Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 314
Filter
1.
Front Plant Sci ; 15: 1438038, 2024.
Article in English | MEDLINE | ID: mdl-39376233

ABSTRACT

Soilless production systems (i.e hydroponics, aeroponics, aquaponics) have become commonplace in urban settings and controlled environments. They are efficient nutrient recyclers, space savers, and water conservers. However, they lack high levels of biological richness in the root microbiome when compared to soil production systems, which may affect plant health and nutrient uptake. To address this issue and incorporate more sustainable practices, beneficial microorganisms (i.e. Trichoderma spp., Bacillus sp.) can be added in the form of biofertilizers. However, many factors affect impacts of microorganisms and their interactions with plants. In this experiment, Black Summer Pac Choi (Brassica rapa var. Chinensis) was grown for two trials in a Deep-Water system (DWS) or a Nutrient Film Technique system (NFT) with commercial biofertilizers containing Trichoderma spp., Bacillus amyloliquefaciens, a combination of both, and a control. Plant physiology, nutrient composition, and nutrient uptake efficiency (NUE) were generally negatively affected by Trichoderma spp. both growing systems, indicating that Trichoderma may not be recommended for hydroponic production. However, Bacillus amyloliquefaciens showed promise as an effective biofertilizer in the NFT systems and had a positive influence on NUE in DWS.

2.
Plants (Basel) ; 13(18)2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39339562

ABSTRACT

The application of biostimulants in vegetable cultivation has emerged as a promising approach to enhance the nutritional quality of crops, particularly in controlled environment agriculture and soilless culture systems. In this study, we employed a rigorous methodology, applying various biostimulants amino acids, Plant Growth-Promoting Rhizobacteria (PGPR), fulvic acid, chitosan, and vermicompost along with mineral fertilizers, both foliar and via the roots, to soilless greenhouse tomatoes during spring cultivation. The experiment, conducted in a coir pith medium using the 'Samyeli F1' tomato cultivar, demonstrated that plants treated with biostimulants performed better than control plants. Notable variations in nutritional components were observed across treatments. PGPR had the best effects on the physical properties of the tomato fruit, showing the highest fruit weight, fruit length, equatorial diameter, fruit volume, fruit skin elasticity, and fruit flesh hardness while maintaining high color parameters L, a, and b. PGPR and fulvic acid demonstrated significant enhancements in total phenolics and flavonoids, suggesting potential boosts in antioxidant properties. Amioacid and vermicompost notably elevated total soluble solids, indicating potential fruit sweetness and overall taste improvements. On the other hand, vermicompost stood out for its ability to elevate total phenolics and flavonoids while enhancing vitamin C content, indicating a comprehensive enhancement of nutritional quality. In addition, vermicompost had the most significant impact on plant growth parameters and total yield, achieving a 43% increase over the control with a total yield of 10.39 kg/m2. These findings underline the specific nutritional benefits of different biostimulants, offering valuable insights for optimizing tomato cultivation practices to yield produce with enhanced health-promoting properties.

3.
Int J Mol Sci ; 25(18)2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39337645

ABSTRACT

Root morphology, an important determinant of nutrient absorption and plant growth, can adapt to various growth environments to promote survival. Solution flow under hydroponic conditions provides a mechanical stimulus, triggering adaptive biological responses, including altered root morphology and enhanced root growth and surface area to facilitate nutrient absorption. To clarify these mechanisms, we applied untargeted metabolomics technology, detecting 1737 substances in lettuce root samples under different flow rates, including 17 common differential metabolites. The abscisic acid metabolic pathway product dihydrophaseic acid and the amino and nucleotide sugar metabolism factor N-acetyl-d-mannosamine suggest that nutrient solution flow rate affects root organic acid and sugar metabolism to regulate root growth. Spatial metabolomics analysis of the most stressed root bases revealed significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways: "biosynthesis of cofactors" and "amino sugar and nucleotide sugar metabolism". Colocalization analysis of pathway metabolites revealed a flow-dependent spatial distribution, with higher flavin mononucleotide, adenosine-5'-diphosphate, hydrogenobyrinic acid, and D-glucosamine 6-phosphate under flow conditions, the latter two showing downstream-side enrichment. In contrast, phosphoenolpyruvate, 1-phospho-alpha-D-galacturonic acid, 3-hydroxyanthranilic acid, and N-acetyl-D-galactosamine were more abundant under no-flow conditions, with the latter two concentrated on the upstream side. As metabolite distribution is associated with function, observing their spatial distribution in the basal roots will provide a more comprehensive understanding of how metabolites influence plant morphology and response to environmental changes than what is currently available in the literature.


Subject(s)
Hydroponics , Lactuca , Metabolomics , Plant Roots , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Plant Roots/metabolism , Plant Roots/growth & development , Lactuca/metabolism , Lactuca/growth & development , Metabolomics/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Metabolome , Nutrients/metabolism
4.
PeerJ ; 12: e18001, 2024.
Article in English | MEDLINE | ID: mdl-39346031

ABSTRACT

Chromium, being among the most toxic heavy metals, continues to demand immediate attention in the remediation of Cr-contaminated environments. In this study, a strain of LBA36 (Bacillus toyonensis) was isolated from heavy metal contaminated soil in Luanchuan County, Luoyang City, China. The reduction and adsorption rates of LBA36 in 30 mg·L-1 Cr-containing medium were 97.95% and 8.8%, respectively. The reduction mechanism was confirmed by Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS). Cr(VI) reduction by this strain predominantly occurred outside the cell, with hydroxyl, amide, carboxyl, C-N group, carbonyl, and sulfur carbonyl as the main reaction sites. XPS analysis revealed the presence of Cr2p1/2 and Cr2p3/2. Furthermore, the hydroponic experiment showed that the fresh weight and plant height of radish seedlings increased by 87.87% and 37.07%, respectively, after inoculation with LBA36 strain under 7 mg·L-1 Cr(VI) stress. The levels of chlorophyll, total protein, malondialdehyde, superoxide dismutase and catalase were also affected to different degrees. In conclusion, this study demonstrated the potential of microbial and phytoremediation in the treatment of heavy metal toxicity, and laid the foundation for the development of effective bioremediation methods for Cr(VI) pollution.


Subject(s)
Bacillus , Biodegradation, Environmental , Chromium , Raphanus , Seedlings , Soil Pollutants , Chromium/metabolism , Chromium/toxicity , Raphanus/microbiology , Raphanus/metabolism , Seedlings/metabolism , Seedlings/microbiology , Seedlings/drug effects , Seedlings/growth & development , Bacillus/metabolism , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Soil Microbiology , China
5.
Front Plant Sci ; 15: 1414212, 2024.
Article in English | MEDLINE | ID: mdl-39301156

ABSTRACT

To reach the estimated food demands for 2050 in decreasingly suiting climates, current agricultural techniques have to be complemented by sustainably intensified practices. The current study repurposed wheat crop residues into biochar, and investigated its potential in different plant cultivation systems, including a hydroponic cultivation of wheat. Biochars resulting from varying pyrolysis parameters including feedstock composition (straw and chaff) and temperature (450°C and 600°C), were tested using a fast plant screening method. Biochar WBC450, produced from a combination of chaff and straw at 450°C, was selected for further plant experiments, and used in a static leaching experiment in the Arabidopsis thaliana cultivation medium. Increased pH and EC were observed, together with an increase of most macronutrient (K, Mg, P, S) and a decrease of most micronutrient (Fe, Mn, Zn) concentrations. Considering plant growth, application of biochar resulted in concentration-dependent effects in both tested plant species (A. thaliana and wheat). It improved the vegetative yield across all tested cultivation systems. Increases in K and S, and concentration-dependent decreases in Fe and Na content in wheatgrass were observed. Biochar influenced the reproduction of hydroponically cultivated wheat by increasing the number of spikes and the number of seeds per spike. The antioxidative capacity of wheat grass, and the seed sugar and starch contents remained unaffected by biochar application. This study contributes to innovation in soilless cultivation approaches of staple crops, within the framework of closing waste loops for a circular bioeconomy.

6.
J Sci Food Agric ; 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39243168

ABSTRACT

BACKGROUND: Vegetal-derived protein hydrolysates (PHs) have been recognized as sustainable biostimulant products due to their beneficial effects on crops. However, most studies on PHs have been conducted at a fixed ratio of nitrate-to-ammonium (NO3 -:NH4 +) without considering other N application scenarios, leading to inconsistent results among the studies. This study compared the influences of N levels (2 or 10 mM N), NO3:NH4 ratios (100:0, 75:25, 50:50, or 25:75), and PH application methods - control, foliar spray (PH-F) or root application (PH-R) - on the yield, morphology, nutrients, and nutraceutical quality of hydroponic lettuce. RESULTS: Nitrogen level, NO3:NH4 ratio, and PH application affected plant growth, morphology, and quality significantly, highlighting the importance of the interactions among these factors. Shoot growth was influenced by NO3:NH4 ratios, PH, and their interactions. Similar trends were observed in chlorophyll content. The interactions among all three factors significantly influenced root growth and morphology. Root application (PH-R) protected lettuce from yield loss caused by low NO3:NH4 ratios and from reduced antioxidant compounds caused by high N levels. Vegetal-derived protein hydrolysates improved nutrient uptake through two-way and three-way interactions although neither PH nor any interactions affected nitrate concentrations. CONCLUSION: This study demonstrated that PH interacts with N level and NO3:NH4 ratio, affecting hydroponic lettuce yield and quality. In particular, the root application of PH was the most effective method for enhancing yield (shoot fresh weight), quality (chlorophylls, carotenoids, flavonoids, and phenols), and nutrient uptake in hydroponically grown lettuce in relation to N form and level. © 2024 Society of Chemical Industry.

8.
Front Plant Sci ; 15: 1411572, 2024.
Article in English | MEDLINE | ID: mdl-39114473

ABSTRACT

The management of nitrogen (N) fertilization is of fundamental importance in hydroponics. To reduce the supply of nitrate (NO3 -) in fertigation recipes for Batavia lettuce crops grown in closed hydroponics, partial replacement of nitrate by chloride (NO3 -/Cl-) at different ratios but with the same equivalent sum was experimentally tested. The experiment included four nutritional treatments in the replenishment nutrient solution, particularly T1; 0.7 mM Cl-/19 mM NO3 -, T2; 2 mM Cl-/17.7 mM NO3 -, T3; 4 mM Cl-/15.7 mM NO3 - and T4; 6 mM Cl-/13.7 mM NO3 -. The results showed that reducing nitrate supply combined with equivalent increase in chloride application gradually reduced the gap between nitrate input and nitrogen uptake concentrations, with the smallest differences occurring in T4 treatment, which reduced the nitrate concentration in the drainage by 50%. The tested treatments led to very small variations in plant water uptake, production of fresh biomass and nutritional quality, which is justified by the proper functioning of key physiological mechanisms, such as stomatal conductance, which was followed by an increased efficiency of nitrogen use up to 25% (kg fresh biomass kg-1 N supply). The steady level of C/N ratio in the plant tissue irrespective of NO3 -/Cl- supply ratio points to sufficiency in photosynthetic products and adequacy in the supply of nitrogen, although leaf Cl- content increased up to 19.6 mg g-1 dry weight in the lowest NO3 -/Cl- treatment. Nutrient uptake concentrations were determined as follows: 13.4 (N), 1.72 (P), 10.2 (K), 3.13 (Ca), 0.86 (Mg, mmol L-1), 27.8 (Fe), 5.63 (Mn), 5.45 (Zn) and 0.72 (Cu, µmol L-1). This study suggests that replacing 30% of NO3 - supply with Cl- in fertigation recipes for hydroponic lettuce crops reduces leaf nitrate content without affecting physiological processes, growth, and quality, verifying in parallel the role of chloride as a beneficial macronutrient. Finally, a relationship between Cl- uptake and its concentration in the root zone solution was established enabling the simulation of chloride to water consumption.

9.
Heliyon ; 10(15): e34998, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39157372

ABSTRACT

The substantial increase in the human population dramatically strains food supplies. Farmers need healthy soil and natural minerals for traditional farming, and production takes a little longer time. The soil-free farming method known as vertical farming (VF) requires a small land and consumes a very small amount of water than conventional soil-dependent farming techniques. With modern technologies like hydroponics, aeroponics, and aquaponics, the notion of the VF appears to have a promising future in urban areas where farming land is very expensive and scarce. VF faces difficulty in the simultaneous monitoring of multiple indicators, nutrition advice, and plant diagnosis systems. However, these issues can be resolved by implementing current technical advancements like artificial intelligence (AI)-based control techniques such as machine learning (ML), deep learning (DL), the internet of things (IoT), image processing as well as computer vision. This article presents a thorough analysis of ML and IoT applications in VF system. The areas on which the attention is concentrated include disease detection, crop yield prediction, nutrition, and irrigation control management. In order to predict crop yield and crop diseases, the computer vision technique is investigated in view of the classification of distinct collections of crop images. This article also illustrates ML and IoT-based VF systems that can raise product quality and production over the long term. Assessment and evaluation of the knowledge-based VF system have also been outlined in the article with the potential outcomes, advantages, and limitations of ML and IoT in the VF system.

10.
Water Res ; 265: 122197, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39137457

ABSTRACT

Advancements in anaerobic membrane bioreactor (AnMBR) technology have opened up exciting possibilities for sustaining precise water quality control in wastewater treatment and reuse. This approach not only presents an opportunity for energy generation and recovery but also produces an effluent that can serve as a valuable nutrient source for crop cultivation in hydroponic controlled environment agriculture (CEA). In this perspective article, we undertake a comparative analysis of two approaches to municipal wastewater utilization in agriculture. The conventional method, rooted in established practices of conventional activated sludge (CAS) wastewater treatment for soil/land-based agriculture, is contrasted with a new paradigm that integrates AnMBR technology with hydroponic (soilless) CEA. This work encompasses various facets, including wastewater treatment efficiency, effluent quality, resource recovery, and sustainability metrics. By juxtaposing the established methodologies with this emerging synergistic model, this work aims to shed light on the transformative potential of the integration of AnMBR and hydroponic-CEA for enhanced agricultural sustainability and resource utilization.


Subject(s)
Agriculture , Bioreactors , Hydroponics , Waste Disposal, Fluid , Wastewater , Agriculture/methods , Anaerobiosis , Membranes, Artificial , Waste Disposal, Fluid/methods , Water Purification/methods
11.
Sci Total Environ ; 952: 175870, 2024 Nov 20.
Article in English | MEDLINE | ID: mdl-39216752

ABSTRACT

Lettuce is an established food commodity in the UK increasingly facing supply challenges in winter due to adverse weather events and rising energy costs. We investigate whether an agroecologically grown salad mix of lettuce and underutilised leafy greens produced in the Azores, Portugal, could be part of a sustainable solution. We performed a Life Cycle Assessment to compare the environmental impacts of this salad mix with four other value chains for winter salad supply to the UK: conventional open-field lettuce production chains in Spain using (1) current irrigation practices; (2) 100 % desalinated irrigation water; or hydroponic controlled environment agriculture within the UK powered by (3) the national electricity mix; (4) 100 % wind-generated electricity. Results indicated that the leafy-greens agroecological value chain incurred the smallest environmental burdens across 7 to 11 of 16 impact categories studied. Substituting Spanish winter salad supply with agroecological leafy green production in the Azores, if well managed, could reduce many environmental burdens whilst diversifying leafy greens intake. Nevertheless, all winter value chains were associated with larger environmental burdens than conventional open-field production of lettuce in the UK summer, pointing to the importance of seasonal consumption and wider adoption of agroecological techniques to effectively reduce environmental impact.


Subject(s)
Lactuca , Seasons , Lactuca/growth & development , United Kingdom , Agriculture/methods , Vegetables/growth & development , Environment
12.
Physiol Mol Biol Plants ; 30(6): 1021-1027, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974355

ABSTRACT

Carthamus tinctorius L. (Safflower) is an important oilseed crop that is cultivated globally. Aphids are a serious pest of safflower and cause significant yield losses of up to 80% due to their ability to multiply rapidly by parthenogenesis. In this study, we report the identification of an aphid-tolerant accession in safflower following screening of a representative global germplasm collection of 327 accessions from 37 countries. Field-based screening methods gave inconsistent and ambiguous results for aphid tolerance between natural and controlled infestation assays and required ~ 3 months for completion. Therefore, we used a rapid, high-throughput hydroponics-based assay system that allows phenotyping of aphid tolerance/susceptibility in a large number of plants in a limited area, significantly reduces the time required to ~ 45 days and avoids inconsistencies observed in field-based studies. We identified one accession out of the 327 tested germplasm lines that demonstrated aphid tolerance in field-based natural and controlled infestation studies and also using the hydroponics approach. Inheritance analysis of the trait was conducted using the hydroponics approach on F1 and F2 progeny generated from a cross between the tolerant and susceptible lines. Aphid-tolerance was observed to be a dominant trait governed by a single locus/gene that can be mobilized after mapping into cultivated varieties of safflower. The hydroponics-based assay described in this study would be very useful for studying the molecular mechanism of aphid-tolerance in safflower and can also be used for bioassays in several other crops that are amenable to hydroponics-based growth. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01467-0.

13.
Heliyon ; 10(12): e33078, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988560

ABSTRACT

The issue of arsenic (As) contamination in the environment has become a critical concern, impacting both human health and ecological equilibrium. Addressing this challenge requires a comprehensive strategy encompassing water treatment technologies, regulatory measures for industrial effluents, and the implementation of sustainable agricultural practices. In this study, diverse strategies were explored to enhance As accumulation in the presence of Acinetobacter bouvetii while safeguarding the host from the toxic effects of arsenate exposure. The sunflower seedlings associated with A. bouvetii demonstrated a favorable relative growth rate (RGR) and net assimilation rate (NAR) even less than 100 ppm of As stress. Remarkably, the NAR and RGR of A. bouvetii-associated seedlings outperformed those of control seedlings cultivated without A. bouvetii in As-free conditions. Additionally, a markedly greater buildup of bio-transformed As was observed in A. bouvetii-associated seedlings (P = 0.05). An intriguing observation was the normal levels of reactive oxygen species (ROS) in A. bouvetii-associated seedlings, along with elevated activities of key enzymatic antioxidants like catalases (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), and peroxidases (POD), along with non-enzymatic antioxidants (phenols and flavonoids). This coordinated antioxidant defense system likely contributed to the improved survival and growth of the host plant species amidst As stress. A. bouvetii not only augmented the growth of the host plants but also facilitated the uptake of bio-transformed As in the contaminated medium. The rhizobacterium's modulation of various biochemical and physiological parameters indicates its role in ensuring the better survival and progression of the host plants under As stress.

14.
Life Sci Space Res (Amst) ; 42: 140-147, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39067985

ABSTRACT

Despite the precise environmental manipulation enabled by controlled environment agriculture (CEA), plant genotype remains a key factor in producing desirable traits. Brassica rapa var. nipposinica (mizuna) is a leading candidate for supplementing deficiencies in the space diet, however, which cultivar of mizuna will respond best to the environment of the international space station (ISS) is unknown. It is also unclear if there are more inter-varietal (mizuna - mustards) or intra-varietal (mizuna - mizuna) differences in response to the ISS environment. Twenty-two cultivars of mustard greens, including 13 cultivars of mizuna, were grown under ISS-like conditions to determine which would provide the greatest yield and highest concentrations of carotenoids, anthocyanins, calcium, potassium, iron, magnesium, ascorbic acid, thiamine, and phylloquinone. The experiment was conducted thrice, and data were analyzed to determine which cultivar is most suited for further optimization of space-based cultivation. It was found that phylloquinone and ß-carotene concentrations did not vary between cultivars, while all other metrics of interest showed some variation. 'Amara' mustard (B. carinata) provided the best overall nutritional profile, despite its low biomass yield of 36.8 g, producing concentrations of 27.85, 0.40, and 0.65 mg·g - 1 of ascorbic acid, thiamine, and lutein, respectively. Of the mizuna cultivars evaluated, open pollinated mibuna provided the best profile, while 'Red Hybrid' mizuna provided a complimentary profile to that of 'Amara', minimally increasing dietary iron while providing beneficial anthocyanins lacking in 'Amara'.


Subject(s)
Brassica rapa , Brassica rapa/growth & development , Brassica rapa/genetics , Brassica rapa/metabolism , Dietary Supplements/analysis , Brassica/growth & development , Brassica/genetics , Brassica/metabolism , Space Flight
15.
Plants (Basel) ; 13(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39065531

ABSTRACT

The need to increase agricultural production to feed a steadily growing population may clash with the more environmentally friendly but less efficient production methods required. Therefore, it is important to try to reduce the use of chemical inputs without compromising production. In this scenario, natural biostimulants have become one of the most sought-after and researched technologies. In the present study, the results of a greenhouse experiment on hydroponic tomatoes (Solanum lycopersicum L.) are presented, which involved comparing the use of ordinary NPK fertilizer (Cerbero®) with the use of NPK fertilizers enriched with 0.5% protein hydrolysate of plant origin (Cerbero Green®) at both standard (100%) and reduced (70%) fertilization rates. The results highlight how the use of Cerbero Green® fertilizers improves the production performance of tomatoes. More specifically, they show that the use of Cerbero Green® leads to higher marketable yields, especially under reducing fertilizer use, ensuring a positive net change in profit for the grower. In addition, carbon footprint analysis has revealed that the use of Cerbero Green® reduces the environmental impact of hydroponic tomato growing practices by up to 8%. The observed higher yield of hydroponically grown tomatoes even with reduced fertilization rates underlines once again the key role of natural biostimulants in increasing both the economic and environmental sustainability of horticultural production.

16.
Physiol Plant ; 176(4): e14435, 2024.
Article in English | MEDLINE | ID: mdl-39036950

ABSTRACT

This study examined how the nutrient flow environment affects lettuce root morphology in hydroponics using multi-omics analysis. The results indicate that increasing the nutrient flow rate initially increased indicators such as fresh root weight, root length, surface area, volume, and average diameter before declining, which mirrors the trend observed for shoot fresh weight. Furthermore, a high-flow environment significantly increased root tissue density. Further analysis using Weighted Gene Co-expression Network Analysis (WGCNA) and Weighted Protein Co-expression Network Analysis (WPCNA) identified modules that were highly correlated with phenotypes and hormones. The analysis revealed a significant enrichment of hormone signal transduction pathways. Differences in the expression of genes and proteins related to hormone synthesis and transduction pathways were observed among the different flow conditions. These findings suggest that nutrient flow may regulate hormone levels and signal transmission by modulating the genes and proteins associated with hormone biosynthesis and signaling pathways, thereby influencing root morphology. These findings should support the development of effective methods for regulating the flow of nutrients in hydroponic contexts.


Subject(s)
Hydroponics , Lactuca , Plant Growth Regulators , Plant Roots , Signal Transduction , Plant Roots/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/physiology , Lactuca/genetics , Lactuca/metabolism , Lactuca/growth & development , Plant Growth Regulators/metabolism , Gene Expression Regulation, Plant , Nutrients/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Multiomics
17.
J Adv Res ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009133

ABSTRACT

INTRODUCTION: Since the outbreak of COVID-19, microplastics (MPs) and triclosan in pharmaceuticals and personal care products (PPCPs) are markedly rising. MPs and triclosan are co-present in the environment, but their interactions and subsequent implications on the fate of triclosan in plants are not well understood. OBJECTIVE: This study aimed to investigate effects of charged polystyrene microplastics (PS-MPs) on the fate of triclosan in cabbage plants under a hydroponic system. METHODS: 14C-labeling method and liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (LC-QTOF-MS) analysis were applied to clarify the bioaccumulation, distribution, and metabolism of triclosan in hydroponics-cabbage system. The distribution of differentially charged PS-MPs in cabbage was investigated by confocal laser scanning microscopy and scanning electron microscopy. RESULTS: The results showed that MPs had a significant impact on bioaccumulation and metabolism of triclosan in hydroponics-cabbage system. PS-COO-, PS, and PS-NH3+ MPs decreased the bioaccumulation of triclosan in cabbage by 69.1 %, 81.5 %, and 87.7 %, respectively, in comparison with the non-MP treatment (control). PS-MPs also reduced the translocation of triclosan from the roots to the shoots in cabbage, with a reduction rate of 15.6 %, 28.3 %, and 65.8 % for PS-COO-, PS, and PS-NH3+, respectively. In addition, PS-NH3+ profoundly inhibited the triclosan metabolism pathways such as sulfonation, nitration, and nitrosation in the hydroponics-cabbage system. The above findings might be linked to strong adsorption between PS-NH3+ and triclosan, and PS-NH3+ may also potentially inhibit the growth of cabbage. Specially, the amount of triclosan adsorbed on PS-NH3+ was significantly greater than that on PS and PS-COO-. The cabbage biomass was reduced by 76.9 % in PS-NH3+ groups, in comparison with the control. CONCLUSION: The uptake and transformation of triclosan in hydroponics-cabbage system were significantly inhibited by charged PS-MPs, especially PS-NH3+. This provides new insights into the fate of triclosan and other PPCPs coexisted with microplastics for potential risk assessments.

18.
Heliyon ; 10(11): e32578, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38912454

ABSTRACT

Among new technologies aimed at improving water productivity, nanotechnology have been identified as effective means of enhancing the properties of agricultural water. Building on the synergy of plasma and nanobubbles, this study explored the combination of plasma electric discharge and nanocavitation as a novel approach for soilless cultivation. The study aimed to investigate the impact of this hybrid technology on hydroponics nutrient solution. Additionally, the study further aimed to assess the effect of both technologies individually, as well as various application periods, including 3, 9, and 15 min for hybrid technology use. The study employed the nutrient flow technique to hydroponically cultivate lettuce. The findings showed that the application of each technology individually did not significantly increase yield. However, the hybrid technology treatment for 9 min resulted in a significant yield increase of almost 60 %. This improvement can be attributed to the stability, solubility, and absorption of products resulting from plasma treatment, as well as the antimicrobial and anti-algae effects of both technologies. Additionally, an increase in flavonoid and potassium content and a decrease in iron were observed in plants grown under optimal treatment. Overall, this study demonstrated the potential for synergy between plasma and nanobubble techniques in hydroponic culture.

19.
Foods ; 13(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928869

ABSTRACT

Hydroponic farming systems play an increasingly important role in the sustainable production of nutrient-rich foods. The contamination of surfaces in hydroponic fresh produce production poses risks to the food safety of crops, potentially endangering public health and causing economic losses in the industry. While sanitizers are widely used in commercial hydroponic farms, their effectiveness against human pathogens on surfaces and their impact on plant health and quality are not known. In this study, we evaluated the efficacy of chemical sanitizers in eliminating Salmonella Typhimurium from inanimate surfaces in commercial hydroponic Nutrient Film Technique (NFT) systems. Further, we assessed the impact of sanitizers on the yield, quality, and nutritional value of lettuce and basil. Sanitizers (Virkon, LanXess, Pittsburgh, PA, USA; SaniDate 12.0, BioSafe Systems, East Hartford, CT, USA; KleenGrow, Pace Chemical Ltd., Delta, BC, Canada; Green Shield, United Labs Inc., St Charles, IL, USA; Zerotol, BioSafe Systems, East Hartford, CT, USA; Bleach, Pure Bright, ON, Canada) were tested against Salmonella Typhimurium inoculated on NFT surfaces (nutrient reservoir, growing channels, top covers, drain lines). The effective treatments were then tested for their impact on lettuce and basil in a split-plot experiment conducted in commercial NFT units. Crop yield, color, and nutrient content (chlorophyll and carotenoids) were measured throughout the crop life cycle. While all quaternary ammonium compounds (QAC), SaniDate 12.0 (200 ppm), Zorotol (5%), and Virkon (1%) eliminated Salmonella Typhimurium from commercial NFT surfaces, chlorine-based sanitizer treatments were statistically similar to water treatments on most surfaces. All chemical sanitizers impacted the yield, color, and nutritional value of lettuce and basil. SaniDate 12.0 (200 ppm) was the least detrimental to crops and was identified as a potential candidate for further validation in commercial hydroponic settings. The findings of this study will be translated into recommendations for the industry and will contribute to the development of future food safety guidelines and policies.

20.
Appl Environ Microbiol ; 90(7): e0067224, 2024 07 24.
Article in English | MEDLINE | ID: mdl-38940566

ABSTRACT

This study performed microbial analysis of nutrient film technique (NFT) hydroponic systems on three indoor farms in Singapore (the "what"). To justify the necessity of sanitizing hydroponic systems, strong biofilm-forming bacteria were isolated from the facility and investigated for their influence on Salmonella colonization on polyvinyl chloride (PVC) coupons in hydroponic nutrient solutions (the "why"). Finally, sanitization solutions were evaluated with both laboratory-scale and field-scale tests (the "how"). As a result, the microbiome composition in NFT systems was found to be highly farm specific. The strong biofilm formers Corynebacterium tuberculostearicum C2 and Pseudoxanthomonas mexicana C3 were found to facilitate the attachment and colonization of Salmonella on PVC coupons. When forming dual-species biofilms, the presence of C2 and C3 also significantly promoted the growth of Salmonella (P < 0.05). Compared with hydrogen peroxide (H2O2) and sodium percarbonate (SPC), sodium hypochlorite (NaOCl) exhibited superior efficacy in biofilm removal. At 50 ppm, NaOCl reduced the Salmonella Typhimurium, C2, and C3 counts to <1 log CFU/cm2 within 12 h, whereas neither 3% H2O2 nor 1% SPC achieved this effect. In operational hydroponic systems, the concentration of NaOCl needed to achieve biofilm elimination increased to 500 ppm, likely due to the presence of organic matter accumulated during crop cultivation and the greater persistence of naturally formed multispecies biofilms. Sanitization using 500 ppm NaOCl for 12 h did not impede subsequent plant growth, but chlorination byproduct chlorate was detected at high levels in the hydroponic solution and in plants in the sanitized systems without rinsing. IMPORTANCE: This study's significance lies first in its elucidation of the necessity of sanitizing hydroponic farming systems. The microbiome in hydroponic systems, although mostly nonpathogenic, might serve as a hotbed for pathogen colonization and thus pose a risk for food safety. We thus explored sanitization solutions with both laboratory-scale and field-scale tests. Of the three tested sanitizers, NaOCl was the most effective and economical option, whereas one must note the vital importance of rinsing the hydroponic systems after sanitization with NaOCl.


Subject(s)
Biofilms , Disinfectants , Hydroponics , Singapore , Biofilms/drug effects , Biofilms/growth & development , Disinfectants/pharmacology , Disinfection/methods , Sodium Hypochlorite/pharmacology , Farms , Bacteria/isolation & purification , Bacteria/drug effects , Bacteria/classification , Hydrogen Peroxide/pharmacology , Salmonella typhimurium/drug effects , Salmonella typhimurium/growth & development , Salmonella typhimurium/physiology
SELECTION OF CITATIONS
SEARCH DETAIL