Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 273
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000146

ABSTRACT

Alzheimer's Disease (AD) and Frontotemporal Dementia (FTD) are the two major neurodegenerative diseases with distinct clinical and neuropathological profiles. The aim of this report is to conduct a population-based investigation in well-characterized APP, PSEN1, PSEN2, MAPT, GRN, and C9orf72 mutation carriers/pedigrees from the north, the center, and the south of Italy. We retrospectively analyzed the data of 467 Italian individuals. We identified 21 different GRN mutations, 20 PSEN1, 11 MAPT, 9 PSEN2, and 4 APP. Moreover, we observed geographical variability in mutation frequencies by looking at each cohort of participants, and we observed a significant difference in age at onset among the genetic groups. Our study provides evidence that age at onset is influenced by the genetic group. Further work in identifying both genetic and environmental factors that modify the phenotypes in all groups is needed. Our study reveals Italian regional differences among the most relevant AD/FTD causative genes and emphasizes how the collaborative studies in rare diseases can provide new insights to expand knowledge on genetic/epigenetic modulators of age at onset.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Mutation , tau Proteins , Humans , Alzheimer Disease/genetics , Alzheimer Disease/epidemiology , Italy/epidemiology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/epidemiology , Frontotemporal Dementia/pathology , Female , Male , Middle Aged , Aged , tau Proteins/genetics , Age of Onset , C9orf72 Protein/genetics , Presenilin-2/genetics , Retrospective Studies , Amyloid beta-Protein Precursor/genetics , Presenilin-1/genetics , Progranulins/genetics , Adult , Aged, 80 and over , Genetic Predisposition to Disease
2.
Int J Mol Sci ; 25(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39000564

ABSTRACT

Alzheimer's disease (AD) and Frontotemporal lobar degeneration (FTLD) represent the most common forms of neurodegenerative dementias with a highly phenotypic variability. Herein, we investigated the role of genetic variants related to the immune system and inflammation as genetic modulators in AD and related dementias. In patients with sporadic AD/FTLD (n = 300) and GRN/C9orf72 mutation carriers (n = 80), we performed a targeted sequencing of 50 genes belonging to the immune system and inflammation, selected based on their high expression in brain regions and low tolerance to genetic variation. The linear regression analyses revealed two genetic variants: (i) the rs1049296 in the transferrin (TF) gene, shown to be significantly associated with age at onset in the sporadic AD group, anticipating the disease onset of 4 years for each SNP allele with respect to the wild-type allele, and (ii) the rs7550295 in the calsyntenin-1 (CLSTN1) gene, which was significantly associated with age at onset in the C9orf72 group, delaying the disease onset of 17 years in patients carrying the SNP allele. In conclusion, our data support the role of genetic variants in iron metabolism (TF) and in the modulation of the calcium signalling/axonal anterograde transport of vesicles (CLSTN1) as genetic modulators in AD and FTLD due to C9orf72 expansions.


Subject(s)
Age of Onset , Alzheimer Disease , C9orf72 Protein , Frontotemporal Lobar Degeneration , Humans , Alzheimer Disease/genetics , C9orf72 Protein/genetics , Frontotemporal Lobar Degeneration/genetics , Female , Male , Aged , Middle Aged , DNA Repeat Expansion/genetics , Aged, 80 and over , Polymorphism, Single Nucleotide , Transferrin/genetics , Transferrin/metabolism , Genetic Predisposition to Disease , Genetic Variation
3.
Biomedicines ; 12(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38927481

ABSTRACT

Hydra head formation depends on an organizing center in which Wnt/ß-catenin signaling, that plays an inductive role, positively regulates Sp5 and Zic4, with Sp5 limiting Wnt3/ß-catenin expression and Zic4 triggering tentacle formation. Using transgenic lines in which the HySp5 promoter drives eGFP expression in either the epidermis or gastrodermis, we show that Sp5 promoter activity is differentially regulated in each epithelial layer. In intact animals, epidermal HySp5:GFP activity is strong apically and weak along the body column, while in the gastrodermis, it is maximal in the tentacle ring region and maintained at a high level along the upper body column. During apical regeneration, HySp5:GFP is activated early in the gastrodermis and later in the epidermis. Alsterpaullone treatment induces a shift in apical HySp5:GFP expression towards the body column where it forms transient circular figures in the epidermis. Upon ß-catenin(RNAi), HySp5:GFP activity is down-regulated in the epidermis while bud-like structures expressing HySp5:GFP in the gastrodermis develop. Sp5(RNAi) reveals a negative Sp5 autoregulation in the epidermis, but not in the gastrodermis. These differential regulations in the epidermis and gastrodermis highlight the distinct architectures of the Wnt/ß-catenin/TCF/Sp5/Zic4 network in the hypostome, tentacle base and body column of intact animals, as well as in the buds and apical and basal regenerating tips.

4.
Brain Res ; 1840: 149031, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823507

ABSTRACT

BACKGROUND: Prior research has shown that granulin precursor (GRN, also termed PGRN) is closely linked to aphasia. However, there has been little research on the mechanism of action of GRN in post-stroke aphasia (PSA). METHODS: In this study, RT-qPCR was used to identify variations in gene expression, while RNA sequencing (RNA-seq) was utilized to acquire transcriptional profiles. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were employed for bioinformatics analysis. RESULTS: GRN was considerably more active in PSA subjects. After silencing the GRN, 197 transcripts had differential expression, and 237 alternative splicing events (ASEs) were substantially affected. The analysis of differentially expressed genes (DEGs) using GO and KEGG approaches showed that these genes have various molecular functions and are significantly enriched in metabolic signaling pathways. Regarding Alternative Splicing (AS), the GO and KEGG analyses revealed numerous functional genes involved in transcription and metabolism. CONCLUSIONS: The knockdown of GRN has been shown to be associated with alterations in transcription, metabolism, and ASEs, potentially impacting transcriptional and metabolic pathways through its involvement in AS. Furthermore, GRN knockdown is associated with nervous system disease-related gene transcription and AS processes, as well as its involvement in G protein-coupled receptor (GPCR) and wingless/integrated (Wnt) signaling pathways, which impact the initiation and resolution of PSA.

5.
Res Sq ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38854033

ABSTRACT

A comprehensive understanding of the intricate cellular and molecular changes governing the complex interactions between cells within acne lesions is currently lacking. Herein, we analyzed early papules from six subjects with active acne vulgaris, utilizing single-cell and high-resolution spatial RNA sequencing. We observed significant changes in signaling pathways across seven different cell types when comparing lesional skin samples (LSS) to healthy skin samples (HSS). Using CellChat, we constructed an atlas of signaling pathways for the HSS, identifying key signal distributions and cell-specific genes within individual clusters. Further, our comparative analysis revealed changes in 49 signaling pathways across all cell clusters in the LSS- 4 exhibited decreased activity, whereas 45 were upregulated, suggesting that acne significantly alters cellular dynamics. We identified ten molecules, including GRN, IL-13RA1 and SDC1 that were consistently altered in all donors. Subsequently, we focused on the function of GRN and IL-13RA1 in TREM2 macrophages and keratinocytes as these cells participate in inflammation and hyperkeratinization in the early stages of acne development. We evaluated their function in TREM2 macrophages and the HaCaT cell line. We found that GRN increased the expression of proinflammatory cytokines and chemokines, including IL-18, CCL5, and CXCL2 in TREM2 macrophages. Additionally, the activation of IL-13RA1 by IL-13 in HaCaT cells promoted the dysregulation of genes associated with hyperkeratinization, including KRT17, KRT16, and FLG. These findings suggest that modulating the GRN-SORT1 and IL-13-IL-13RA1 signaling pathways could be a promising approach for developing new acne treatments.

6.
Front Microbiol ; 15: 1369349, 2024.
Article in English | MEDLINE | ID: mdl-38721600

ABSTRACT

Introduction: Systemic dimorphic fungi pose a significant public health challenge, causing over one million new infections annually. The dimorphic transition between saprophytic mycelia and pathogenic yeasts is strongly associated with the pathogenesis of dimorphic fungi. However, despite the dynamic nature of dimorphic transition, the current omics studies focused on dimorphic transition primarily employ static strategies, partly due to the lack of suitable dynamic analytical methods. Methods: We conducted time-course transcriptional profiling during the dimorphic transition of Talaromyces marneffei, a model organism for thermally dimorphic fungi. To capture non-uniform and nonlinear transcriptional changes, we developed DyGAM-NS (dynamic optimized generalized additive model with natural cubic smoothing). The performance of DyGAM-NS was evaluated by comparison with seven other commonly used time-course analysis methods. Based on dimorphic transition induced genes (DTIGs) identified by DyGAM-NS, cluster analysis was utilized to discern distinct gene expression patterns throughout dimorphic transitions of T. marneffei. Simultaneously, a gene expression regulatory network was constructed to probe pivotal regulatory elements governing the dimorphic transitions. Results: By using DyGAM-NS, model, we identified 5,223 DTIGs of T. marneffei. Notably, the DyGAM-NS model showcases performance on par with or superior to other commonly used models, achieving the highest F1 score in our assessment. Moreover, the DyGAM-NS model also demonstrates potential in predicting gene expression levels throughout temporal processes. The cluster analysis of DTIGs suggests divergent gene expression patterns between mycelium-to-yeast and yeast-to-mycelium transitions, indicating the asymmetrical nature of two transition directions. Additionally, leveraging the identified DTIGs, we constructed a regulatory network for the dimorphic transition and identified two zinc finger-containing transcription factors that potentially regulate dimorphic transition in T. marneffei. Discussion: Our study elucidates the dynamic transcriptional profile changes during the dimorphic transition of T. marneffei. Furthermore, it offers a novel perspective for unraveling the underlying mechanisms of fungal dimorphism, emphasizing the importance of dynamic analytical methods in understanding complex biological processes.

7.
J Cell Physiol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747637

ABSTRACT

Critical reprogramming factors resided predominantly in the oocyte or male pronucleus can enhance the efficiency or the quality of induced pluripotent stem cells (iPSCs) induction. However, few reprogramming factors exist in the male pronucleus had been verified. Here, we demonstrated that granulin (Grn), a factor enriched specifically in male pronucleus, can significantly improve the generation of iPSCs from mouse fibroblasts. Grn is highly expressed on Day 1, Day 3, Day 14 of reprogramming induced by four Yamanaka factors and functions at the initial stage of reprogramming. Transcriptome analysis indicates that Grn can promote the expression of lysosome-related genes, while inhibit the expression of genes involved in DNA replication and cell cycle at the early reprogramming stage. Further verification determined that Grn suppressed cell proliferation due to the arrest of cell cycle at G2/M phase. Moreover, ectopic Grn can enhance the lysosomes abundance and rescue the efficiency reduction of reprogramming resulted from lysosomal protease inhibition. Taken together, we conclude that Grn serves as an activator for somatic cell reprogramming through mitigating cell hyperproliferation and promoting the function of lysosomes.

8.
BMC Bioinformatics ; 25(1): 192, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750431

ABSTRACT

BACKGROUND: Researchers have long studied the regulatory processes of genes to uncover their functions. Gene regulatory network analysis is one of the popular approaches for understanding these processes, requiring accurate identification of interactions among the genes to establish the gene regulatory network. Advances in genome-wide association studies and expression quantitative trait loci studies have led to a wealth of genomic data, facilitating more accurate inference of gene-gene interactions. However, unknown confounding factors may influence these interactions, making their interpretation complicated. Mendelian randomization (MR) has emerged as a valuable tool for causal inference in genetics, addressing confounding effects by estimating causal relationships using instrumental variables. In this paper, we propose a new statistical method, MR-GGI, for accurately inferring gene-gene interactions using Mendelian randomization. RESULTS: MR-GGI applies one gene as the exposure and another as the outcome, using causal cis-single-nucleotide polymorphisms as instrumental variables in the inverse-variance weighted MR model. Through simulations, we have demonstrated MR-GGI's ability to control type 1 error and maintain statistical power despite confounding effects. MR-GGI performed the best when compared to other methods using the F1 score on the DREAM5 dataset. Additionally, when applied to yeast genomic data, MR-GGI successfully identified six clusters. Through gene ontology analysis, we have confirmed that each cluster in our study performs distinct functional roles by gathering genes with specific functions. CONCLUSION: These findings demonstrate that MR-GGI accurately inferences gene-gene interactions despite the confounding effects in real biological environments.


Subject(s)
Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Genome-Wide Association Study/methods , Gene Regulatory Networks/genetics , Epistasis, Genetic/genetics , Quantitative Trait Loci , Humans , Saccharomyces cerevisiae/genetics
9.
J Alzheimers Dis Rep ; 8(1): 709-713, 2024.
Article in English | MEDLINE | ID: mdl-38746633

ABSTRACT

A 60-year-old man presented to a Neurology Clinic specialized in cognitive disorders to evaluate memory complaints. A comprehensive neuropsychological examination detected an isolated and severe hippocampal memory deficit. Laboratory tests, brain magnetic resonance imaging (MRI), and cerebrospinal fluid (CSF) tests, including Alzheimer's disease (AD) biomarkers, did not show remarkable results. Due to family history of cognitive impairment, we extended the study to non-Alzheimer monogenic mutations (Next Generation Sequencing) detecting a pathogenic variant of the progranulin (PGRN) gene (c.1414-1 G > T) which has been previously associated with the same phenotype. These results should be considered in patients with an Alzheimer-like presentation, negative AD biomarkers' results, and family history of dementia.

10.
Expert Opin Investig Drugs ; 33(6): 561-573, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38687620

ABSTRACT

INTRODUCTION: Frontotemporal dementia (FTD) includes a group of neurodegenerative diseases characterized clinically by behavioral disturbances and by neurodegeneration of brain anterior temporal and frontal lobes, leading to atrophy. Apart from symptomatic treatments, there is, at present, no disease-modifying cure for FTD. AREAS COVERED: Three main mutations are known as causes of familial FTD, and large consortia have studied carriers of mutations, also in preclinical Phases. As genetic cases are the only ones in which the pathology can be predicted in life, compounds developed so far are directed toward specific proteins or mutations. Herein, recently approved clinical trials will be summarized, including molecules, mechanisms of action and pharmacological testing. EXPERT OPINION: These studies are paving the way for the future. They will clarify whether single mutations should be addressed rather than common proteins depositing in the brain to move from genetic to sporadic FTD.


Subject(s)
Frontotemporal Dementia , Mutation , Humans , Frontotemporal Dementia/genetics , Frontotemporal Dementia/drug therapy , Frontotemporal Dementia/physiopathology , Frontotemporal Dementia/pathology , Frontotemporal Dementia/therapy , Animals , Drug Development
11.
Cancer Lett ; 589: 216795, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38556106

ABSTRACT

The immune microenvironment constructed by tumor-infiltrating immune cells and the molecular phenotype defined by hormone receptors (HRs) have been implicated as decisive factors in the regulation of breast cancer (BC) progression. Here, we found that the infiltration of mast cells (MCs) informed impaired prognoses in HR(+) BC but predicted improved prognoses in HR(-) BC. However, molecular features of MCs in different BC remain unclear. We next discovered that HR(-) BC cells were prone to apoptosis under the stimulation of MCs, whereas HR(+) BC cells exerted anti-apoptotic effects. Mechanistically, in HR(+) BC, the KIT ligand (KITLG), a major mast cell growth factor in recruiting and activating MCs, could be transcriptionally upregulated by the progesterone receptor (PGR), and elevate the production of MC-derived granulin (GRN). GRN attenuates TNFα-induced apoptosis in BC cells by competitively binding to TNFR1. Furthermore, disruption of PGR-KITLG signaling by knocking down PGR or using the specific KITLG-cKIT inhibitor iSCK03 potently enhanced the sensitivity of HR(+) BC cells to MC-induced apoptosis and exerted anti-tumor activity. Collectively, these results demonstrate that PGR-KITLG signaling in BC cells preferentially induces GRN expression in MCs to exert anti-apoptotic effects, with potential value in developing precision medicine approaches for diagnosis and treatment.


Subject(s)
Breast Neoplasms , Stem Cell Factor , Humans , Female , Stem Cell Factor/genetics , Stem Cell Factor/metabolism , Mast Cells/pathology , Breast Neoplasms/pathology , Feedback , Apoptosis , Tumor Microenvironment
12.
J Proteome Res ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38415376

ABSTRACT

Human induced pluripotent stem cells (iPSCs) can be differentiated into neurons, providing living human neurons to model brain diseases. However, it is unclear how different types of molecules work together to regulate stem cell and neuron biology in healthy and disease states. In this study, we conducted integrated proteomics, lipidomics, and metabolomics analyses with confident identification, accurate quantification, and reproducible measurements to compare the molecular profiles of human iPSCs and iPSC-derived neurons. Proteins, lipids, and metabolites related to mitosis, DNA replication, pluripotency, glycosphingolipids, and energy metabolism were highly enriched in iPSCs, whereas synaptic proteins, neurotransmitters, polyunsaturated fatty acids, cardiolipins, and axon guidance pathways were highly enriched in neurons. Mutations in the GRN gene lead to the deficiency of the progranulin (PGRN) protein, which has been associated with various neurodegenerative diseases. Using this multiomics platform, we evaluated the impact of PGRN deficiency on iPSCs and neurons at the whole-cell level. Proteomics, lipidomics, and metabolomics analyses implicated PGRN's roles in neuroinflammation, purine metabolism, and neurite outgrowth, revealing commonly altered pathways related to neuron projection, synaptic dysfunction, and brain metabolism. Multiomics data sets also pointed toward the same hypothesis that neurons seem to be more susceptible to PGRN loss compared to iPSCs, consistent with the neurological symptoms and cognitive impairment from patients carrying inherited GRN mutations.

13.
Dev Cell ; 59(6): 793-811.e8, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38330939

ABSTRACT

Despite recent advances in single-cell genomics, the lack of maps for single-cell candidate cis-regulatory elements (cCREs) in non-mammal species has limited our exploration of conserved regulatory programs across vertebrates and invertebrates. Here, we developed a combinatorial-hybridization-based method for single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) named CH-ATAC-seq, enabling the construction of single-cell accessible chromatin landscapes for zebrafish, Drosophila, and earthworms (Eisenia andrei). By integrating scATAC censuses of humans, monkeys, and mice, we systematically identified 152 distinct main cell types and around 0.8 million cell-type-specific cCREs. Our analysis provided insights into the conservation of neural, muscle, and immune lineages across species, while epithelial cells exhibited a higher organ-origin heterogeneity. Additionally, a large-scale gene regulatory network (GRN) was constructed in four vertebrates by integrating scRNA-seq censuses. Overall, our study provides a valuable resource for comparative epigenomics, identifying the evolutionary conservation and divergence of gene regulation across different species.


Subject(s)
Chromatin Immunoprecipitation Sequencing , Chromatin , Humans , Animals , Mice , Zebrafish/genetics , Gene Expression Regulation , Gene Regulatory Networks , Single-Cell Analysis/methods
14.
bioRxiv ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38405775

ABSTRACT

Background: Frontotemporal dementia (FTD) is the most common cause of early-onset dementia with 10-20% of cases caused by mutations in one of three genes: GRN, C9orf72, or MAPT. To effectively develop therapeutics for FTD, the identification and characterization of biomarkers to understand disease pathogenesis and evaluate the impact of specific therapeutic strategies on the target biology as well as the underlying disease pathology are essential. Moreover, tracking the longitudinal changes of these biomarkers throughout disease progression is crucial to discern their correlation with clinical manifestations for potential prognostic usage. Methods: We conducted a comprehensive investigation of biomarkers indicative of lysosomal biology, glial cell activation, synaptic and neuronal health in cerebrospinal fluid (CSF) and plasma from non-carrier controls, sporadic FTD (symptomatic non-carriers) and symptomatic carriers of mutations in GRN, C9orf72, or MAPT, as well as asymptomatic GRN mutation carriers. We also assessed the longitudinal changes of biomarkers in GRN mutation carriers. Furthermore, we examined biomarker levels in disease impacted brain regions including middle temporal gyrus (MTG) and superior frontal gyrus (SFG) and disease-unaffected inferior occipital gyrus (IOG) from sporadic FTD and symptomatic GRN carriers. Results: We confirmed glucosylsphingosine (GlcSph), a lysosomal biomarker regulated by progranulin, was elevated in the plasma from GRN mutation carriers, both symptomatic and asymptomatic. GlcSph and other lysosomal biomarkers such as ganglioside GM2 and globoside GB3 were increased in the disease affected SFG and MTG regions from sporadic FTD and symptomatic GRN mutation carriers, but not in the IOG, compared to the same brain regions from controls. The glial biomarkers GFAP in plasma and YKL40 in CSF were elevated in asymptomatic GRN carriers, and all symptomatic groups, except the symptomatic C9orf72 mutation group. YKL40 was also increased in SFG and MTG regions from sporadic FTD and symptomatic GRN mutation carriers. Neuronal injury and degeneration biomarkers NfL in CSF and plasma, and UCHL1 in CSF were elevated in patients with all forms of FTD. Synaptic biomarkers NPTXR, NPTX1/2, and VGF were reduced in CSF from patients with all forms of FTD, with the most pronounced reductions observed in symptomatic MAPT mutation carriers. Furthermore, we demonstrated plasma NfL was significantly positively correlated with disease severity as measured by CDR+NACC FTLD SB in genetic forms of FTD and CSF NPTXR was significantly negatively correlated with CDR+NACC FTLD SB in symptomatic GRN and MAPT mutation carriers. Conclusions: In conclusion, our comprehensive investigation replicated alterations in biofluid biomarkers indicative of lysosomal function, glial activation, synaptic and neuronal health across sporadic and genetic forms of FTD and unveiled novel insights into the dysregulation of these biomarkers within brain tissues from patients with GRN mutations. The observed correlations between biomarkers and disease severity open promising avenues for prognostic applications and for indicators of drug efficacy in clinical trials. Our data also implicated a complicated relationship between biofluid and tissue biomarker changes and future investigations should delve into the mechanistic underpinnings of these biomarkers, which will serve as a foundation for the development of targeted therapeutics for FTD.

15.
J Alzheimers Dis ; 98(2): 425-432, 2024.
Article in English | MEDLINE | ID: mdl-38393901

ABSTRACT

Background: Behavioral variant frontotemporal dementia (bvFTD) typically involves subtle changes in personality that can delay a timely diagnosis. Objective: Here, we report the case of a patient diagnosed of GRN-positive bvFTD at the age of 52 presenting with a 7-year history of narcissistic personality disorder, accordingly to DSM-5 criteria. Methods: The patient was referred to neurological and neuropsychological examination. She underwent 3 Tesla magnetic resonance imaging (MRI) and genetic studies. Results: The neuropsychological examination revealed profound deficits in all cognitive domains and 3T brain MRI showed marked fronto-temporal atrophy. A mutation in the GRN gene further confirmed the diagnosis. Conclusions: The present case documents an unusual onset of bvFTD and highlights the problematic nature of the differential diagnosis between prodromal psychiatric features of the disease and primary psychiatric disorders. Early recognition and diagnosis of bvFTD can lead to appropriate management and support for patients and their families. This case highlights the importance of considering neurodegenerative diseases, such as bvFTD, in the differential diagnosis of psychiatric disorders, especially when exacerbations of behavioral traits manifest in adults.


Subject(s)
Frontotemporal Dementia , Female , Humans , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Narcissistic Personality Disorder , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging , Neuropsychological Tests , Progranulins
16.
Clin Chim Acta ; 556: 117830, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38354999

ABSTRACT

Protease inhibitors (PIs) are associated with an incidence of lipodystrophy among people living with HIV(PLHIV). Lipodystrophiesare characterised by the loss of adipose tissue. Evidence suggests that a patient's lipodystrophy phenotype is influenced by genetic mutation, age, gender, and environmental and genetic factors, such as single-nucleotide variants (SNVs). Pathogenic variants are considered to cause a more significant loss of adipose tissue compared to non-pathogenic. Lipid metabolising enzymes and transporter genes have a role in regulating lipoprotein metabolism and have been associated with lipodystrophy in HIV-infected patients (LDHIV). The long-term effect of the lipodystrophy syndrome is related to cardiovascular diseases (CVDs). Hence, we determined the SNVs of lipid metabolising enzymes and transporter genes in a total of 48 patient samples, of which 24 were with and 24 were without HIV-associated lipodystrophy (HIVLD) using next-generation sequencing. A panel of lipid metabolism, transport and elimination genes were sequenced. Three novel heterozygous non-synonymous variants at exon 8 (c.C1400A:p.S467Y, c.G1385A:p.G462E, and c.T1339C:p.S447P) in the ABCB6 gene were identified in patients with lipodystrophy. One homozygous non-synonymous SNV (exon5:c.T358C:p.S120P) in the GRN gene was identified in patients with lipodystrophy. One novelstop-gain SNV (exon5:c.C373T:p.Q125X) was found in the GRN gene among patients without lipodystrophy. Patients without lipodystrophy had one homozygous non-synonymous SNV (exon9:c.G1462T:p.G488C) in the ABCB6 gene. Our findings suggest that novel heterozygous non-synonymous variants in the ABCB6 gene may contribute to defective protein production, potentially intensifying the severity of lipodystrophy. Additionally, identifying a stop-gain SNV in the GRN gene among patients without lipodystrophy implies a potential role in the development of HIVLD.


Subject(s)
HIV Infections , HIV-Associated Lipodystrophy Syndrome , Lipodystrophy , Humans , HIV-Associated Lipodystrophy Syndrome/genetics , HIV-Associated Lipodystrophy Syndrome/complications , Lipodystrophy/genetics , Lipodystrophy/complications , Lipodystrophy/epidemiology , Mutation , Adipose Tissue , Lipids , HIV Infections/complications , HIV Infections/genetics , ATP-Binding Cassette Transporters/genetics , Progranulins/genetics
17.
Immunotargets Ther ; 13: 29-44, 2024.
Article in English | MEDLINE | ID: mdl-38322277

ABSTRACT

Purpose: The pathogenesis of T cell subsets in sepsis during the body's resistance to infection is currently unknown. We aimed to investigate the dynamics and molecular mechanisms of T cells during the development of sepsis. Patients and Methods: Perform single-cell data analysis on peripheral blood mononuclear cells (PBMCs) specimen samples from seven healthy controls, five early-stage sepsis patients, and four late sepsis patients, and the atlas were mapped and analyzed using reference mapping to identify the T cell subpopulations specific to early sepsis. Expression network upstream to investigate the changes of regulatory transcription factors and pathways by pySCENIC. Results: Twenty-two CD4+ T-cell subpopulations and 10 CD8+ T-cell subpopulations were identified by mapping analysis. At the early stage of sepsis, we observed altered ratios of multiple immune cells in PBMCs. Three cell types CD4 Tn cells, CD8 (GZMK+ early Tem), and CD8 (ZNF683+CXCR6- Tm) showed an upward trend (p < 0.05) in the early stages of sepsis compared to normal and returned to normal levels after two weeks. In addition, we found the presence of four sepsis-specific transcription factors (MXI1, CHD1, ARID5A, KLF9) in these three types of cells, which were validated in two external datasets. The differentially expressed genes in CD4 Tn cells, CD8 (GZMK+ early Tem), and CD8 (ZNF683+CXCR6- Tm) cells between the healthy group and the early-stage sepsis group are commonly enriched in the allograft rejection pathway. In addition, it was found that CD8 cells exhibit a trend towards differentiation into CD8 Temra cells in sepsis. Conclusion: We successfully depicted the dynamic changes of T cell subsets during sepsis onset and progression, which provides important clues for an in-depth understanding of T cells' function and regulatory mechanisms during sepsis pathogenesis.

18.
Alzheimers Dement (N Y) ; 10(1): e12452, 2024.
Article in English | MEDLINE | ID: mdl-38356474

ABSTRACT

INTRODUCTION: Heterozygous mutations in the GRN gene lead to reduced progranulin (PGRN) levels in plasma and cerebrospinal fluid (CSF) and are causative of frontotemporal dementia (FTD) with > 90% penetrance. Latozinemab is a human monoclonal immunoglobulin G1 antibody that is being developed to increase PGRN levels in individuals with FTD caused by heterozygous loss-of-function GRN mutations. METHODS: A first-in-human phase 1 study was conducted to evaluate the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of multiple-dose intravenous administration of latozinemab in eight symptomatic participants with FTD caused by a heterozygous loss-of-function GRN mutation (FTD-GRN). RESULTS: Latozinemab demonstrated favorable safety and PK/PD profiles. Multiple-dose administration of latozinemab increased plasma and CSF PGRN levels in participants with FTD-GRN to levels that approximated those seen in healthy volunteers. DISCUSSION: Data from the first-in-human phase 1 study support further development of latozinemab for the treatment of FTD-GRN. Highlights: GRN mutations decrease progranulin (PGRN) and cause frontotemporal dementia (FTD).Latozinemab is being developed as a PGRN-elevating therapy.Latozinemab demonstrated a favorable safety profile in a phase 1 clinical trial.Latozinemab increased PGRN levels in the CNS of symptomatic FTD-GRN participants.

19.
J Pediatr Endocrinol Metab ; 37(3): 280-288, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38253347

ABSTRACT

OBJECTIVES: Neuronal ceroid lipofuscinosis type 11 (NCL11) is a rare disease that presents with progressive cognitive decline, epilepsy, visual impairment, retinal atrophy, cerebellar ataxia and cerebellar atrophy. We present herein a case of NCL11 in a patient diagnosed with neuromotor developmental delay, epilepsy, bronchiolitis obliterans and hypothyroidism. CASE PRESENTATION: A 4-year-old male patient was admitted to our clinic with global developmental delay and a medical history that included recurrent hospitalizations for pneumonia at the age of 17 days, and in months 4, 5 and 7. Family history revealed a brother with similar clinical findings (recurrent pneumonia, hypothyroidism, hypotonicity, swallowing dysfunction and neuromotor delay) who died from pneumonia at the age of 22 months. Computed tomography of the thorax was consistent with bronchiolitis obliterans, while epileptic discharges were identified on electroencephalogram with a high incidence of bilateral fronto-centro-temporal and generalized spike-wave activity but no photoparoxysmal response. Cranial MRI revealed T2 hyperintense areas in the occipital periventricular white matter and volume loss in the white matter, a thin corpus callosum and vermis atrophy. A whole-exome sequencing molecular analysis revealed compound heterozygous c.430G>A (p.Asp144Asn) and c.415T>C (p.Cys139Arg) variants in the GRN gene. CONCLUSIONS: The presented case indicates that NCL11 should be taken into account in patients with epilepsy and neurodegenerative diseases.


Subject(s)
Bronchiolitis Obliterans , Epilepsy , Hypothyroidism , Neuronal Ceroid-Lipofuscinoses , Pneumonia , Male , Humans , Infant, Newborn , Infant , Child, Preschool , Neuronal Ceroid-Lipofuscinoses/complications , Neuronal Ceroid-Lipofuscinoses/diagnosis , Neuronal Ceroid-Lipofuscinoses/genetics , Epilepsy/genetics , Atrophy , Progranulins/genetics
20.
bioRxiv ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38260477

ABSTRACT

Caenorhabditis elegans males undergo sex-specific tail tip morphogenesis (TTM) under the control of the transcription factor DMD-3. To find genes regulated by DMD-3, We performed RNA-seq of laser-dissected tail tips. We identified 564 genes differentially expressed (DE) in wild-type males vs. dmd-3(-) males and hermaphrodites. The transcription profile of dmd-3(-) tail tips is similar to that in hermaphrodites. For validation, we analyzed transcriptional reporters for 49 genes and found male-specific or male-biased expression for 26 genes. Only 11 DE genes overlapped with genes found in a previous RNAi screen for defective TTM. GO enrichment analysis of DE genes finds upregulation of genes within the UPR (unfolded protein response) pathway and downregulation of genes involved in cuticle maintenance. Of the DE genes, 40 are transcription factors, indicating that the gene network downstream of DMD-3 is complex and potentially modular. We propose modules of genes that act together in TTM and are coregulated by DMD-3, among them the chondroitin synthesis pathway and the hypertonic stress response.

SELECTION OF CITATIONS
SEARCH DETAIL
...