Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters











Publication year range
1.
J Nutr ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357672

ABSTRACT

BACKGROUND: Alginate oligosaccharides (AOS) exhibits notable effects in terms of anti-inflammatory, antibacterial, and antioxidant properties. Deoxynivalenol (DON) has the potential to trigger intestinal inflammation by upregulating proinflammatory cytokines and apoptosis, thereby compromising the integrity of the intestinal barrier function and perturbing the balance of the gut microbiota. OBJECTIVES: We assessed the impact of AOS on mitigating DON-induced intestinal damage and systemic inflammation in mice. METHODS: After a one-week acclimatization period, the mice were divided into four groups. For three weeks, the AOS and AOS + DON groups were gavaged daily with 200 µl of AOS (200 mg/kg body weight (BW)), while the CON and DON groups received an equivalent volume of sterile Phosphate Buffered Saline (PBS). Subsequently, for one week, the DON and AOS + DON groups received 100 µl of DON (4.8 mg/kg BW) daily, whereas the CON and AOS groups continued receiving PBS. RESULTS: After administering DON via gavage to mice, there was a significant decrease (P < 0.05) in body weights compared to the control (CON) group. Interestingly, AOS exhibited a tendency to mitigate this weight loss in the AOS + DON group. In the feces of mice treated with both AOS and DON, the concentration of DON significantly increased (P < 0.05) compared to the DON group alone. Histological analysis revealed that DON exposure caused increased intestinal damage, including shortened villi and eroded epithelial cells, which was ameliorated by pre-supplementation with AOS, alleviating harm to the intestinal barrier function. In both jejunum and colon tissues, DON exposure significantly reduced (P < 0.05) the expression of tight junction proteins (Claudin and Occludin in the colon) and the mucin protein Mucin 2 (MUC2), compared to the CON group. Prophylactic administration of AOS alleviated these reductions, thereby improving the expression levels of these key proteins. Additionally, AOS supplementation protected DON-exposed mice by increasing the abundance of probiotics such as Bifidobacterium, Faecalibaculum, and Romboutsia. These gut microbes are known to enhance (P < 0.05) anti-inflammatory responses and the production of short-chain fatty acids (SCFAs), including total SCFAs, acetate, and valerate, compared to the DON group. CONCLUSIONS: This study unveils AOS not only enhance gut microbiota and intestinal barrier function but also significantly mitigate DON-induced intestinal damage.

2.
Stress Biol ; 4(1): 37, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39251532

ABSTRACT

Heat stress is a serious problem that affects animal husbandry by reducing growth and reproductive performance of animals. Adding plant extracts to the diet is an effective way to help overcome this problem. Alginate oligosaccharide (AOS) is a natural non-toxic antioxidant with multiple biological activities. This study analyzed the potential mechanism of AOS in alleviating heat stress and improving semen quality in boars through a combination of multiple omics tools. The results indicated that AOS could significantly increase sperm motility (P < 0.001) and sperm concentration (P < 0.05). At the same time, AOS improved the antioxidant capacity of blood and semen, and increased blood testosterone (P < 0.05) level. AOS could improve the metabolites in sperm, change the composition of gut microbiota, increase the relative abundance of beneficial bacteria such as Pseudomonas (P < 0.01), Escherichia-Shigella (P < 0.05), Bifidobacterium (P < 0.01), reduce the relative abundance of harmful bacteria such as Prevotella_9 (P < 0.05), Prevotellaceae_UCG-001 (P < 0.01), and increase the content of short chain fatty acids. Proteomic results showed that AOS increased proteins related to spermatogenesis, while decreasing heat shock protein 70 (P < 0.05) and heat shock protein 90 (P < 0.01). These results were verified using immunofluorescence staining technology. There was a good correlation among sperm quality, sperm metabolome, sperm proteome, and gut microbiota. In conclusion, AOS can be used as a feed additive to increase the semen quality of boars to enhance reproductive performance under heat stress.

3.
Int J Mol Sci ; 25(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39125598

ABSTRACT

Alginate oligosaccharides (AOSs), which are an attractive feed additive for animal production, exhibit pleiotropic bioactivities. In the present study, we investigated graded doses of AOS-mediated alterations in the physiological responses of piglets by determining the intestinal architecture, barrier function, and microbiota. A total of 144 weaned piglets were allocated into four dietary treatments in a completely random design, which included a control diet (CON) and three treated diets formulated with 250 mg/kg (AOS250), 500 mg/kg (AOS500), and 1000 mg/kg AOS (AOS1000), respectively. The trial was carried out for 28 days. Our results showed that AOS treatment reinforced the intestinal barrier function by increasing the ileal villus height, density, and fold, as well as the expression of tight junction proteins, especially at the dose of 500 mg/kg AOS. Meanwhile, supplementations with AOSs showed positive effects on enhancing antioxidant capacity and alleviating intestinal inflammation by elevating the levels of antioxidant enzymes and inhibiting excessive inflammatory cytokines. The DESeq2 analysis showed that AOS supplementation inhibited the growth of harmful bacteria Helicobacter and Escherichia_Shigella and enhanced the relative abundance of Faecalibacterium and Veillonella. Collectively, these findings suggested that AOSs have beneficial effects on growth performance, antioxidant capacity, and gut health in piglets.


Subject(s)
Alginates , Antioxidants , Gastrointestinal Microbiome , Oligosaccharides , Weaning , Animals , Gastrointestinal Microbiome/drug effects , Swine , Oligosaccharides/pharmacology , Oligosaccharides/administration & dosage , Antioxidants/metabolism , Antioxidants/pharmacology , Alginates/pharmacology , Dietary Supplements , Animal Feed , Intestines/microbiology , Intestines/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology
4.
Food Sci Biotechnol ; 33(12): 2835-2844, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39184993

ABSTRACT

Aging is a known independent risk factor for several cardiovascular diseases. Here, we evaluated potential effects and possible mechanisms through which alginate oligosaccharides (AOS) affect hydrogen peroxide (H2O2)-induced senescence in H9C2 cardiomyocytes. A series of AOS molecules, including oligoM, oligoG, M-5, and G-5, were investigated. AOS significantly decreased SA-ß-gal and DAPI-stained positive cells, downregulated p53 and p21 (aging-related markers) expression, and eventually protected H9C2 cells from H2O2-induced senescence. AOS decreased reactive oxygen species and malondialdehyde production, recovered mitochondrial function, and alleviated the oxidative stress state by regulating PGC-1α and NADPH oxidase subunit expression. Furthermore, AOS treatment restored the expression of antioxidant enzymes in senescent H9C2 cells. Thus, our results show in vitro evidence that AOS alleviate senescence in H9C2 cells by regulating the redox state; thus, AOS may be an effective therapeutic agent that could protect against cardiomyocyte senescence.

5.
Int J Biol Macromol ; 276(Pt 1): 133699, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38972652

ABSTRACT

Chemotherapy-induced mucositis (CIM) is the typical side effect of chemotherapy. This study investigates the potential of alginate oligosaccharide (AOS) in ameliorating CIM induced by 5-fluorouracil (5-FU) in a murine model and its underlying mechanisms. AOS effectively mitigated body weight loss and histopathological damage, modulated inflammatory cytokines and attenuated the oxidative stress. AOS restored intestinal barrier integrity through enhancing expression of tight junction proteins via MLCK signaling pathway. AOS alleviated intestinal mucosal damage by inhibiting TLR4/MyD88/NF-κB signaling pathway, downregulating the pro-apoptotic protein Bax and upregulating the anti-apoptotic protein Bcl-2. Moreover, AOS significantly enriched intestinal Akkermansiaceae and increased the production of short-chain fatty acids (SCFAs), most notably butyrate and isovalerate. Pre-treatment with butyrate and isovalerate also alleviated 5-FU-induced CIM. In conclusion, AOS effectively mitigated CIM through strenghthening intestinal barrier, attenuating inflammation, and modulating gut microbiota and intestianl levels of butyrate and isovalerate. These finding indicate that AOS could be potentially utilized as a supplemental strategy for prevention or mitigation of CIM.


Subject(s)
Alginates , Butyrates , Fluorouracil , Intestinal Mucosa , Mucositis , Oligosaccharides , Fluorouracil/adverse effects , Animals , Mucositis/chemically induced , Mucositis/drug therapy , Mucositis/metabolism , Mucositis/pathology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , Oligosaccharides/pharmacology , Oligosaccharides/chemistry , Butyrates/pharmacology , Butyrates/metabolism , Alginates/pharmacology , Alginates/chemistry , Gastrointestinal Microbiome/drug effects , Male , Oxidative Stress/drug effects , Signal Transduction/drug effects , Cytokines/metabolism
6.
Antioxidants (Basel) ; 13(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38790723

ABSTRACT

Gastric diseases represent a significant global public health challenge, characterized by molecular dysregulation in redox homeostasis and heightened oxidative stress. Although prior preclinical studies have demonstrated the cytoprotective antioxidant effects of alginate oligosaccharides (AOSs) through the Nrf2 pathway, whether such mechanisms apply to gastric diseases remains unclear. In this study, we used the GES-1 gastric cell line exposed to hydrogen peroxide (H2O2) as a damage model to investigate the impact of AOS on cell viability and its associated mechanisms. Our results revealed that pre-incubation with AOS for either 4 h or 24 h significantly improved the viability of GES-1 cells exposed to H2O2. In addition, AOS reduced the intracellular ROS levels, activating the Nrf2 signaling pathway, with increased Nrf2 protein and mRNA expression and a significant upregulation of the target genes HO-1 and NQO1. The activation of Nrf2 was correlated with decreased Keap1 protein expression and an increased level of the autophagy protein p62/SQSTM1, suggesting the activation of Nrf2 through a noncanonical pathway. This study suggests that AOS is a potential treatment for protecting gastric epithelial cells from oxidative stress by activating the p62/SQSTM1-Keap1-Nrf2 axis and laying the foundation for future investigations about its specific therapeutic mechanisms.

7.
Plants (Basel) ; 13(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732430

ABSTRACT

Salt stress is one of the major abiotic stresses that damage the structure and composition of cell walls. Alginate oligosaccharides (AOS) have been advocated to significantly improve plant stress tolerance. The metabolic mechanism by which AOS induces salt tolerance in rice cell walls remains unclear. Here, we report the impact of AOS foliar application on the cell wall composition of rice seedlings using the salt-tolerant rice variety FL478 and the salt-sensitive variety IR29. Data revealed that salt stress decreased biomass, stem basal width, stem breaking strength, and lodging resistance; however, it increased cell wall thickness. In leaves, exogenous AOS up-regulated the expression level of OSCESA8, increased abscisic acid (ABA) and brassinosteroids (BR) content, and increased ß-galacturonic activity, polygalacturonase activity, xylanase activity, laccase activity, biomass, and cellulose content. Moreover, AOS down-regulated the expression levels of OSMYB46 and OSIRX10 and decreased cell wall hemicellulose, pectin, and lignin content to maintain cell wall stability under salt stress. In stems, AOS increased phenylalamine ammonia-lyase and tyrosine ammonia-lyase activities, while decreasing cellulase, laccase, and ß-glucanase activities. Furthermore, AOS improved the biomass and stem basal width and also enhanced the cellulose, pectin, and lignin content of the stem, As a result, increased resistance to stem breakage strength and alleviated salt stress-induced damage, thus enhancing the lodging resistance. Under salt stress, AOS regulates phytohormones and modifies cellulose, hemicellulose, lignin, and pectin metabolism to maintain cell wall structure and improve stem resistance to lodging. This study aims to alleviate salt stress damage to rice cell walls, enhance resistance to lodging, and improve salt tolerance in rice by exogenous application of AOS.

8.
Int J Biol Macromol ; 271(Pt 1): 132484, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821795

ABSTRACT

Alginate oligosaccharides (AOS) are crucial carbohydrate-based biomaterial used in the synthesis of potential drugs and biological agents, but their antibacterial activities are not significant. In this study, AOS acylated derivatives were synthesized by grafting maleic anhydride (MA) onto AOS at varying ratios. Additionally, their inhibitory effects against Staphylococcus aureus were thoroughly investigated. Characterization of the AOS acylated derivatives (AOS-MA-x, where x = 1, 5, 10, and 20) was conducted using Fourier-transformed infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, and X-ray diffraction, which confirmed the successful synthesis of these derivatives. The bacteriostatic activity of the AOS-MA derivatives was assessed using growth curves and plate coating method, demonstrating significant antibacterial effects against S. aureus, as compared with AOS. Among these derivatives, AOS-MA-20 exhibited the most potent bacteriostatic activity and was selected for further investigation of its inhibitory mechanism. Scanning electron microscopy analysis revealed that treatment with AOS-MA-20 led to the lysis and rupture of S. aureus cells, expelling their intracellular contents. Moreover, AOS-MA-20 disrupted the integrity of cell wall and cell membrane, impacted ATPase activity, and inhibited the formation of biofilm to some extent, ultimately resulting in bacterial death. These findings lay a foundational framework for the development of environmentally friendly antimicrobial agents.


Subject(s)
Alginates , Anti-Bacterial Agents , Microbial Sensitivity Tests , Oligosaccharides , Staphylococcus aureus , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Alginates/chemistry , Alginates/pharmacology , Oligosaccharides/chemistry , Oligosaccharides/pharmacology , Oligosaccharides/chemical synthesis , Acylation , Biofilms/drug effects , Chemistry Techniques, Synthetic
9.
Anal Bioanal Chem ; 416(15): 3501-3508, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38658402

ABSTRACT

Alginate is a commercially important polysaccharide composed of mannuronic acid and its C5 differential isomer guluronic acid. Comprehensive research on alginate and alginate lyases requires efficient and precise analytical methods for alginate oligosaccharides. In this research, high-performance anion exchange chromatography (HPAEC) in parallel with pulsed amperometric detection (PAD) and mass spectrometry (MS) was applied to the analysis of oligosaccharides obtained by alginate lyase. By optimizing the chromatographic conditions including mobile phase concentration, flow rate, and elution gradient, the analysis of a single sample could be completed in 30 min. Seven unsaturated alginate oligosaccharides were separated and identified through their analysis time observed with PAD, including all structurally different unsaturated disaccharides and trisaccharides. The quantitative analysis of seven oligosaccharides was performed based on the quantitative capability of PAD. The method exhibited adequate linearity and precision parameters. All the calibration curves showed good linearity at least in the concentration range of 0.002 to 0.1 mg/mL. The HPAEC-PAD/MS method provides a general and efficient online method to analyze alginate oligosaccharides.


Subject(s)
Alginates , Mass Spectrometry , Oligosaccharides , Alginates/chemistry , Oligosaccharides/analysis , Oligosaccharides/chemistry , Chromatography, Ion Exchange/methods , Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/metabolism , Hexuronic Acids/chemistry , Hexuronic Acids/analysis , Limit of Detection
10.
Int J Biol Macromol ; 270(Pt 1): 131917, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679252

ABSTRACT

Enzymatic degradation of alginate for the preparation of alginate oligosaccharides (AOS) is currently receiving significant attention in the field. AOS has been shown to promote crop growth and improve plant resistance to abiotic stresses. In this study, two PL6 family alginate lyases, AlyRmA and AlyRmB, were expressed and characterized. These enzymes demonstrate exceptional activity and stable thermophilicity compared to other known alginate lyases. AlyRmA (8855.34 U/mg) and AlyRmB (7879.44 U/mg) exhibited excellent degradation activity towards sodium alginate even at high temperatures (70 °C). The AlyRmA and AlyRmB were characterized and utilized to efficiently produce AOS. The study investigated the promotional effect of AOS on the growth of Brassica napus L. seedlings in a saline-alkaline environment. The results of this study demonstrate the high activity and thermal stability of AlyRmA and AlyRmB, highlighting their potential in the preparation of AOS. Moreover, the application of AOS prepared by AlyRmB could enhance the resistance of Brassica napus L. to saline-alkali environments, thereby broadening the potential applications of AOS.


Subject(s)
Alginates , Brassica napus , Oligosaccharides , Polysaccharide-Lyases , Brassica napus/enzymology , Alginates/chemistry , Oligosaccharides/chemistry , Oligosaccharides/pharmacology , Polysaccharide-Lyases/metabolism , Polysaccharide-Lyases/chemistry , Alkalies/chemistry , Enzyme Stability/drug effects , Temperature , Hydrogen-Ion Concentration , Salinity , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism
11.
PeerJ ; 12: e17150, 2024.
Article in English | MEDLINE | ID: mdl-38549777

ABSTRACT

Background: Oligosaccharides have been demonstrated as promoters for enhancing plant growth across several crops by elevating their secondary metabolites. However, the exploration of employing diverse oligosaccharides for qualitative trait improvements in cauliflower largely unknown. This study was intended to uncover the unexplored potential, evaluating the stimulatory effects of three oligosaccharides on cauliflower's curd and seed production. Methods: Two experiments were initiated in the early (15 September) and mid-season (15 October). Four treatments were implemented, encompassing a control (water) alongside chitosan oligosaccharide (COS 50 mg.L-1) with a degree of polymerization (DP) 2-10, oligo galacturonic acid (OGA 50 mg.L-1) with DP 2-10 and alginate oligosaccharide (AOS 50 mg.L-1) with DP 2-7. Results: Oligosaccharides accelerated plant height (4-17.6%), leaf number (17-43%), curd (5-14.55%), and seed yield (17.8-64.5%) in both early and mid-season compared to control. These enhancements were even more pronounced in the mid-season (7.6-17.6%, 21.37-43%, 7.27-14.55%, 25.89-64.5%) than in the early season. Additionally, three oligosaccharides demonstrated significant disease resistance against black rot in both seasons, outperforming the control. As a surprise, the early season experienced better growth parameters than the mid-season. However, performance patterns remained more or less consistent in both seasons under the same treatments. COS and OGA promoted plant biomass and curd yield by promoting Soil Plant Analysis Development (SPAD) value and phenol content. Meanwhile, AOS increased seed yield (56.8-64.5%) and elevated levels of chlorophyll, ascorbic acid, flavonoids, while decreasing levels of hydrogen per oxide (H2O2), malondialdehyde (MDA), half maximal inhibitory concentration (IC50), and disease index. The correlation matrix and principal component analysis (PCA) supported these relations and findings. Therefore, COS and OGA could be suggested for curd production and AOS for seed production in the early season, offering resistance to both biotic and abiotic stresses for cauliflower cultivation under field conditions.


Subject(s)
Disease Resistance , Hydrogen Peroxide , Seeds/metabolism , Ascorbic Acid , Oligosaccharides/pharmacology
12.
Mar Drugs ; 22(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38535461

ABSTRACT

Alginate lyase (AL) is a polysaccharide-degrading enzyme that can degrade alginate by hydrolyzing glycosidic bonds and produces unsaturated alginate oligosaccharides (AOSs). These AOSs have wide therapeutic and nutraceutical applications. However, to produce alginate oligosaccharides in a cost-effective manner is challenging due to the low availability and high cost of this degrading enzyme. Immobilization of the enzyme facilitates industrial applications owing to its stability, reusability, and cost-effectiveness. This study was focused on the enhancement of the properties of alginate lyase and improvement of the production of AOS. Alginate lyase was immobilized on magnetic nanoparticles (NPs) using glutaraldehyde as the crosslinker. The study showed that the maximum binding achieved between NPs and protein in the enzyme was 71% at a ratio of 1:150 NP:protein. As a result of immobilization, the optimum activity of free enzyme which was obtained at 37 °C and pH 7.4 changed to 45 °C and pH 9. Furthermore, the enzyme was thermostable at 45 °C for 3 h with up to 50% reusability for six consecutive cycles. Storage stability after 15 days showed ~67% relative hydrolysis of alginate. The free alginate lyase (25 IU) showed 76% raw biomass (seaweed) hydrolysis which is higher compared to 63% provided by the immobilized enzyme. As a result of efficient hydrolysis, AOSs with molecular weight profile of 370-1040 kDa were produced and detected using HPLC.


Subject(s)
Alginates , Polysaccharide-Lyases , Oligosaccharides , Biomass
13.
J Agric Food Chem ; 72(8): 4116-4126, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38372665

ABSTRACT

Alginate lyase Aly448, a potential new member of the polysaccharide lyase (PL) 7 family, which was cloned and identified from the macroalgae-associated bacterial metagenomic library, showed bifunctionality. The molecular docking results revealed that Aly448 has two completely different binding sites for alginate (polyMG), poly-α-l-guluronic acid (polyG), and poly-ß-d-mannuronic acid (polyM) substrates, respectively, which might be the molecular basis for the enzyme's bifunctionality. Truncational results confirmed that predicted key residues affected the bifunctionality of Aly448, but did not wholly explain. Besides, Aly448 presented excellent biochemical characteristics, such as higher thermal stability and pH tolerance. Degradation of polyMG, polyM, and polyG substrates by Aly448 produced tetrasaccharide (DP4), disaccharide (DP2), and galactose (DP1), which exhibited excellent antioxidant activity. These findings provide novel insights into the substrate recognition mechanism of bifunctional alginate lyases and pave a new path for the exploitation of natural antioxidant agents.


Subject(s)
Antioxidants , Bacterial Proteins , Bacterial Proteins/metabolism , Molecular Docking Simulation , Polysaccharide-Lyases/chemistry , Alginates/chemistry , Substrate Specificity , Hydrogen-Ion Concentration
14.
J Agric Food Chem ; 72(6): 3055-3065, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38298105

ABSTRACT

Alginate lyase degrades alginate by the ß-elimination mechanism to produce unsaturated alginate oligosaccharides (UAOS), which have better bioactivities than saturated AOS. Enhancing the thermal stability of alginate lyases is crucial for their industrial applications. In this study, a feasible and efficient rational design strategy was proposed by combining the computer-aided ΔΔG value calculation with the B-factor analysis. Two thermal stability-enhanced mutants, Q246V and K249V, were obtained by site-directed mutagenesis. Particularly, the t1/2, 50 °C for mutants Q246V and K249V was increased from 2.36 to 3.85 and 3.65 h, respectively. Remarkably, the specific activities of Q246V and K249V were enhanced to 2.41- and 2.96-fold that of alginate lyase AlyMc, respectively. Structural analysis and molecular dynamics simulations suggested that mutations enhanced the hydrogen bond networks and the overall rigidity of the molecular structure. Notably, mutant Q246V exhibited excellent thermal stability among the PL-7 alginate lyase family, especially considering the heightened enzymatic activity. Moreover, the rational design strategy used in this study can effectively improve the thermal stability of enzymes and has important significance in advancing applications of alginate lyase.


Subject(s)
Alginates , Polysaccharide-Lyases , Polysaccharide-Lyases/chemistry , Alginates/chemistry , Oligosaccharides/chemistry , Substrate Specificity , Hydrogen-Ion Concentration
15.
Int J Biol Macromol ; 260(Pt 1): 129506, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244735

ABSTRACT

Alginate is mainly a linear polysaccharide composed of randomly arranged ß-D-mannuronic acid and α-L-guluronic acid linked by α, ß-(1,4)-glycosidic bonds. Alginate lyases degrade alginate mainly adopting a ß-elimination mechanism, breaking the glycosidic bonds between the monomers and forming a double bond between the C4 and C5 sugar rings to produce alginate oligosaccharides consisting of 2-25 monomers, which have various physiological functions. Thus, it can be used for the continuous industrial production of alginate oligosaccharides with a specific degree of polymerization, in accordance with the requirements of green exploitation of marine resources. With the development of structural analysis, the quantity of characterized alginate lyase structures is progressively growing, leading to a concomitant improvement in understanding the catalytic mechanism. Additionally, the use of molecular modification methods including rational design, truncated expression of non-catalytic domains, and recombination of conserved domains can improve the catalytic properties of the original enzyme, enabling researchers to screen out the enzyme with the expected excellent performance with high success rate and less workload. This review presents the latest findings on the catalytic mechanism of alginate lyases and outlines the methods for molecular modifications. Moreover, it explores the connection between the degree of polymerization and the physiological functions of alginate oligosaccharides, providing a reference for enzymatic preparation development and utilization.


Subject(s)
Alginates , Polysaccharide-Lyases , Alginates/chemistry , Polysaccharide-Lyases/chemistry , Oligosaccharides/metabolism , Polysaccharides , Substrate Specificity
16.
Macromol Biosci ; 24(4): e2300292, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37985229

ABSTRACT

Seaweed polysaccharides can be used for protective skin photoaging which is caused by long-term exposure to ultraviolet B (UVB). In this study, a multifunctional composite hydrogel (FACP5) is prepared using sulfated galactofucan polysaccharides, alginate oligosaccharides as active ingredients, and polyacrylonitrile modified κ-Carrageenan as substrate. The properties of FACP5 show that it has good water retention, spreadability, and adhesion. The antiphotoaging activity is evaluated in vitro and in vivo. In vitro experiments demonstrate that the components of FACP5 exhibit good biocompatibility, antioxidant, and anti-tyrosinase activities, and could reduce the cell death rate induced by UVB. In vivo experiments demonstrate that, compared with the mice skin in model group, the skin water content treated with FACP5 increases by 29.80%; the thicknesses of epidermis and dermis decrease by 53.56% and 43.98%, respectively; the activities of catalase and superoxide dismutase increase by 1.59 and 0.72 times, respectively; the contents of interleukin-6 and tumor necrosis factor-α decrease by 19.21% and 17.85%, respectively; hydroxyproline content increases by 32.42%; the expression level of matrix metalloproteinase-3 downregulates by 42.80%. These results indicate that FACP5 has skin barrier repairing, antioxidant, anti-inflammatory, and inhibiting collagen degradation activies, FACP5 can be used as a skin protection remedy for photoaging.


Subject(s)
Seaweed , Skin Aging , Animals , Mice , Antioxidants/pharmacology , Hydrogels/pharmacology , Hydrogels/metabolism , Skin , Polysaccharides/pharmacology , Water , Ultraviolet Rays/adverse effects
17.
Molecules ; 28(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37687019

ABSTRACT

Alginate oligosaccharides (AOs) prepared through enzymatic reaction by diverse alginate lyases under relatively controllable and moderate conditions possess versatile biological activities. But widely used commercial alginate lyases are still rather rare due to their poor properties (e.g., lower activity, worse thermostability, ion tolerance, etc.). In this work, the alginate lyase Alyw208, derived from Vibrio sp. W2, was expressed in Yarrowia lipolytica of food grade and characterized in order to obtain an enzyme with excellent properties adapted to industrial requirements. Alyw208 classified into the polysaccharide lyase (PL) 7 family showed maximum activity at 35 °C and pH 10.0, indicating its cold-adapted and high-alkaline properties. Furthermore, Alyw208 preserved over 70% of the relative activity within the range of 10-55 °C, with a broader temperature range for the activity compared to other alginate-degrading enzymes with cold adaptation. Recombinant Alyw208 was significantly activated with 1.5 M NaCl to around 2.1 times relative activity. In addition, the endolytic Alyw208 was polyG-preferred, but identified as a bifunctional alginate lyase that could degrade both polyM and polyG effectively, releasing AOs with degrees of polymerization (DPs) of 2-6 and alginate monomers as the final products (that is, DPs 1-6). Alyw208 has been suggested with favorable properties to be a potent candidate for biotechnological and industrial applications.


Subject(s)
Alginates , Oligosaccharides , Polymerization , Polysaccharide-Lyases
18.
Microb Cell Fact ; 22(1): 179, 2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37689719

ABSTRACT

BACKGROUND: Alginate oligosaccharides (AOs) are the degradation products of alginate, a natural polysaccharide abundant in brown algae. AOs generated by enzymatic hydrolysis have diverse bioactivities and show broad application potentials. AOs production via enzymolysis is now generally with sodium alginate as the raw material, which is chemically extracted from brown algae. In contrast, AOs production by direct degradation of brown algae is more advantageous on account of its cost reduction and is more eco-friendly. However, there have been only a few attempts reported in AOs production from direct degradation of brown algae. RESULTS: In this study, an efficient Laminaria japonica-decomposing strain Pseudoalteromonas agarivorans A3 was screened. Based on the secretome and mass spectrum analyses, strain A3 showed the potential as a cell factory for AOs production by secreting alginate lyases to directly degrade L. japonica. By using the L. japonica roots, which are normally discarded in the food industry, as the raw material for both fermentation and enzymatic hydrolysis, AOs were produced by the fermentation broth supernatant of strain A3 after optimization of the alginate lyase production and hydrolysis parameters. The generated AOs mainly ranged from dimers to tetramers, among which trimers and tetramers were predominant. The degradation efficiency of the roots reached 54.58%, the AOs production was 33.11%, and the AOs purity was 85.03%. CONCLUSION: An efficient, cost-effective and green process for AOs production directly from the underutilized L. japonica roots by using strain A3 was set up, which differed from the reported processes in terms of the substrate and strain used for fermentation and the AOs composition. This study provides a promising platform for scalable production of AOs, which may have application potentials in industry and agriculture.


Subject(s)
Alginates , Laminaria , Cost-Benefit Analysis , Oligosaccharides
19.
BMC Plant Biol ; 23(1): 455, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37770835

ABSTRACT

BACKGROUND: Salt stress is one of the key factors limiting rice production. Alginate oligosaccharides (AOS) enhance plant stress resistance. However, the molecular mechanism underlying salt tolerance in rice induced by AOS remains unclear. FL478, which is a salt-tolerant indica recombinant inbred line and IR29, a salt-sensitive rice cultivar, were used to comprehensively analyze the effects of AOS sprayed on leaves in terms of transcriptomic and metabolite profiles of rice seedlings under salt stress. RESULTS: In this experiment, exogenous application of AOS increased SOD, CAT and APX activities, as well as GSH and ASA levels to reduce the damage to leaf membrane, increased rice stem diameter, the number of root tips, aboveground and subterranean biomass, and improved rice salt tolerance. Comparative transcriptomic analyses showed that the regulation of AOS combined with salt treatment induced the differential expression of 305 and 1030 genes in FL478 and IR29. The expressed genes enriched in KEGG pathway analysis were associated with antioxidant levels, photosynthesis, cell wall synthesis, and signal transduction. The genes associated with light-trapping proteins and RLCK receptor cytoplasmic kinases, including CBA, LHCB, and Lhcp genes, were fregulated in response to salt stress. Treatment with AOS combined with salt induced the differential expression of 22 and 50 metabolites in FL478 and IR29. These metabolites were mainly related to the metabolism of amino and nucleotide sugars, tryptophan, histidine, and ß -alanine. The abundance of metabolites associated with antioxidant activity, such as 6-hydroxymelatonin, wedelolactone and L-histidine increased significantly. Combined transcriptomic and metabolomic analyses revealed that dehydroascorbic acid in the glutathione and ascorbic acid cycles plays a vital role in salt tolerance mediated by AOS. CONCLUSION: AOS activate signal transduction, regulate photosynthesis, cell wall formation, and multiple antioxidant pathways in response to salt stress. This study provides a molecular basis for the alleviation of salt stress-induced damage by AOS in rice.


Subject(s)
Oryza , Transcriptome , Seedlings/genetics , Seedlings/metabolism , Antioxidants/metabolism , Oryza/metabolism , Salt Stress/genetics , Glutathione/metabolism , Oligosaccharides/metabolism , Oligosaccharides/pharmacology
20.
Int J Biol Macromol ; 253(Pt 4): 126919, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37717863

ABSTRACT

Currently, alginate oligosaccharides (AOS) become attractive due to their excellent physiological effects. AOS has been widely used in food, pharmaceutical, and cosmetic industries. Generally, AOS can be produced from alginate using alginate lyase (ALyase) as the biocatalyst. However, most ALyase display poor thermostability. In this study, a thermostable ALyase from Paenibacillus sp. YN15 (Payn ALyase) was characterized. It belonged to the polysaccharide lyase (PL) 31 family and displayed poly ß-D-mannuronate (Poly M) preference. Under the optimum condition (pH 8.0, 55 °C, 50 mM NaCl), it exhibited maximum activity of 90.3 U/mg and efficiently degraded alginate into monosaccharides and AOS with polymerization (DP) of 2-4. Payn ALyase was relatively stable at 55 °C, but the thermostability dropped rapidly at higher temperatures. To further improve its thermostability, rational design mutagenesis was carried out based on a combination of FireProt, Consensus Finder, and PROSS analysis. Finally, a triple-point mutant K71P/Y129G/S213G was constructed. The optimum temperature was increased from 55 to 70 °C, and the Tm was increased from 62.7 to 64.1 °C. The residual activity after 30 min incubation at 65 °C was enhanced from 36.0 % to 83.3 %. This study provided a promising ALyase mutant for AOS industrial production.


Subject(s)
Paenibacillus , Paenibacillus/genetics , Paenibacillus/metabolism , Bacterial Proteins/chemistry , Alginates/metabolism , Substrate Specificity , Hydrogen-Ion Concentration , Temperature , Polysaccharide-Lyases/chemistry , Oligosaccharides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL