Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.382
Filter
1.
Front Syst Neurosci ; 18: 1462062, 2024.
Article in English | MEDLINE | ID: mdl-39229304

ABSTRACT

[This corrects the article DOI: 10.3389/fnsys.2023.1168666.].

2.
Cerebellum ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230844

ABSTRACT

Under stress, Purkinje cells (PCs) undergo a variety of reactive morphological changes. These can include swellings of neuronal processes. While axonal swellings, "torpedoes", have been well-studied, dendritic swellings (DS) have not been the centerpiece of study. Surprisingly little is known about their frequency or relationship to other morphological changes in degenerating PCs. Leveraging a large brain bank, we (1) examined the morphology of DS, (2) quantified DS, and (2) examined correlations between counts of DS versus 16 other PC morphological changes in a broad range of cerebellar degenerative disorders. There were 159 brains - 100 essential tremor (ET), 13 Friedreich's ataxia, and 46 spinocerebellar ataxia (SCA) (14 SCA1, 7 SCA2, 13 SCA3, 5 SCA6, 5 SCA7, and 2 SCA8). DS were a feature of PCs across all these disorders, with varying morphologies and changes elsewhere in the dendritic arbor. On Luxol fast blue/hematoxylin and eosin-stained sections, the median number of DS per PC ranged from 0.001 in ET to 0.025 in SCA8. Bielschowsky-stained sections yielded higher counts, from 0.003 in ET to 0.042 in SCA6. Torpedo counts exceeded DS counts by one order of magnitude. DS counts were more robustly correlated with torpedo counts than with counts for any of the other PC morphological changes. In summary, DS ranged in prevalence across cerebellar degenerative disorders, from 1/1,000 to 42/1,000 PCs. Across disorders of cerebellar degeneration, these swellings of the dendritic compartment were most robustly correlated with swellings of the axonal compartment, suggesting a similar type of cellular response to duress.

3.
J Stroke Cerebrovasc Dis ; : 107986, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39222702

ABSTRACT

OBJECTIVE: To describe a patient with a posterior inferior cerebellar artery stroke exhibiting a horizontal direction changing nystagmus with a complex clinical phenotype. MATERIALS AND METHODS: A 78-year-old man presented with acute vertigo and gait imbalance. He was dysphagic and ataxic on the left side. He had a fast, small-amplitude right-beating nystagmus in the primary gaze position and in the gaze towards the right. Towards the left, a coarse left-beating nystagmus was seen. RESULTS: Radiographic leftwards ocular deviation was evident on admission CT. Intravenous fibrinolysis was administered. 48-hour Holter-EKG, transthoracic ecochardiogram, and transcranial doppler were unremarkable. Brain MRI demonstrated an acute stroke involving the left medulla and cerebellum, mainly within the territory of the ipsilateral posterior inferior cerebellar artery. DISCUSSION AND CONCLUSIONS: Horizontal direction changing nystagmus can arise secondary to central lesions as brainstem strokes, it can be spontaneous or gaze-evoked and characteristically remains unchanged after fixation removal. In our case, the vestibular spontaneous and contralesional nystagmus was likely related to lower-brainstem damage; on the other hand, the ipsilesional gaze-evoked nystagmus might be related to lesions of the nucleus prepositus hypoglossi and/or cerebellum, both playing an important role in gaze-holding. Our findings suggest that central lesions with concurrent involvement of the ipsilateral vestibulo-ocular and horizontal gaze-holding pathways can cause direction changing nystagmus with complex phenotypes.

4.
J Alzheimers Dis ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39240633

ABSTRACT

Background: The fractional amplitude of low-frequency fluctuations (fALFFs) can detect spontaneous brain activity. However, the association between abnormal brain activity and cognitive function, amyloid protein (Aß), and emotion in Alzheimer's disease (AD) patients remains unclear. Objective: This study aimed to survey alterations in fALFF in different frequency bands and the relationship between abnormal brain activity, depressive mood, and cognitive function to determine the potential mechanism of AD. Methods: We enrolled 34 AD patients and 32 healthy controls (HC). All the participants underwent resting-state magnetic resonance imaging, and slow-4 and slow-5 fALFF values were measured. Subsequently, the study determined the correlation of abnormal brain activity with mood and cognitive function scores. Results: AD patients revealed altered mfALFF values in the slow-5 and slow-4 bands. In the slow-4 band, the altered mfALFF regions were the right cerebellar crus I, right inferior frontal orbital gyrus (IFOG), right supramarginal gyrus, right precuneus, angular gyrus, and left middle cingulate gyrus. Elevated mfALFF values in the right IFOG were negatively associated with Montreal Cognitive Assessment scores, Boston Naming Test, and Aß1-42 levels. The mfALFF value of the AD group was lower than the HC group in the slow-5 band, primarily within the right inferior parietal lobule and right precuneus. Conclusions: Altered mfALFF values in AD patients are linked with cognitive dysfunction. Compared with HCs, Aß1-42 levels in AD patients are related to abnormal IFOG activity. Therefore, mfALFF could be a potential biomarker of AD.

5.
Basic Clin Neurosci ; 15(2): 185-198, 2024.
Article in English | MEDLINE | ID: mdl-39228444

ABSTRACT

Introduction: Today, high-voltage (HV) lines create a pernicious environment for humans living or working in the vicinity and even under these lines. The male rhesus monkey is used to investigate the effects of fields produced by HV towers. This study examines the function and level of impact in rhesus monkeys' brains from the cerebellum's cognitive, biological, and structural perspective. Methods: Two monkeys have been used, one as a control and the second as a test. The monkey under test was subjected to a simulated HV electrical field of 3 kV/m, 4 hours a day, for 1 month. Behavioral tests were performed using a device designed and built for this purpose. Concentration analysis of adrenocorticotropic hormones (ACTH) and inspection of glucocorticoid receptor gene's (GR) expression were performed by the reverse transcription polymerase chain reaction method. Changes in cerebellar anatomy were examined with magnetic resonance imaging (MRI). All tests were performed before and after the study period and compared with the control monkey. Results: Cognitive tests showed a significant reduction for the monkey exposed to the HV electrical field in the first week after imposition compared with the same time before. Also, the expression of the GR gene decreased, and the concentration of ACTH hormone in plasma increased. Surveying the level of cerebral MRI images did not show any difference, but hemorrhage was evident in a part of the cerebellum. Conclusion: The tested monkey's cognitive, biological, and MRI results showed a decrease in visual learning and memory indices.

6.
Genes Dev ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39231614

ABSTRACT

Medulloblastoma is a heterogeneous embryonal tumor of the cerebellum comprised of four distinct molecular subgroups that differ in their developmental origins, genomic landscapes, clinical presentation, and survival. Recent characterization of the human fetal cerebellum at single-cell resolution has propelled unprecedented insights into the cellular origins of medulloblastoma subgroups, including those underlying previously elusive groups 3 and 4. In this review, the molecular pathogenesis of medulloblastoma is examined through the lens of cerebellar development. In addition, we discuss how enhanced understanding of medulloblastoma origins has the potential to refine disease modeling for the advancement of treatment and outcomes.

7.
Neurologia (Engl Ed) ; 39(7): 555-563, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39232593

ABSTRACT

INTRODUCTION: The cerebellar response has been studied for years with different models of alteration of other brain structures to understand its complex functioning and its relationship with the rest of the body. Studies in patients with Parkinson's disease (PD) showed that the cerebellar function is modified by deficit of the basal ganglia; which supports the hypothesis that both structures are related anatomically and functionally. METHODS: In our study, the ventrolateral striatum (VLS) of the basal ganglia was altered by an electrolytic lesion, in order to produce a similar jaw frequency of jaw tremor movements presented in parkinsonism, thereafter we analyzed the effect of the lesion on the expression of multiunit activity (MUA) of the cerebellum. RESULTS: We found cerebellar activation during mandibular movements and increment during oral jaw tremor movements. In addition, the amplitude of baseline MUA registered in animals with alteration of the VLS decreased with respect to the intact group. CONCLUSIONS: Accordingly, we conclude that cerebellar changes in MUA may be due to a decrease in the cerebellar inflectional or as a possible compensatory function between cerebellum and basal ganglia.


Subject(s)
Basal Ganglia , Cerebellum , Parkinsonian Disorders , Cerebellum/physiopathology , Basal Ganglia/physiopathology , Animals , Parkinsonian Disorders/physiopathology , Disease Models, Animal , Male , Tremor/physiopathology
8.
Article in English | MEDLINE | ID: mdl-39221650

ABSTRACT

BACKGROUND: This systematic review and meta-analysis aimed to assess the effectiveness of non-invasive brain stimulation (NIBS), including repetitive transcranial magnetic stimulation (rTMS) and transcranial electrical stimulation (tES), as a neurological intervention for degenerative cerebellar ataxia (DCA) based on preregistration (PROSPERO: CRD42023379192). OBJECTIVE: We aimed to explore clinical outcomes and examine the parameters associated with NIBS efficacy in DCA patients. METHODS: The PubMed, Cochrane Library, CHINAL, and PEDro databases were searched for relevant randomized controlled trials (RCTs). Data extraction, quality assessment, and heterogeneity analyses were conducted; the Grading, Recommendations, Assessment, Development, and Evaluation was used to assess the quality of evidence and a meta-analysis was performed. RESULTS: Seventeen RCTs that included 661 patients on the scale for assessment and rating of ataxia (SARA) and 606 patients on the International Cooperative Ataxia Rating Scale (ICARS) were included. These RCTs showed a serious risk of bias (RoB) and low certainty of evidence for both outcomes. NIBS significantly reduced SARA (MD = -2.49, [95% confidence interval: -3.34, -1.64]) and ICARS (-5.27 [-7.06, -3.47]); the subgroup analysis showed significant effects: rTMS and tES reduced both outcomes. However, there were no significant differences in the effects of rTMS and tES. Additional subgroup analysis indicated the impact of rTMS frequency and the total number of tES sessions on ataxia. CONCLUSION: Non-invasive brain stimulation may reduce ataxia in DCA patients, but the estimated effect size may change in future studies because the RoB was serious and the certainty of evidence was low, and the heterogeneity was high. To establish evidence for selecting NIBS methods and parameters, continued high-quality RCTs are required.

9.
Radiol Case Rep ; 19(10): 4167-4172, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39101024

ABSTRACT

Joubert Syndrome, manifests in a spectrum of neurological symptoms. This case describes a 7-year-old girl with perinatal complications, and subsequent neurodevelopmental challenges. An MRI confirmed the diagnosis of Joubert syndrome, with the distinctive "molar tooth sign" being a key imaging characteristic. Approximately 25% of cases exhibit nephronophthisis, impacting kidney function, further complicating the clinical picture. Diagnosis relies on imaging and management necessitates a multidisciplinary approach, addressing symptoms and complications, with prognosis linked to the presence of organic disease. The case emphasizes the significance of a multidisciplinary strategy, including genetic counseling, and underscores the diverse manifestations of this syndrome. Prenatal identification through ultrasound and MRI plays a crucial role in diagnosing and treating this rare condition.

10.
Mol Autism ; 15(1): 34, 2024 08 07.
Article in English | MEDLINE | ID: mdl-39113134

ABSTRACT

Previous research on autism spectrum disorders (ASD) have showed important volumetric alterations in the cerebellum and brainstem. Most of these studies are however limited to case-control studies with small clinical samples and including mainly children or adolescents. Herein, we aimed to explore the association between the cumulative genetic load (polygenic risk score, PRS) for ASD and volumetric alterations in the cerebellum and brainstem, as well as global brain tissue volumes of the brain among adults at the population level. We utilized the latest genome-wide association study of ASD by the Psychiatric Genetics Consortium (18,381 cases, 27,969 controls) and constructed the ASD PRS in an independent cohort, the UK Biobank. Regression analyses controlled for multiple comparisons with the false-discovery rate (FDR) at 5% were performed to investigate the association between ASD PRS and forty-four brain magnetic resonance imaging (MRI) phenotypes among ~ 31,000 participants. Primary analyses included sixteen MRI phenotypes: total volumes of the brain, cerebrospinal fluid (CSF), grey matter (GM), white matter (WM), GM of whole cerebellum, brainstem, and ten regions of the cerebellum (I_IV, V, VI, VIIb, VIIIa, VIIIb, IX, X, CrusI and CrusII). Secondary analyses included twenty-eight MRI phenotypes: the sub-regional volumes of cerebellum including the GM of the vermis and both left and right lobules of each cerebellar region. ASD PRS were significantly associated with the volumes of seven brain areas, whereby higher PRS were associated to reduced volumes of the whole brain, WM, brainstem, and cerebellar regions I-IV, IX, and X, and an increased volume of the CSF. Three sub-regional volumes including the left cerebellar lobule I-IV, cerebellar vermes VIIIb, and X were significantly and negatively associated with ASD PRS. The study highlights a substantial connection between susceptibility to ASD, its underlying genetic etiology, and neuroanatomical alterations of the adult brain.


Subject(s)
Brain Stem , Cerebellum , Magnetic Resonance Imaging , Multifactorial Inheritance , Phenotype , Humans , Cerebellum/diagnostic imaging , Cerebellum/pathology , Brain Stem/diagnostic imaging , Brain Stem/pathology , Male , Female , Adult , Genetic Predisposition to Disease , Organ Size , Middle Aged , Autistic Disorder/genetics , Autistic Disorder/diagnostic imaging , Genome-Wide Association Study , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/diagnostic imaging , Gray Matter/diagnostic imaging , Gray Matter/pathology , Case-Control Studies
11.
Heliyon ; 10(15): e35705, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170489

ABSTRACT

X-linked adrenoleukodystrophy (X-ALD) caused by ATP-binding cassette subfamily D member 1 (ABCD1) gene defects is the most common inherited peroxisomal disorder.The female cerebello-brainstem dominant type in which cerebellum and brainstem are mainly involved is very rare. We report a 40-year-old female who was diagnosed as the rare disorder with magnetic resonance imaging (MRI) and genetic analysis mainly. Her initial symptoms were progressive slurred speech and writing disturbance. Her brain MRI showed obvious atrophy of brainstem and cerebellum. She did not have adrenal insufficiency. Genetic analysis showed a heterozygous missense mutation in exon 4 of the coding region of ABCD1 (c.1252C > T, p.Arg418Trp).This is the first report of this particular mutation being associated with the cerebello-brainstem dominant phenotype of X-ALD, as well as the first description of this X-ALD variant in a (heterozygous) female patient.X-ALD should be considered in young and middle-aged patients with slow-progressing ataxia and dysarthria.

12.
Front Hum Neurosci ; 18: 1382102, 2024.
Article in English | MEDLINE | ID: mdl-39171097

ABSTRACT

Introduction: Functional magnetic resonance imaging (fMRI) can improve our understanding of neural processes subserving motor speech function. Yet its reproducibility remains unclear. This study aimed to evaluate the reproducibility of fMRI using a word repetition task across two time points. Methods: Imaging data from 14 healthy controls were analysed using a multi-level general linear model. Results: Significant activation was observed during the task in the right hemispheric cerebellar lobules IV-V, right putamen, and bilateral sensorimotor cortices. Activation between timepoints was found to be moderately reproducible across time in the cerebellum but not in other brain regions. Discussion: Preliminary findings highlight the involvement of the cerebellum and connected cerebral regions during a motor speech task. More work is needed to determine the degree of reproducibility of speech fMRI before this could be used as a reliable marker of changes in brain activity.

13.
Res Sq ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39149481

ABSTRACT

Cross-individual variability is considered the essence of biology, preventing precise mathematical descriptions of biological motion1-7 like the physics law of motion. Here we report that the cerebellum shapes motor kinematics by encoding dynamic motor frequencies with remarkable numerical precision and cross-individual uniformity. Using in-vivo electrophysiology and optogenetics in mice, we confirmed that deep cerebellar neurons encoded frequencies via populational tuning of neuronal firing probabilities, creating cerebellar oscillations and motions with matched frequencies. The mechanism was consistently presented in self-generated rhythmic and non-rhythmic motions triggered by a vibrational platform, or skilled tongue movements of licking in all tested mice with cross-individual uniformity. The precision and uniformity allowed us to engineer complex motor kinematics with designed frequencies. We further validated the frequency-coding function of the human cerebellum using cerebellar electroencephalography recordings and alternating-current stimulation during voluntary tapping tasks. Our findings reveal a cerebellar algorithm for motor kinematics with precision and uniformity, the mathematical foundation for brain-computer interface for motor control.

14.
Cerebellum ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39172206

ABSTRACT

Working memory refers to the process of temporarily storing and manipulating information. The role of the cerebellum in working memory is thought to be achieved through its connections with the prefrontal cortex. Previous studies showed that theta burst stimulation (TBS), a form of repetitive transcranial magnetic stimulation, of the cerebellum changes its functional connectivity with the prefrontal cortex. Specifically, excitatory intermittent TBS (iTBS) increases, whereas inhibitory continuous TBS (cTBS) decreases this functional connectivity. We hypothesized that iTBS on the cerebellum will improve working memory, whereas cTBS will disrupt it. Sixteen healthy participants (10 women) participated in this study. Bilateral cerebellar stimulation was applied with a figure-of-eight coil at 3 cm lateral and 1 cm below the inion. The participants received iTBS, cTBS, and sham iTBS in three separate sessions in random order. Within 30 min after TBS, the participants performed four working memory tasks: letter 1-Back and 2-Back, digit span forward, and digit span backward. Repeated measures analysis of variance revealed a significant effect of the type of stimulation (iTBS/cTBS/Sham) on performance in the digit span backward task (p = 0.02). The planned comparison showed that the cTBS condition had significantly lower scores than the sham condition (p = 0.01). iTBS and cTBS did not affect performance in the 1- and 2-Back and the digit span forward tasks compared to sham stimulation. The findings support the hypothesis that the cerebellum is involved in working memory, and this contribution may be disrupted by cTBS.

15.
Hum Mov Sci ; 97: 103257, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39126810

ABSTRACT

BACKGROUND: This study aimed to explore the associations between brain structures, cognition, and motor control in participants with mild cognitive impairment (MCI), with a focus on dual-task performance. METHODS: Thirty MCI patients and thirty healthy controls were enrolled. Cognitive function was assessed using the Montreal Cognitive Assessment (MoCA). Structural magnetic resonance imaging data were analyzed using voxel-based morphometry (VBM) to calculate brain parenchyma volume and gray matter volume (GMV). Participants performed single- and dual-task Timed Up and Go (TUG) tests, and the correlations between significant GMV differences and task execution time was analyzed. RESULTS: MCI patients showed significantly lower MoCA scores, particularly in visuospatial/executive, attention, and delayed recall domains (p < 0.05). Dual-task TUG execution time was significantly increased in MCI patients (p < 0.05). The GMV in the right anterior lobe of the cerebellum and both insulae was positively correlated with visuospatial/executive scores (FDR-corrected, p < 0.05). The GMV of the right cerebellar anterior lobe and insula were significantly reduced in MCI patients (p < 0.05). The GMV of the right cerebellar anterior lobe was negatively correlated with dual-task execution time (r = -0.32, p = 0.012). CONCLUSION: Smaller GMV in the right anterior lobe of the cerebellum was associated with impaired dual-task performance, which may provide more evidence for the neural mechanisms of cognitive and motor function impairments in MCI.

16.
J Neurophysiol ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140589

ABSTRACT

We studied simultaneous EMG and midline EEG responses, the latter including over the cerebellum, in 10 standing subjects (35 ± 15 yrs; 5 females) following repeated taps to the sternum. We confirmed previous reports that this evokes short latency EMG responses in leg muscles, consistent with postural reflexes. EEG power had relatively more high frequency components (> 30 Hz) when recorded from electrodes over the cerebellum (Iz, SIz) compared to other midline electrodes. We showed clear midline evoked EEG potentials occurring at short latency over the cerebellum (P23, N31, N42, P54) and frontally (N28, N57) prior to the previously-described perturbation evoked potential (P1/N1/P2). The P23 response correlated with the subsequent EMG response in the tibialis anterior muscles. We conclude that early activity occurs from electrodes over the cerebellum in response to a brief tap to the sternum. This is likely to represent cerebellar activity and it appears to modulate short latency postural EMG responses.

17.
Cerebellum ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096431

ABSTRACT

This study employed structural and functional magnetic resonance imaging (MRI) to investigate changes in the function and structure of the cerebellum associated with gut-brain axis (GBA) regulation in patients diagnosed with Crohn's disease (CD). The study comprised 20 CD patients, including 12 with active disease (CD-A) and 8 in remission (CD-R), as well as 21 healthy controls. Voxel-based morphometry (VBM) was utilized for structural analysis of cerebellar gray matter volume, while independent component analysis (ICA) was applied for functional analysis of cerebellar functional connectivity (FC). The results showed significant GMV reduction in the left posterior cerebellar lobe across all CD patients compared to HCs, with more pronounced differences in the CD-A subgroup. Additionally, an increase in mean FC of the cerebellar network was observed in all CD patients, particularly in the CD-A subgroup, which demonstrated elevated FC in the vermis and bilateral posterior cerebellum. Correlation analysis revealed a positive relationship between cerebellar FC and the Crohn's Disease Activity Index (CDAI) and a trend toward a negative association with the reciprocal of the Self-rating Depression Scale (SDS) score in CD patients. The study's findings suggest that the cerebellum may play a role in the abnormal regulation of the GBA in CD patients, contributing to a better understanding of the neural mechanisms underlying CD and highlighting the cerebellum's potential role in modulating gut-brain interactions.

18.
Cureus ; 16(7): e65400, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39184610

ABSTRACT

Rhombencephalosynapsis (RES) is a rare condition found in the pediatric population. It occurs due to a fundamental failure of vermian differentiation caused by faulty gene expression in the earliest patterning areas of the brain between days 28 and 41 of gestation, resulting in a fused cerebellum. This report aims to discuss cases of this rare hindbrain malformation, identify its features on MRI, diagnose any associated anomalies, classify it based on severity, and study its syndromic associations. We report two rare cases of RES in patients presenting with complaints of ataxia, global motor developmental delay, hypotonia, and dysarthria, who underwent an MRI of the brain.

19.
Neurobiol Lang (Camb) ; 5(3): 676-700, 2024.
Article in English | MEDLINE | ID: mdl-39175785

ABSTRACT

Fluent speech production is a complex task that spans multiple processes, from conceptual framing and lexical access, through phonological encoding, to articulatory control. For the most part, imaging studies portraying the neural correlates of speech fluency tend to examine clinical populations sustaining speech impairments and focus on either lexical access or articulatory control, but not both. Here, we evaluated the contribution of the cerebellar peduncles to speech fluency by measuring the different components of the process in a sample of 45 neurotypical adults. Participants underwent an unstructured interview to assess their natural speaking rate and articulation rate, and completed timed semantic and phonemic fluency tasks to assess their verbal fluency. Diffusion magnetic resonance imaging with probabilistic tractography was used to segment the bilateral cerebellar peduncles (CPs) and frontal aslant tract (FAT), previously associated with speech production in clinical populations. Our results demonstrate distinct patterns of white matter associations with different fluency components. Specifically, verbal fluency is associated with the right superior CP, whereas speaking rate is associated with the right middle CP and bilateral FAT. No association is found with articulation rate in these pathways, in contrast to previous findings in persons who stutter. Our findings support the contribution of the cerebellum to aspects of speech production that go beyond articulatory control, such as lexical access, pragmatic or syntactic generation. Further, we demonstrate that distinct cerebellar pathways dissociate different components of speech fluency in neurotypical speakers.

20.
Neurobiol Lang (Camb) ; 5(3): 701-721, 2024.
Article in English | MEDLINE | ID: mdl-39175789

ABSTRACT

In a functional magnetic resonance imaging study, we examined speech error monitoring in a cortico-cerebellar network for two contrasts: (a) correct trials with high versus low articulatory error probability and (b) overtly committed errors versus correct trials. Engagement of the cognitive cerebellar region Crus I in both contrasts suggests that this region is involved in overarching performance monitoring. The activation of cerebellar motor regions (superior medial cerebellum, lobules VI and VIII) indicates the additional presence of a sensorimotor driven implementation of control. The combined pattern of pre-supplementary motor area (active across contrasts) and anterior cingulate cortex (only active in the contrast involving overt errors) activations suggests sensorimotor driven feedback monitoring in the medial frontal cortex, making use of proprioception and auditory feedback through overt errors. Differential temporal and parietal cortex activation across contrasts indicates involvement beyond sensorimotor driven feedback in line with speech production models that link these regions to auditory target processing and internal modeling-like mechanisms. These results highlight the presence of multiple, possibly hierarchically interdependent, mechanisms that support the optimizing of speech production.

SELECTION OF CITATIONS
SEARCH DETAIL