Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 528
Filter
1.
BMC Microbiol ; 24(1): 342, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271995

ABSTRACT

PURPOSE: To determine the association of gut microbiome diversity and sight-threatening diabetic retinopathy (STDR) amongst patients with pre-existing diabetes. METHODS: A cross-sectional study was performed, wherein 54 participants selected in total were placed into cases cohort if diagnosed with STDR and those without STDR but had a diagnosis of diabetes mellitus of at least 10-year duration were taken as controls. Statistical analysis comparing the gut microbial alpha diversity between cases and control groups as well as patients differentiated based on previously hypothesized Bacteroidetes/Firmicutes(B/F) ratio with an optimal cut-off 1.05 to identify patients with STDR were performed. RESULTS: Comparing gut microbial alpha diversity did not show any difference between cases and control groups. However, statistically significant difference was noted amongst patients with B/F ratio ≥1.05 when compared to B/F ratio < 1.05; ACE index [Cut-off < 1.05:773.83 ± 362.73; Cut-off > 1.05:728.03 ± 227.37; p-0.016]; Chao1index [Cut-off < 1.05:773.63 ± 361.88; Cut-off > 1.05:728.13 ± 227.58; p-0.016]; Simpson index [Cut-off < 1.05:0.998 ± 0.001; Cut-off > 1.05:0.997 ± 0.001; p-0.006]; Shannon index [Cut-off < 1.05:6.37 ± 0.49; Cut-off > 1.05:6.10 ± 0.43; p-0.003]. Sub-group analysis showed that cases with B/F ratio ≥ 1.05, divided into proliferative diabetic retinopathy (PDR) and clinically significant macular edema (CSME), showed decreased diversity compared to controls (B/F ratio < 1.05). For PDR, all four diversity indices significantly decreased (p < 0.05). However, for CSME, only Shannon and Simpson indices showed significant decrease in diversity (p < 0.05). CONCLUSIONS: Based on clinical diagnosis, decreasing gut microbial diversity was observed among patients with STDR, although not statistically significant. When utilizing B/F ratio, the decreasing gut microbial diversity in STDR patients seems to be associated due to species richness and evenness in PDR when compared to decreasing species richness in CSME.


Subject(s)
Diabetic Retinopathy , Gastrointestinal Microbiome , Humans , Diabetic Retinopathy/microbiology , Male , Female , Cross-Sectional Studies , Middle Aged , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Adult , Bacteroidetes/isolation & purification , Bacteroidetes/genetics , Bacteroidetes/classification , Aged , Case-Control Studies , Biodiversity , Firmicutes/isolation & purification , Firmicutes/classification , Firmicutes/genetics
2.
J Med Primatol ; 53(5): e12737, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39323065

ABSTRACT

BACKGROUND: The gut microbiota plays an important role in primates, which may be associated with their habitat. In Malaysia, pig-tailed macaques (Macaca nemestrina) live in different habitat environments and have traditionally been used for coconut plucking for more than a century. There is currently no information regarding the gut microbiota of this macaque in Malaysia. To address this oversight, this study employed a fecal metabarcoding approach to determine the gut microbiota composition of pig-tailed macaques and establish how these microbial communities correspond with the macaque external environments of residential area, forest edge, and fragmented forest. METHODS: To determine this connection, 300 paired-end sequences of 16S rRNA were amplified and sequenced using the MiSeq platform. RESULTS: In the pig-tailed macaque fecal samples, we identified 17 phyla, 40 orders, 52 families, 101 genera, and 139 species of bacteria. The most prevalent bacterial families in the gut of pig-tailed macaques were Firmicutes (6.31%) and Proteobacteria (0.69%). Our analysis did not identify a significant difference between the type of environmental habitat and the gut microbiota composition of these macaques. CONCLUSIONS: There was great variation in the population richness and bacterial community structure. The abundance of Firmicutes and Proteobacteria helps this macaque digest food more easily while maintaining a healthy gut microbiota diversity. Exploring the gut microbiota provides an initial effort to support pig-tailed macaque conservation in the future.


Subject(s)
Bacteria , Ecosystem , Feces , Gastrointestinal Microbiome , Macaca nemestrina , RNA, Ribosomal, 16S , Animals , Malaysia , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Feces/microbiology , RNA, Ribosomal, 16S/genetics , RNA, Bacterial/analysis , RNA, Bacterial/genetics
3.
Heliyon ; 10(17): e37362, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39296159

ABSTRACT

Gut microbiota imbalance and alterations in the chemokine-chemokine receptor interactions are pivotal in the initiation and advancement of ulcerative colitis (UC). The current UC treatments are prolonged, exhibit high recurrence rates, and may lead to colorectal cancer. So, this study explores the efficacy of Helix pomatia (H. pomatia) mucin in preventing DSS-induced UC. This research focuses on investigating the underlying mechanisms, such as oxidative stress, inflammation, and alterations in gut microbiota and chemokine-chemokine receptor interactions, to understand the anti-inflammatory and antioxidant characteristics of the mucin. Using 4 % DSS in drinking water, UC was induced in C57BL/6 mice. For seven days, mice were given oral doses of either H. pomatia mucin or sulfasalazine. The study assessed changes in oxidative stress, gut microbiota, and histopathology, along with expression of IL-6, CXCR4, CCR7, CXCL9, and CXCL10. The H. pomatia mucin exhibited unique contents, including high glycolic acid (200 ± 2.08 mg/L), collagen (88 ± 2.52 mg/L), allantoin (20 ± 2 mg/L), and concentrated vitamins and minerals. Treatment with H. pomatia mucin in high dose demonstrated reduction in DAI, an increase in fecal Firmicutes, and elevated expression of colonic CCR7, CXCL9, and CXCL10, accompanied by enhanced CXCR4 (75 %) and diminished IL-6 (1.33 %) immunostaining. It also alleviated oxidative stress, reduced fecal Bacteroidetes, and mitigated inflammation, indicating its potential efficacy against DSS-induced UC. In conclusion, H. pomatia mucin is a promising candidate that could be an effective adjuvant in the management and prophylaxis of UC.

4.
Int J Gen Med ; 17: 3967-3974, 2024.
Article in English | MEDLINE | ID: mdl-39281039

ABSTRACT

Growing research proves gut microbiota and thyroid autoimmunity are linked. Graves' disease (GD), as an autoimmune thyroid disease (AITD), is attributed to the production of thyroid-stimulating hormone receptor (TSHR) autoantibodies that bind to the thyroid follicular endothelial cells. It is well known that genetic factors, environmental factors, and immune disorders count for much in the development of GD. So far, the pathogenesis of GD is not elucidated. Emerging research reveals that the change in gut microbiota composition and its metabolites are related to GD. The gut microbial diversity is reduced in GDs compared with healthy controls (HCs). Firmicutes and Bacteroidetes account for a large proportion at the genus level. It is found that phyla Bacteroidetes increased while phyla Firmicutes decreased in Graves' Disease patients (GD patients). Moreover, gut microbiota modulates the immune system to produce cytokines through bacterial metabolites. This article aims to find out the relation between gut microbiota dysbiosis and the development of GD. As more molecular pathways of bacterial metabolites are revealed, targeting microbiota is expected to the treatment of GD.

5.
Microbiol Spectr ; : e0211324, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39283121

ABSTRACT

Metagenome-assembled genomes (MAGs) have contributed to identifying non-culturable microorganisms and understanding their ecological functions. MAGs offer an advantage in investigating sporulation-associated genes, especially given the difficulty of isolating many species residing in the gut microbiota of multiple hosts. Bacterial sporulation is a key survival mechanism with implications for pathogenicity and biotechnology. Here, we investigate MAGs from vertebrate hosts, emphasizing taxonomic identification and identifying sporulation-associated genes in potential novel species within the Firmicutes phylum. We identified potential new species in the classes Clostridia (Borkfalkiaceae, Lachnospiraceae, Monoglobaceae, and Oscillospiraceae families) and Bacilli (Bacillaceae and Erysipelotrichaceae families) through phylogenetic and functional pathway analyses, highlighting their sporulation potential. Our study covers 146 MAGs, 124 of them without refined taxonomic assignments at the family level. We found that Clostridia and Bacilli have unique sporulation gene profiles in the refined family MAGs for cattle, swine, poultry, and human hosts. The presence of genes related to Spo0A regulon, engulfment, and spore cortex in MAGs underscores fundamental mechanisms in sporulation processes in currently uncharacterized species with sporulation potential from metagenomic dark matter. Furthermore, genomic analyses predict sporulation potential based on gene presence, genome size, and metabolic pathways involved in spore formation. We emphasize MAGs covering families not yet characterized through the phylogenetic analysis, and with extensive potential for spore-forming bacteria within Clostridia, Bacilli, UBA4882, and UBA994 classes. These findings contribute to exploring spore-forming bacteria, which provides evidence for novel species diversity in multiple hosts, their adaptive strategies, and potential applications in biotechnology and host health.IMPORTANCESpores are essential for bacterial survival in harsh environments, facilitating their persistence and adaptation. Exploring sporulation-associated genes in metagenome-assembled genomes (MAGs) from different hosts contributes to clinical and biotechnological domains. Our study investigated the extent of genes associated with bacterial sporulation in MAGs from poultry, swine, cattle, and humans, revealing these genes in uncultivated bacteria. We identified potential novel Firmicutes species with sporulation capabilities through phylogenetic and functional analyses. Notably, MAGs belonging to Clostridia, Bacilli, and unknown classes, namely UBA4882 and UBA994, remained uncharacterized at the family level, which raises the hypothesis that sporulation would also be present in these genomes. These findings contribute to our understanding of microbial adaptation and have implications for microbial ecology, underlining the importance of sporulation in Firmicutes across different hosts. Further studies into novel species and their sporulation capability can contribute to bacterial maintenance mechanisms in various organisms and their applications in biotechnology studies.

6.
Psychoneuroendocrinology ; 170: 107090, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39217732

ABSTRACT

Depression is a multifaceted mental health disorder with complex etiology and significant global burden. Recent research indicates that the gut microbiota plays a role in the pathophysiology of depression, highlighting the potential role of specific bacterial species in influencing mood and cognitive function. In this study, we aimed to investigate the presence, copy numbers, and Ct values of selected bacterial species in stool samples from depressed patients (n=50) compared to control subjects (n=50). Our findings revealed significant differences in the abundance of Fusobacterium spp., Bifidobacterium spp., Lactobacillus spp., Bacteroidetes phylum, Firmicutes phylum, and Actinobacteria spp. between the two groups. Dysregulation of the gut microbiota, characterized by decreased presence of beneficial bacteria (e.g., Bifidobacterium spp., Lactobacillus spp.) and altered abundance of potentially pathogenic bacteria (e.g., Fusobacterium spp.), may contribute to the development or exacerbation of depression. These findings support the emerging concept of the gut-brain axis and its role in mental health. However, further research is needed to better understand the underlying mechanisms and explore the therapeutic potential of microbiota-targeted interventions for depression. Understanding the intricate interplay between the gut microbiota and depression could pave the way for novel treatment strategies and personalized approaches in mental health care.

7.
Sci Total Environ ; 952: 175989, 2024 Nov 20.
Article in English | MEDLINE | ID: mdl-39233087

ABSTRACT

Freeze-thaw cycle (FTC) is a naturally occurring phenomenon in high-latitude terrestrial ecosystems, which may exert influence on distribution and evolution of microbial community in the soil. The relationship between transmission of antibiotic resistance genes (ARGs) and microbial community was investigated upon the case study on the soil of cold-region dairy farm under seasonal FTC. The results demonstrated that 37 ARGs underwent decrease in the abundance of blaTEM from 80.4 % for frozen soil to 71.7 % for thawed soil, and that sul2 from 8.8 % for frozen soil to 6.5 % for thawed soil, respectively. Antibiotic deactivation was identified to be closely related to the highest relative abundance of blaTEM, and the spread of sulfonamide resistance genes (SRGs) occurred mainly via target modification. Firmicutes in frozen soil were responsible for dominating the abundance of ARGs by suppressing the native bacteria under starvation effect in cold regions, and then underwent horizontal gene transfer (HGT) among native bacteria through mobile genetic elements (MGEs). The TRB-C (32.6-49.1 %) and tnpA-06 (0.27-7.5 %) were significantly increased in frozen soil, while Int3 (0.67-10.6 %) and tnpA-04 (11.1-19.4 %) were up-regulated in thawed soil. Moreover, the ARGs in frozen soil primarily underwent HGT through MGEs, i.e. TRB-C and tnpA-06, with increased number of Firmicutes serving as carrier. The case study not only demonstrated relationship between transmission of ARGs and microbial community in the soil under practically relevant FTC condition, but also emphasized the importance for formulating better strategies for preventing FTC-induced ARGs in dairy farm in cold regions.


Subject(s)
Dairying , Drug Resistance, Microbial , Freezing , Microbiota , Soil Microbiology , Drug Resistance, Microbial/genetics , Microbiota/genetics , Microbiota/drug effects , Farms , Gene Transfer, Horizontal , Genes, Bacterial , China , Environmental Monitoring
8.
Microbiol Spectr ; : e0051924, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39345125

ABSTRACT

Tibetan animals have several unique advantages owing to the harsh ecological conditions under which they live. However, compared to Tibetan mammals, understanding of the advantages and underlying mechanisms of the representative high-latitude bird, the Tibetan chicken (Gallus gallus, TC), remains limited. The gut microbiota of animals has been conclusively shown to be closely related to both host health and host environmental adaptation. This study aimed to explore the relationships between the cecal microbiome and the advantages of TCs based on comparisons among three populations: native TCs residing on the plateau, domestic TCs living in the plain, and one native plain species. Metatranscriptomic sequencing revealed a significant enrichment of active Bacteroidetes but a loss of active Firmicutes in native TCs. Additionally, the upregulated expression of genes in the cecal microbiome of native TCs showed enriched pathways related to energy metabolism, glycan metabolism, and the immune response. Furthermore, the expression of genes involved in the biosynthesis of short-chain fatty acids (SCFAs) and secondary bile acids (SBAs) was upregulated in the cecal microbiome of native TCs. Data from targeted metabolomics further confirmed elevated levels of certain SCFAs and SBAs in the cecum of native TCs. Based on the multi-omics association analysis, we proposed that the higher ratio of active Bacteroidetes/Firmicutes may be attributed to the efficient energy metabolism and stronger immunological activity of native TCs. Our findings provide a better understanding of the interactions between gut microbiota and highland adaptation, and novel insights into the mechanisms by which Tibetan chickens adapt to the plateau hypoxic environment. IMPORTANCE: The composition and function of the active cecal microbiome were significantly different between the plateau Tibetan chicken population and the plain chicken population. Higher expression genes related to energy metabolism and immune response were found in the cecal microbiome of the plateau Tibetan chicken population. The cecal microbiome in the plateau Tibetan chicken population exhibited higher biosynthesis of short-chain fatty and secondary bile acids, resulting in higher cecal content of these metabolites. The active Bacteroidetes/Firmicutes ratio in the cecal microbiome may contribute to the high-altitude adaptive advantage of the plateau Tibetan chicken population.

9.
Indian J Otolaryngol Head Neck Surg ; 76(4): 3307-3318, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39130256

ABSTRACT

Introduction: Cholesteatoma usually harbors a poly-microbial infection. As the diversity of bacterial pathogens in the Indian COM is unknown, we set out to identify the bacteria associated with cholesteatoma disease in different patients of North India using targeted metagenomic analysis of the 16 S rRNA gene. Methods: We recruited 15 patients of cholesteatomatous chronic otitis media (COM), who underwent surgical disease clearance. We divided these patients into four groups based on the four clinic-radiological stages categorized as per the EAONO/JOS joint consensus statement classification. Representative samples were extracted during the surgery and sent for bacterial culture and sensitivity and 16 S rRNA gene metagenomic analysis. Results: While 12 (80%) of the patients belonged to clinical Stage I/II; one patient had an extracranial complication (stage III) and two patients had an intracranial complication (stage IV). Our detailed bacterial metagenomics analyses showed that while phylum Proteobacteria was most abundant (reads up to ∼ 95%) in specimens from nine patients, phylum Firmicutes was most abundant (up to ∼ 80%) in specimens from four patients. Gamma (γ) Proteobacteria and Epsilon (ε) Proteobacteria were the most abundant class amongst Proteobacteria. Class Tissierellia stood out as the most abundant Firmicutes (40-60%), followed by Clostridia (20%) and Bacilli (10%). There was negligible difference in the bacterial profiles across all four clinical stages. Conclusion: Cholesteatoma is primarily associated with Proteobacteria and Firmicutes phyla, even in complicated disease. Further studies with a larger sample size are required to validate our findings. Supplementary Information: The online version contains supplementary material available at 10.1007/s12070-024-04678-9.

10.
Poult Sci ; 103(9): 103970, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38970846

ABSTRACT

This study investigated the impact of dietary supplementation with hydrolyzed yeast (Kluyveromyces marxianus) on growth performance, humoral immunity, jejunal morphology, cecal microbiota and metabolic pathways in broilers raised at 45 kg/m2. A total of 1,176 mixed sex 1-day-old Ross 308 broilers were distributed into 42 pens and randomly assigned to either the control group, the control + 250 g hydrolyzed yeast (HY)/ton, 250HY group, or the control + 500 g HY/ton, 500HY group for 42 d. HY did not affect growth performance. However, HY reduced (P < 0.05) mortality at 25 to 35 d. Dietary HY lowered the heterophil/lymphocyte ratio and enhanced the villus height/crypt depth ratio and Newcastle disease titer (P < 0.05). Compared with HY250 and the control, HY500 upregulated (P < 0.05) IL-10. HY enhanced the α diversity, inferring the richness and evenness of the ceca microbiota. HY500 had greater ß diversity than the control (P < 0.05). Six bacterial phyla, namely, Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Verrucomicrobia, and Cyanobacteria, were found. The relative abundance of Firmicutes was greater in the HY500 treatment group than in the HY250 and control groups. HY decreased the abundance of Actinobacteria. HY supplementation altered (P < 0.05) the abundance of 8 higher-level taxa consisting of 2 classes (Bacilli and Clostridia), 1 order (Lactobacillales), 1 family (Streptococcaceae), and five genera (Streptococcus, Lachnospiraceae_uc, Akkermansiaceae, PACO01270_g, and LLKB_g). HY500 improved (P < 0.05) the abundance of Bacilli, Clostridia, Lactobacillales, Streptococcaceae, Streptococcus, PACO01270_g, and Lachnospiraceae_uc, while HY250 enhanced (P < 0.05) the abundance of Akkermansiaceae and LLKB_g. HY improved the abundance of Lactobacillus and Akkermansia spp. Minimal set of pathway analyses revealed that compared with the control, both HY250 and HY500 regulated 20 metabolic pathways. These findings suggest that dietary K. marxianus hydrolysate, especially HY500, improved humoral immunity and jejunal morphology and beneficially altered the composition and metabolic pathways of the cecal microbiota in broilers raised at 45 kg/m2.


Subject(s)
Animal Feed , Cecum , Chickens , Diet , Dietary Supplements , Gastrointestinal Microbiome , Immunity, Humoral , Jejunum , Kluyveromyces , Animals , Chickens/growth & development , Chickens/immunology , Gastrointestinal Microbiome/drug effects , Animal Feed/analysis , Diet/veterinary , Male , Cecum/microbiology , Immunity, Humoral/drug effects , Dietary Supplements/analysis , Random Allocation , Female , Metabolic Networks and Pathways , Animal Husbandry/methods
11.
Biomed Pharmacother ; 178: 117128, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39079259

ABSTRACT

Cardiovascular diseases (CVD) cause significant global morbidity, mortality and public health burden annually. CVD alters richness, diversity, and composition of Gut microbiota along with RAS and histopathological differences. Present study explores Metformin role in mitigating doxorubicin induced cardiovascular toxicity/remodeling. Animals were divided into 4 groups with n=6: Group I (N. Control) free access to diet and water; Group II (MET. Control) on oral Metformin (250 mg/kg) daily; Group III (DOX. Control) alternate day intraperitoneal Doxorubicin (3 mg/kg) totaling 18 mg/kg; Group IV (DOX. MET. Control) received both daily oral Metformin (250 mg/kg) and alternate day Doxorubicin (3 mg/kg). Gut microbial analysis was made from stool before animals were sacrificed for biochemical and histopathological analysis. Significant alterations were observed in ɑ and ß-diversity with new genus from Firmicutes, specifically Clostridia_UCG-014, Eubacterium ruminantium, and Tunicibacter, were prevalent in both the DOX. Control and DOX.MET groups. Proteobacteria, represented by Succinivibrio, were absent in all groups. Additionally, Parabacteroides from the Bacteroidia phylum was absent in all groups except the N. control. In the DOX.MET Control group, levels of Angiotensin II ( 7.75± 0.49 nmol/min, p<0.01) and Renin (2.60±0.26 ng/ml/hr) were significantly reduced. Conversely, levels of CK-MB, Fibrinogen, Troponin, CRP ( p < 0.0001), and TNFɑ (p < 0.05) were elevated. Histopathological examination revealed substantial cardiac changes, including Fibrinogen and fat deposition and eosinophilic infiltration, as well as liver damage characterized by binucleated cells and damaged hepatocytes, along with altered renal tissues in the DOX.MET.Control group. The findings suggest that MET. significantly modifies gut microbiota, particularly impacting the Firmicutes and Proteobacteria phyla. The reduction in Angiotensin II levels, alongside increased inflammatory markers and myocardial damage, highlights the complex interactions and potential adverse effects associated with MET therapy on cardiovascular health.


Subject(s)
Gastrointestinal Microbiome , Metformin , Gastrointestinal Microbiome/drug effects , Metformin/pharmacology , Animals , Male , Doxorubicin , Cardiovascular Diseases/chemically induced , Rats , Bacteria/drug effects , Bacteria/classification , Feces/microbiology
12.
Rev Cardiovasc Med ; 25(2): 41, 2024 Feb.
Article in English | MEDLINE | ID: mdl-39077366

ABSTRACT

Background: According to recent studies, atherosclerosis and gut microbiota are related. Nevertheless, it has been discovered that the gut microbiota varies across studies, with its function still being debated, and such relationships not proven to be causal. Thus, our study aimed to identify the key gut microbiota taxa (GM taxa) at different taxonomic levels, namely, the phylum, class, order, family, and genus, to investigate any potential causal links to atherosclerosis. Methods: We employed summary data from the MiBioGen consortium on the gut microbiota to conduct a sophisticated two-sample Mendelian randomization (MR) analysis. Pertinent information regarding atherosclerosis statistics was acquired from the FinnGen Consortium R8 publication. To assess causality, the utilized principal analytical technique was the inverse variance-weighted (IVW) method. Supplementary to IVW, additional MR methodologies were employed, including weighted median, MR-Egger, weighted methods, and simple mode. Sensitivity analyses involved the application of Cochrane's Q-test, MR-Egger intercept test, MR-PRESSO global test, and leave-one-out analysis. Results: Finally, after performing an MR study on the risk of 211 GM taxa on atherosclerosis, we discovered 20 nominal links and one strong causal link. Firmicutes (phylum ID: 1672) (odds ratio (OR) = 0.852 (0.763, 0.950), p = 0.004) continued to be connected with a lower incidence of coronary atherosclerosis, even after Bonferroni correction. Conclusions: Based on the discovered data, it was established that the phylum Firmicutes exhibits a causal relationship with a reduced occurrence of coronary atherosclerosis. This investigation could potentially provide novel insights into therapeutic objectives for atherosclerosis by focusing on the gut microbiota.

13.
Iran J Microbiol ; 16(3): 342-350, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39005595

ABSTRACT

Background and Objectives: TB infection is one of the most challengeable epidemiological issues. Complex interactions between microbiota and TB infection have been demonstrated. Alteration in microbial population during TB infection may act as a useful biomarker. The present study examined the microbiota patterns of blood and sputum samples collected from Afghan immigrants and Iranian patients with active TB. Materials and Methods: Sixty active pulmonary TB patients were enrolled in the study. Blood and sputum samples were collected. To detect phylum bacterial composition in the blood and sputum samples, bacterial 16S rRNA quantification by Real-Time qPCR was performed. Results: A significant decrease in Bacteroidetes in Iranian sputum and blood samples of Afghan immigrants and Iranian TB active subjects were seen. While, sputum samples of Afghan immigrants showed no significant differences in Bacteroidetes abundance among TB active and control. Firmicutes were also presented no significant difference between sputum samples of the two races. Actinobacteria showed a significant increase in Iranian and Afghan sputum samples while this phylum showed no significant abundance in Iranian and Afghan TB positive blood samples. Proteobacteria also showed an increase in sputum and blood samples of the two races. Conclusion: An imbalance in Bacteroidetes and Firmicutes abundance may cause an alteration in the microbiota composition, resulting in dysregulated immune responses and resulting in the augmentation of opportunistic pathogens during TB infection, notably Proteobacteria and Actinobacteria. Evaluation of human microbiota under different conditions of TB infection can be critical to a deeper understanding of the disease control.

14.
Open Life Sci ; 19(1): 20220897, 2024.
Article in English | MEDLINE | ID: mdl-39071489

ABSTRACT

To date, the association of potato tuber microbiota is poorly understood. In this study, the endophytic bacterial flora of seed potato tubers was identified and the diversity of healthy and unhealthy tubers was compared. Metagenomic DNA extracted from healthy and unhealthy samples of seed potato tubers was used for the analysis of microbial communities. Next generation sequencing of the ∼460 bp v3-v4 region of the 16S rRNA gene was carried out using the Illumina Miseq platform. The data were analysed using the Divisive Amplicon Denoising Algorithm 2 pipeline. Sequence analysis of the potato metagenome identified amplicon sequence variants (ASVs) assigned to 745 different taxa belonging to eight Phyla: Firmicutes (46.2%), Proteobacteria (36.9%), Bacteroidetes (1.8%), Actinobacteria (0.1%), Tenericutes (0.005%), Saccharibacteria (0.003%), Verrucomicrobiota (0.003%), and Acidobacteria (0.001%). In healthy seed potato tubers, 55-99% of ASVs belonged to Firmicutes, including Bacillus, Salinibacillus, Staphylococcus, Lysinibacillus, Paenibacillus, and Brevibacillus genera within the taxonomic order Bacillales. However, in the visually unhealthy tubers, only 0.5-3.9% of ASVs belonged to Firmicutes while 84.1-97% of ASVs belonged to Proteobacteria. This study highlights that diverse bacterial communities colonize potato tubers, which contributes to the understanding of plant-microbe interactions and underscores the significance of metagenomic approaches in agricultural research.

15.
Front Endocrinol (Lausanne) ; 15: 1344152, 2024.
Article in English | MEDLINE | ID: mdl-38948515

ABSTRACT

Background: Analyzing bacterial microbiomes consistently using next-generation sequencing (NGS) is challenging due to the diversity of synthetic platforms for 16S rRNA genes and their analytical pipelines. This study compares the efficacy of full-length (V1-V9 hypervariable regions) and partial-length (V3-V4 hypervariable regions) sequencing of synthetic 16S rRNA genes from human gut microbiomes, with a focus on childhood obesity. Methods: In this observational and comparative study, we explored the differences between these two sequencing methods in taxonomic categorization and weight status prediction among twelve children with obstructive sleep apnea. Results: The full-length NGS method by Pacbio® identified 118 genera and 248 species in the V1-V9 regions, all with a 0% unclassified rate. In contrast, the partial-length NGS method by Illumina® detected 142 genera (with a 39% unclassified rate) and 6 species (with a 99% unclassified rate) in the V3-V4 regions. These approaches showed marked differences in gut microbiome composition and functional predictions. The full-length method distinguished between obese and non-obese children using the Firmicutes/Bacteroidetes ratio, a known obesity marker (p = 0.046), whereas the partial-length method was less conclusive (p = 0.075). Additionally, out of 73 metabolic pathways identified through full-length sequencing, 35 (48%) were associated with level 1 metabolism, compared to 28 of 61 pathways (46%) identified through the partial-length method. The full-length NGS also highlighted complex associations between body mass index z-score, three bacterial species (Bacteroides ovatus, Bifidobacterium pseudocatenulatum, and Streptococcus parasanguinis ATCC 15912), and 17 metabolic pathways. Both sequencing techniques revealed relationships between gut microbiota composition and OSA-related parameters, with full-length sequencing offering more comprehensive insights into associated metabolic pathways than the V3-V4 technique. Conclusion: These findings highlight disparities in NGS-based assessments, emphasizing the value of full-length NGS with amplicon sequence variant analysis for clinical gut microbiome research. They underscore the importance of considering methodological differences in future meta-analyses.


Subject(s)
Gastrointestinal Microbiome , Pediatric Obesity , RNA, Ribosomal, 16S , Sleep Apnea, Obstructive , Humans , Gastrointestinal Microbiome/genetics , Child , Male , RNA, Ribosomal, 16S/genetics , Female , Sleep Apnea, Obstructive/microbiology , Sleep Apnea, Obstructive/genetics , Pediatric Obesity/microbiology , Pediatric Obesity/genetics , High-Throughput Nucleotide Sequencing/methods , Child, Preschool , Body Weight , Adolescent
16.
Microbes Infect ; : 105374, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38849069

ABSTRACT

OBJECTIVE: The lung microbiota of patients with pulmonary diseases is disrupted and impacts the immunity. The microbiological and immune landscape of the lungs in patients with pneumocystis pneumonia (PCP) remains poorly understood. METHODS: Multi-omics analysis and machine learning were performed on bronchoalveolar lavage fluid to explore interaction between the lung microbiota and host immunity in PCP. Then we constructed a diagnostic model using differential genes with LASSO regression and validated by qPCR. The immune infiltration analysis was performed to explore the landscape of lung immunity in patients with PCP. RESULTS: Patients with PCP showed a low alpha diversity of lung microbiota, accompanied by the elevated abundance of Firmicutes, and the differential expressed genes (DEGs) analysis displayed a downregulation of MAPK signaling. The MAPK10, TGFB1, and EFNA3 indicated a potential to predict PCP (AUC = 0.86). The lung immune landscape in PCP showed the lower levels of naïve CD4+ T cells and activated dendritic cells. The correlation analysis of the MAPK signaling pathway-related DEGs and the differential microorganisms at the level of phylum showed that the Firmicutes was negatively correlated with these DEGs. CONCLUSION: We profiled the characteristics of lung microbiota and immune landscape in PCP, which may contribute to elucidating the mechanism of PCP.

17.
Microorganisms ; 12(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38930448

ABSTRACT

Hot springs worldwide can be a source of extremophilic microorganisms of biotechnological interest. In this study, samplings of a hot spring in Hidalgo, Mexico, were conducted to isolate, identify, and characterize morphologically, biochemically, and molecularly those bacterial strains with potential industrial applications. In addition, a physicochemical and geochemical examination of the hot spring was conducted to fully understand the study region and its potential connection to the strains discovered. The hot spring was classified as sulfate-calcic according to the Piper Diagram; the hydrogeochemical analysis showed the possible interactions between minerals and water. Eighteen bacterial strains were isolated with optimal growth temperatures from 50 to 55 °C. All strains are Gram-positive, the majority having a rod shape, and one a round shape, and 17 produce endospores. Hydrolysis tests on cellulose, pectin, and xylan agar plates demonstrated enzymatic activity in some of the strains. Molecular identification through the 16S rDNA gene allowed classification of 17 strains within the Phylum Firmicutes and one within Deinococcus-Thermus. The bacterial strains were associated with the genera Anoxybacillus, Bacillus, Anerunibacillus, Paenibacillus, and Deinococcus, indicating a diversity of bacterial strains with potential industrial applications.

18.
Microorganisms ; 12(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930615

ABSTRACT

This study aimed to evaluate the disruption of the swine gut microbiota and histopathological changes caused by infection with enterotoxigenic E. coli. Fecal samples were collected from piglets suffering from diarrhea post-recovery and healthy animals. Intestinal tissues were collected for histopathological changes. The results revealed histopathological changes mainly in the ileum of the infected animals compared to those in the ileum of the control and recovered animals. The operational taxonomic units (OTUs) revealed that the E. coli diarrheal group exhibited the highest bacterial richness. Principal coordinate analysis (PCoA) corroborated the presence of dysbiosis in the gut microbiota following E. coli-induced diarrhea. While the normal control and infected groups displayed slight clustering, the recovery group formed a distinct cluster with a distinct flora. Bacteroidetes, Firmicutes, and Fusobacteria were the dominant phyla in both the healthy and recovered piglets and in the diarrheal group. LEfSe and the associated LDA score analysis revealed that the recovered group exhibited dominance of the phyla Euryarchaeota and Bacteroidota, while groups N and I showed dominance of the phyla Firmicutes and Fusobacteriota, respectively. The LDA scores highlighted a significant expression of the Muribaculacea family in group R. The obtained findings will help in understanding the microbiome during swine colibacillosis, which will support control of the outbreaks.

19.
Obes Surg ; 34(8): 2835-2843, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38913272

ABSTRACT

BACKGROUND: Bariatric surgery, a significant intervention for obesity, may influence weight loss through changes in gut microbiota, particularly the Firmicutes and Bacteroidetes. This study explores these potential shifts and their metabolic implications. MATERIALS: We conducted a cross-sectional study involving patients who had undergone bariatric surgery. Stool samples were collected at baseline, 3 months, and 6 months post-operation. We performed DNA extraction and quantified the bacterial phyla Firmicutes and Bacteroidetes to assess changes in the gut microbiota over time. RESULTS: Our research revealed a significant alteration in the gut microbiota following bariatric surgery. In diabetic individuals, there was a marked increase in the average number of Firmicutes bacteria at both 3 and 6 months post-operation, compared to pre-surgery levels. In contrast, non-diabetic subjects experienced a notable decrease in Firmicutes during the same timeframe. Regarding Bacteroidetes bacteria, the trend was reversed; diabetic patients showed a significant reduction, while non-diabetics exhibited an increase after the surgery. These findings highlight the dynamic changes in gut microbiota composition associated with bariatric surgery and its potential link to metabolic changes post-operation. CONCLUSION: These findings suggest that obesity alters the gut's microbial composition. The observed bacterial fluctuations, particularly in the dominant Firmicutes and Bacteroidetes groups, are likely contributors to the weight loss experienced post-surgery. This alteration in gut bacteria underscores the complex interplay between microbiota and metabolic health, highlighting potential avenues for therapeutic intervention.


Subject(s)
Bacteroidetes , Bariatric Surgery , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Obesity, Morbid , Weight Loss , Humans , Diabetes Mellitus, Type 2/microbiology , Gastrointestinal Microbiome/physiology , Cross-Sectional Studies , Female , Male , Adult , Middle Aged , Obesity, Morbid/surgery , Obesity, Morbid/microbiology , Bacteroidetes/isolation & purification , Feces/microbiology , Firmicutes/isolation & purification
20.
Microb Pathog ; 193: 106726, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38848931

ABSTRACT

Gut bacterial dysbiosis has been linked to several gastrointestinal diseases, including deadly colorectal cancer (CRC), a leading cause of mortality in cancer patients. However, perturbation in gut bacteriome during colon cancer (CC, devoid of colorectal malignancy) remains poorly explored. Here, 16S rRNA gene amplicon sequencing was carried out for fecal DNA samples targeted to hypervariable V3-V4 region by employing MiSeq platform to explore the gut bacterial community shift in CC patients. While alpha diversity indices predicted high species richness and diversity, beta diversity showed marked gut bacterial compositional dissimilarity in CC versus healthy controls (HC, n = 10 each). We observed a significant (p < 0.05, Wilcoxon Rank-Sum test) emergence of low-abundant anaerobic taxa, including Parvimonas and Peptostreptococcus, in addition to Subdoligranulum, Coprococcus, Holdemanella, Solobacterium, Bilophila, Blautia, Dorea, Moryella and several unidentified taxa, mainly affiliated to Firmicutes, in CC patients. In addition, we also traced the emergence of putative probiotic taxon Slackia, belonging to Actinomycetota, in CC patients. The emergence of anaerobic Firmicutes in CC is accompanied by a significant (p < 0.05) decline in the Klebsiella, as determined through linear discriminant analysis effect size (LEfSe) and heat tree analyses. Shifts in core microbiome and variation in network correlation were also witnessed. Taken together, this study highlighted a significant and consistent emergence of rare anaerobic Firmicutes suggesting possible anaerobiosis driving gut microbial community shift, which could be exploited in designing diagnostic and therapeutic tools targeted to CC.


Subject(s)
Colonic Neoplasms , Dysbiosis , Feces , Firmicutes , Gastrointestinal Microbiome , Klebsiella , RNA, Ribosomal, 16S , Humans , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Colonic Neoplasms/microbiology , Klebsiella/genetics , Klebsiella/isolation & purification , Klebsiella/classification , Feces/microbiology , Firmicutes/genetics , Firmicutes/isolation & purification , Firmicutes/classification , Dysbiosis/microbiology , Male , Female , DNA, Bacterial/genetics , Middle Aged , Aged , Phylogeny , Anaerobiosis
SELECTION OF CITATIONS
SEARCH DETAIL