of 2,4,6-trinitrobenzene sulfonic acid in rats, and EA treatment at 2/10 Hz, 2/50 Hz and 2/100 Hz was applied at ST25. Visceral sensation was quantified by the abdominal withdrawal reflex score and the area under the curve of the rectus abdominis electromyogram in response to colorectal distension. Ultrastructural morphological damage of colonic tissue of the rats was examined by transmission electron microscopy. 16S rRNA gene sequencing and 1H-nuclear magnetic resonance spectroscopy were applied to study the differences in the gut microbiota and to perform metabonomic profiling of the colonic tissue. KEY RESULTS: EA at ST25 at different frequencies attenuated chronic visceral pain, ultrastructural morphological damage to colonic tissue and disruption of the gut microbiota in IBS rats. The frequency of 2/100 Hz has more regulatory pathways than 2/10 Hz and 2/50 Hz. In addition, IBS rats exhibited colonic metabolic disorders, and pantothenate was significantly upregulated after EA treatment at different frequencies. Very low-density lipoprotein and 2-hydroxybutyrate were significantly increased in the 2/10 Hz group, while low density lipoprotein, very low-density lipoprotein, 2-hydroxybutyrate, methylmalonate and alpha-hydroxyisobutyric acid were significantly increased in the 2/100 Hz group. CONCLUSIONS AND INFERENCES: EA at ST25 at different frequencies attenuated chronic visceral pain through different gut microbiota and metabolic pathways.

8.
Microbiol Spectr ; : e0012524, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980015

ABSTRACT

Semen is one of the common body fluids in sexual crime cases. The current methods of semen identification have certain limitations, so it is necessary to search for other methods. In addition, there are few reports of microbiome changes in body fluids under simulated crime scenes. It is essential to further reveal the changes in semen microbiomes after exposure to various simulated crime scenes. Semen samples from eight volunteers were exposed in closed plastic bags, soil, indoor, cotton, polyester, and wool fabrics. A total of 68 samples (before and after exposure) were collected, detected by 16S rDNA sequencing, and analyzed for the microbiome signature. Finally, a random forest model was constructed for body fluid identification. After exposure, the relative abundance of Pseudomonas and Rhodococcus changed dramatically in almost all groups. In addition, the treatment with the closed plastic bags or soil groups had a greater impact on the semen microbiome. According to the Shannon indices, the alpha diversity of the closed plastic bags and soil groups was much lower than that of the other groups. Attention should be given to the above two scenes in practical work of forensic medicine. In this study, the accuracy of semen recognition was 100%. The exposed semen can still be correctly identified as semen based on its microbiota characteristics. In summary, semen microbiomes exposed to simulated crime scenes still have good application potential for body fluid identification. IMPORTANCE: In this study, the microbiome changes of semen exposed to different environments were observed, and the exposed semen microbiome still has a good application potential in body fluid identification.

9.
Antonie Van Leeuwenhoek ; 117(1): 102, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012584

ABSTRACT

This study represents the first analysis of the bacterial community in chickens affected by swollen head syndrome, utilizing 16S rRNA gene sequencing. Samples were obtained from clinical laying chickens and were examined for the presence of Avibacterium paragallinarum (APG) and Ornithobacterium rhinotracheale (ORT) using conventional polymerase chain reaction (PCR). From the samples, five APG-positive (APG) and APG-negative (N-APG) samples were chosen, along with five specific pathogen-free chickens, for 16S rRNA gene sequencing. Results showed that APG and ORT were widely detected in the chicken samples with swollen head syndrome (SHS, 9/10), while APG was detected in all five specific pathogen-free (SPF) samples. In contrast, conventional PCR sensitivity was found to be inadequate for diagnosis, with only 35.7% (5/14) and 11.1% (1/9) sensitivity for APG and ORT, respectively, based on 16S rRNA gene sequencing data. Furthermore, 16S rRNA gene sequencing was able to quantify the bacteria in the samples, revealing that the relative abundance of APG in the APG group ranged from 2.7 to 81.3%, while the relative abundance of APG in the N-APG group ranged from 0.1 to 21.0%. Notably, a low level of APG was also detected in all 5 SPF samples. The study also identified a significant number of animal and human common bacterial pathogens, including but not limited to Gallibacterium anatis, Riemerella columbina, Enterococcus cecorum, Mycoplasma synoviae, Helicobacter hepaticus, and Staphylococcus lentus. In conclusion, 16S rRNA gene sequencing is a valuable tool for bacterial pathogen diagnosis and the discovery of novel bacterial pathogens, while conventional PCR is not reliable for diagnosis.


Subject(s)
Chickens , Polymerase Chain Reaction , Poultry Diseases , RNA, Ribosomal, 16S , RNA, Ribosomal, 16S/genetics , Animals , Chickens/microbiology , Polymerase Chain Reaction/methods , Poultry Diseases/microbiology , Poultry Diseases/diagnosis , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , DNA, Bacterial/genetics , Sequence Analysis, DNA , Phylogeny
10.
Article in English | MEDLINE | ID: mdl-39003214

ABSTRACT

It is urgently necessary to clarify the effect of extraction of impacted mandibular third molar (IMTM) on the periodontal tissue of adjacent second molars (ASMs). In this study, the ASM periodontal condition and pathogenic microbes were assessed before IMTM extraction and at 1, 4, 8 and 12 weeks postoperatively. Based on the inclusion and exclusion criteria, our study revealed that IMTM extractions adversely affected distal - periodontal probing depth (dPPD), attachment loss (dAL), plaque index (dPLI) and bleeding on probing (dBOP) within 8 weeks, but these indices gradually normalize after 12 weeks. The subgingival pathogens near the ASMs distal surface, Porphyromonas and Pseudomonas, were significantly increased postoperatively. Moreover, relevance of ASMs clinical indices and subgingival microbes after IMTM extractions was found. In contrast to the situation in chronic periodontitis, the effects of IMTM extraction on dPPD, dAL, dPLI and dBOP of ASMs were mainly correlated with Pseudomonas. Additionally, while the IMTM extractions have adverse distal periodontal indices of ASMs within 8 weeks and increase subgingival pathogens, the modified triangular flap (MTF) had fewer distal periodontal indices and less Pseudomonas. Compared to the traditional envelope flap and triangular flap, the MTF benefits the periodontal health, which could be considered as the priority option for IMTM extractions.

11.
Chemosphere ; 361: 142587, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871193

ABSTRACT

Ciprofloxacin (CIP) and levofloxacin (LEV) are broad-spectrum antibiotics with potent antibacterial activity. Although many studies have shown that antibiotics can lead to gut microbiota disruption, the effects of CIP and LEV on gut microbial colonization at the embryonic stage remain poorly characterized. Here, we evaluated the response of Bufo gargarizans embryos in terms of gut microbiota colonization, growth and developmental stages to CIP and LEV exposure. Embryos treated with 100 µg/L CIP and LEV exhibited significantly reduced diversity and richness of the gut microbiota, as well as altered community structure. Both CIP and LEV treatments resulted in an increase in the pathogenic bacteria Bosea and Aeromonas, and they appeared to be more resistant to CIP than LEV. Additionally, CIP exposure caused reduced total length and delayed the development in B. gargarizans embryos, while LEV increased the total length and promoted embryonic development. The present study revealed the adverse effects of CIP and LEV exposure on host gut microbiota, growth and development during the embryonic stage, and contributed new perspectives to the evaluation of early aquatic ecological risk under CIP and LEV exposure.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Gastrointestinal Microbiome , Levofloxacin , Ciprofloxacin/pharmacology , Ciprofloxacin/toxicity , Gastrointestinal Microbiome/drug effects , Animals , Levofloxacin/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Bufonidae/microbiology , Water Pollutants, Chemical/toxicity , Embryo, Nonmammalian/drug effects , Bacteria/drug effects
12.
Animals (Basel) ; 14(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38929370

ABSTRACT

The intestine of living organisms harbors different microbiota associated with the biological functioning and health of the host and influences the process of ecological adaptation. Here, we studied the intestinal microbiota's composition and functional differences using 16S rRNA and metagenomic analysis in the wild, farm, and released Chinese three-keeled pond turtle (Mauremys reevesii). At the phylum level, Bacteroidota dominated, followed by Firmicutes, Fusobacteriota, and Actinobacteriota in the wild group, but Chloroflexi was more abundant in the farm and released groups. Moreover, Chryseobacterium, Acinetobacter, Comamonas, Sphingobacterium, and Rhodobacter were abundant in the released and farm cohorts, respectively. Cetobacterium, Paraclostridium, Lysobacter, and Leucobacter showed an abundance in the wild group. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database revealed that the relative abundance of most pathways was significantly higher in the wild turtles (carbohydrate metabolism, lipid metabolism, metabolism of cofactors, and vitamins). The comprehensive antibiotic resistance database (CARD) showed that the antibiotic resistance gene (ARG) subtype macB was the most abundant in the farm turtle group, while tetA was higher in the wild turtles, and srpYmcr was higher in the released group. Our findings shed light on the association between the intestinal microbiota of M. reevesii and its habitats and could be useful for tracking habitats to protect and conserve this endangered species.

13.
Life (Basel) ; 14(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38929681

ABSTRACT

INTRODUCTION: Cholangiocarcinoma (CCC) still has a high mortality rate despite improvements in diagnostic and therapeutic techniques. The role of the human microbiome in CCC is poorly understood, and a recent metagenomic analysis demonstrated a significant correlation between microbiome-associated carcinogenesis and CCC. This study aimed to investigate changes in microbiome composition associated with CCC and its metabolic signature by integrating taxonomic and functional information with metabolomics data and in vitro experimental results. METHODS: From February 2019 to January 2021, this study included patients who underwent endoscopic retrograde cholangiopancreatography (ERCP), both with and without a diagnosis of CCC. Bile samples were collected via endoscopic nasobiliary drainages (ENBD) and subjected to DNA extraction, PCR amplification of the bacterial 16S rRNA gene V3-V4 region, and data analysis using QIIME2. In vitro Carboxyfluorescein succinimidyl ester (CFSE) proliferation and Annexin V/PI apoptosis assays were performed to investigate the effects of metabolites on CCC cells. RESULTS: A total of 24 patients were included in the study. Bile fluid analysis revealed a significantly higher abundance of Escherichia coli in the CCC group. Alpha diversity analyses exhibited significant differences between the CCC and non-CCC groups, and Nuclear Magnetic Resonance (NMR) spectroscopy metabolic profiling identified 15 metabolites with significant concentration differences; isoleucine showed the most notable difference. In vitro experiments demonstrated that isoleucine suppressed CCC cell proliferation but did not induce apoptosis. CONCLUSIONS: This research underlines the significance of biliary dysbiosis and specific bile metabolites, such as isoleucine, in influencing the development and progression of CCC.

14.
Anim Microbiome ; 6(1): 36, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918824

ABSTRACT

Mounting evidence of the occurrence of direct and indirect interactions between the human blood fluke, Schistosoma mansoni, and the gut microbiota of rodent models raises questions on the potential role(s) of the latter in the pathophysiology of hepatointestinal schistosomiasis. However, substantial differences in both the composition and function between the gut microbiota of laboratory rodents and that of humans hinders an in-depth understanding of the significance of such interactions for human schistosomiasis. Taking advantage of the availability of a human microbiota-associated mouse model (HMA), we have previously highlighted differences in infection-associated changes in gut microbiota composition between HMA and wildtype (WT) mice. To further explore the dynamics of schistosome-microbiota relationships in HMA mice, in this study we (i) characterize qualitative and quantitative changes in gut microbiota composition of a distinct line of HMA mice (D2 HMA) infected with S. mansoni prior to and following the onset of parasite egg production; (ii) profile local and systemic immune responses against the parasite in HMA as well as WT mice and (iii) assess levels of faecal inflammatory markers and occult blood as indirect measures of gut tissue damage. We show that patent S. mansoni infection is associated with reduced bacterial alpha diversity in the gut of D2 HMA mice, alongside expansion of hydrogen sulphide-producing bacteria. Similar systemic humoral responses against S. mansoni in WT and D2 HMA mice, as well as levels of faecal lipocalin and markers of alternatively activated macrophages, suggest that these are independent of baseline gut microbiota composition. Qualitative comparative analyses between faecal microbial profiles of S. mansoni-infected WT and distinct lines of HMA mice reveal that, while infection-induced alterations of the gut microbiota composition are highly dependent on the baseline flora, bile acid composition and metabolism may represent key elements of schistosome-microbiota interactions through the gut-liver axis.

15.
Infection ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856807

ABSTRACT

PURPOSE: Ureaplasma urealyticum is a rare pathogen associated with septic arthritis that predominantly affects patients with hypogammaglobulinemia. Bacterial identification of fastidious organisms is challenging because they are undetectable by routine culture testing. To the best of our knowledge, this is the first report of septic arthritis induced by U. urealyticum infection in Japan. CASE DESCRIPTION: We describe the case of a 23-year-old Japanese female with secondary hypogammaglobulinemia (serum immunoglobulin level < 500 mg/dL), identified 8 years after treatment with rituximab. The patient presented with persistent fever and polyarthritis that were unresponsive to ceftriaxone and prednisolone. Contrast-enhanced computed tomography and gallium-67 scintigraphy revealed effusion and inflammation in the left sternoclavicular, hip, wrist, knee, and ankle joints. Although Gram staining and bacterial culture of the drainage fluid from the left hip joint were negative, the condition exhibited characteristics of purulent bacterial infection. The patient underwent empirical treatment with doxycycline, and her symptoms promptly resolved. Subsequent 16S ribosomal RNA (rRNA) gene sequencing of the joint fluid confirmed the presence of U. urealyticum, leading to the diagnosis of septic arthritis. Combination therapy with doxycycline and azithromycin yielded a favorable recovery from the inflammatory status and severe arthritic pain. CONCLUSION: This case highlights U. urealyticum as a potential causative agent of disseminated septic arthritis, particularly in patients with hypogammaglobulinaemia. The 16S rRNA gene analysis proved beneficial for identifying pathogens in culture-negative specimens, such as synovial fluid, in suspected bacterial infections.

16.
Front Cell Infect Microbiol ; 14: 1356907, 2024.
Article in English | MEDLINE | ID: mdl-38863832

ABSTRACT

Introduction: Microbial community composition is closely associated with host disease onset and progression, underscoring the importance of understanding host-microbiota dynamics in various health contexts. Methods: In this study, we utilized full-length 16S rRNA gene sequencing to conduct species-level identification of the microorganisms in the oral cavity of a giant panda (Ailuropoda melanoleuca) with oral malignant fibroma. Results: We observed a significant difference between the microbial community of the tumor side and non-tumor side of the oral cavity of the giant panda, with the latter exhibiting higher microbial diversity. The tumor side was dominated by specific microorganisms, such as Fusobacterium simiae, Porphyromonas sp. feline oral taxon 110, Campylobacter sp. feline oral taxon 100, and Neisseria sp. feline oral taxon 078, that have been reported to be associated with tumorigenic processes and periodontal diseases in other organisms. According to the linear discriminant analysis effect size analysis, more than 9 distinct biomarkers were obtained between the tumor side and non-tumor side samples. Furthermore, the Kyoto Encyclopedia of Genes and Genomes analysis revealed that the oral microbiota of the giant panda was significantly associated with genetic information processing and metabolism, particularly cofactor and vitamin, amino acid, and carbohydrate metabolism. Furthermore, a significant bacterial invasion of epithelial cells was predicted in the tumor side. Discussion: This study provides crucial insights into the association between oral microbiota and oral tumors in giant pandas and offers potential biomarkers that may guide future health assessments and preventive strategies for captive and aging giant pandas.


Subject(s)
Campylobacter , Fusobacterium , Microbiota , Mouth , Porphyromonas , RNA, Ribosomal, 16S , Ursidae , Ursidae/microbiology , Animals , RNA, Ribosomal, 16S/genetics , Porphyromonas/genetics , Porphyromonas/isolation & purification , Porphyromonas/classification , Campylobacter/genetics , Campylobacter/isolation & purification , Campylobacter/classification , Mouth/microbiology , Fusobacterium/genetics , Fusobacterium/isolation & purification , Fibroma/microbiology , Fibroma/veterinary , Neisseria/isolation & purification , Neisseria/genetics , Neisseria/classification , Mouth Neoplasms/microbiology , Mouth Neoplasms/veterinary , Mouth Neoplasms/pathology , Phylogeny , Sequence Analysis, DNA
17.
J Obstet Gynaecol ; 44(1): 2368829, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38913773

ABSTRACT

BACKGROUND: Microbial colonisation in infants is initially dependent on the mother and is affected by the mode of delivery. Understanding these impacts is crucial as the early-life gut microbiota plays a vital role in immune development, metabolism, and overall health. Early-life infant gut microbiota is diverse among populations and geographic origins. However, in this context, only a few studies have explored the impact of the mode of delivery on the intestinal microbiome in children in Guangzhou, China. Therefore, this study aimed to investigate the influence of birth mode on the intestinal microbiota of healthy infants in Guangzhou, China. METHODS: Faecal samples were collected once from 20 healthy full-term infants aged 1-6 months, delivered via either caesarean section (CS) or vaginal delivery (VD), post-enrolment. The intestinal microbiota were characterised using full-length 16S rRNA gene sequencing. Bacterial quantity and community composition were compared between the two groups. RESULTS: No significant differences in gut bacterial diversity and richness were observed between the CS and VD groups. The Pseudomonadota phylum (44.15 ± 33.05% vs 15.62 ± 15.60%, p = 0.028) and Enterobacteriaceae family (44.00 ± 33.11% vs 15.31 ± 15.47%, p = 0.028) were more abundant in the CS group than in the VD group. The VD group exhibited a higher abundance of the Bacillota phylum (40.51 ± 32.77% vs 75.57 ± 27.83%, p = 0.019). CONCLUSIONS: The early stage of intestinal bacterial colonisation was altered in the CS group as compared with the VD group. Our findings provide evidence that CS has the potential to disrupt the maturation of intestinal microbial communities in infants by influencing the colonisation of specific microorganisms. Further comprehensive studies that consider geographical locations are necessary to elucidate the progression of microbiota in infants born via different delivery modes.


Microbial colonisation in infants is affected by the mode of delivery. Early-life infant gut microbiota is diverse among populations and geographic origins. Faecal samples were collected once from 20 healthy full-term infants aged 1­6 months that were delivered via either caesarean section (CS) or vaginal delivery (VD), and intestinal microbiota were compared between the two groups. No significant differences in gut bacterial diversity and richness were observed between the two groups; however, we did note that certain types of bacteria were more abundant in the CS group, while others were more abundant in the VD group. This suggests that CS may disturb intestinal microbial maturation in infants by affecting the colonisation of specific microorganisms. Further research is needed to fully understand this relationship.


Subject(s)
Cesarean Section , Delivery, Obstetric , Feces , Gastrointestinal Microbiome , Humans , Pilot Projects , Female , Infant , Cesarean Section/statistics & numerical data , Feces/microbiology , Delivery, Obstetric/methods , Delivery, Obstetric/statistics & numerical data , Pregnancy , Male , China , RNA, Ribosomal, 16S/analysis , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics
18.
J Food Prot ; 87(7): 100300, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734413

ABSTRACT

Shigella spp. are Gram-negative gastrointestinal bacterial pathogens that cause bacillary dysentery or shigellosis in humans. Isolation of Shigella from outbreak-associated foods is often problematic due to the lack of selectivity of cultural enrichment broths. To facilitate Shigella recovery from foods, we have developed strain-specific enrichment media based on the genomically-predicted antimicrobial resistance (AMR) features of an outbreak-associated Shigella sonnei strain harboring resistance genes for streptomycin (STR) and trimethoprim (TMP). To assess performance of the method, baby carrots were artificially contaminated with the S. sonnei strain at low (2.4 CFU), medium (23.5 CFU), and high levels (235 CFU) along with 10-fold higher levels of a Shigella-inhibiting Escherichia coli strain. The target S. sonnei strain was successfully recovered from artificially-contaminated baby carrots when enriched in modified Tryptone Soya Broth (mTSB) supplemented with TMP, whereas Shigella was not recovered from Shigella broth (SB) or SB supplemented with STR. Quantitative PCR analysis indicated that supplementation of the enrichment broths with TMP or STR increased the relative proportion of S. sonnei in enrichment cultures, except at the lowest inoculation level for STR. Microbiome profiling of the baby carrot enrichment cultures conducted by 16S rRNA gene sequencing indicated that both SB-STR and mTSB-TMP repressed the growth of competing Enterobacteriaceae in the enrichment cultures, relative to SB without supplementation. Overall, improved Shigella recovery was achieved with the addition of the appropriate custom selective agent during cultural enrichments demonstrating that genomically informed custom selective enrichment of Shigella could be a valuable tool for supporting future foodborne shigellosis outbreak investigations.


Subject(s)
Daucus carota , Food Microbiology , Shigella sonnei , Humans , Shigella sonnei/drug effects , Shigella sonnei/genetics , Daucus carota/microbiology , Anti-Bacterial Agents/pharmacology , Food Safety , Shigella/drug effects , Shigella/genetics , Dysentery, Bacillary/microbiology , Drug Resistance, Bacterial , Drug Resistance, Microbial , Food Contamination/analysis
19.
Appl Microbiol Biotechnol ; 108(1): 330, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730049

ABSTRACT

A more optimized culture medium used in vitro to mimic the bacterial composition of original oral flora as similar as possible remains difficult at present, and the goal of this study is to develop a novel oral biofilm medium to restore the original oral microbiome. Firstly, we conducted a systematic literature review by searching PubMed and summarized the current reported culture media in vitro. Seven culture media were found. We used mixed saliva as the origin of oral species to compare the effects of the above media in culturing oral multispecies biofilms. Results indicated that among the seven media brain heart infusion containing 1% sucrose (BHIs) medium, PG medium, artificial saliva (AS) medium, and SHI medium could obviously gain large oral biofilm in vitro. The nutrients contained in different culture media may be suitable for the growth of different oral bacteria; therefore, we optimized several novel media accordingly. Notably, results of crystal violet staining showed that the biofilm cultured in our modified artificial saliva (MAS) medium had the highest amount of biofilm biomass. 16S rRNA gene sequencing showed that the operational taxonomic units (OTUs) and Shannon index of biofilm cultured in MAS medium were also the highest among all the tested media. More importantly, the 16S rRNA gene sequencing analysis indicated that the biofilm cultured in MAS medium was closer to the original saliva species. Besides, biofilm cultured by MAS was denser and produced more exopolysaccharides. MAS supported stable biofilm formation on different substrata. In conclusion, this study demonstrated a novel MAS medium that could culture oral biofilm in vitro closer to the original oral microbiome, showing a good application prospect. KEY POINTS: • We compare the effects of different media in culturing oral biofilms • A novel modified artificial saliva (MAS) medium was obtained in our study • The MAS medium could culture biofilm that was closer to oral microbiome.


Subject(s)
Bacteria , Biofilms , Culture Media , Microbiota , Mouth , RNA, Ribosomal, 16S , Saliva , Humans , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Biofilms/growth & development , Culture Media/chemistry , Mouth/microbiology , RNA, Ribosomal, 16S/genetics , Saliva/microbiology , Saliva, Artificial
20.
Sci Total Environ ; 934: 173298, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38761945

ABSTRACT

Rapid urbanization has precipitated significant anthropogenic pollution (nutrients and pathogens) in urban rivers and their receiving systems, which consequentially disrupted the compositions and assembly of bacterial community within these ecosystems. However, there remains scarce information regarding the composition and assembly of both planktonic and benthic bacterial communities as well as pathogen distribution in such environments. In this study, full-length 16S rRNA gene sequencing was conducted to investigate the bacterial community composition, interactions, and assembly processes as well as the distribution of potential pathogens along a riverine-coastal continuum in Shenzhen megacity, China. The results indicated that both riverine and coastal bacterial communities were predominantly composed of Gammaproteobacteria (24.8 ± 12.6 %), Alphaproteobacteria (16.1 ± 9.8 %), and Bacteroidota (14.3 ± 8.6 %), while sedimentary bacterial communities exhibited significantly higher diversity compared to their planktonic counterparts. Bacterial community patterns exhibited significant divergences across different habitats, and a significant distance-decay relationship of bacterial community similarity was particularly observed within the urban river ecosystem. Moreover, the urban river ecosystem displayed a more complex bacterial co-occurrence network than the coastal ecosystem, and a low ratio of negative:positive cohesion suggested the inherent instability of these networks. Homogeneous selection and dispersal limitation emerged as the predominant influences on planktonic and sedimentary bacterial communities, respectively. Pathogenic genera such as Vibrio, Bacteroides, and Acinetobacter, known for their roles in foodborne diseases or wound infection, were also identified. Collectively, these findings provided critical insights into bacterial community dynamics and their implications for ecosystem management and pathogen risk control in riverine and coastal environments impacted by rapid urbanization.


Subject(s)
Bacteria , Ecosystem , Rivers , Urbanization , China , Rivers/microbiology , Bacteria/classification , Bacteria/genetics , RNA, Ribosomal, 16S , Environmental Monitoring , Microbiota , Cities , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL