Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters











Publication year range
1.
Fish Shellfish Immunol ; 153: 109838, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39151839

ABSTRACT

IL-26 is a crucial inflammatory cytokine that participates in defending host cells against infections. We initially cloned and identified the cDNA sequences of interleukin (IL)-26 in channel catfish (Ictalurus punctatus). The open reading frame (ORF) of IpIL-26 was 537 bp in length, encoding 178 amino acids (aa). Constitutive expression of IpIL-26 was observed in tested tissues, with the highest level found in the gill and spleen. To explore the function of IpIL-26 in channel catfish, different stimuli were used to act on both channel catfish and channel catfish kidney cells (CCK). The expression of IpIL-26 could be up-regulated by bacteria and viruses in multiple tissues. In vitro, recombinant IpIL-26 (rIpIL-26) could induce the expression levels of inflammatory cytokines such as TNF-α, IL-1ß, IL-6, IL-20, and IL-22 playing vital roles in defending the host against infections. Our results demonstrated that IpIL-26 might be an essential cytokine, significantly affecting the immune defense of channel catfish against pathogen infections.

2.
Fish Physiol Biochem ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066863

ABSTRACT

This study evaluated the supplementation of iron and copper nanoparticles in channel catfish diets and their influences on growth and health. A comparative feeding trial was carried out for 9 weeks to evaluate combinations of iron and copper nanoparticles: only iron nanoparticles (IronNP), only copper nanoparticles (CopperNP), CopperNP + IronNP, and a control diet supplemented with inorganic iron and copper (FeSO4 and CuSO4). After a 9-week feeding trial, growth performance, hematological parameters, whole-body proximate composition, and intestinal microbiota were evaluated, and fish were subjected to a bacterial challenge against Edwardsiella ictaluri to evaluate the contribution of the experimental treatments to fish health status. No statistical differences were detected for catfish fed the various diets in terms of production performance or survival after bacterial challenge. The hematocrit and RBC counts from fish fed the diet containing copper nanoparticles were significantly lower than the control group. A higher relative abundance of gram-positive bacteria was found in the digesta of catfish fed diets containing copper nanoparticles. Furthermore, in the context of hematology, iron nanoparticles did not impact the blood parameters of channel catfish; however, reduced hematocrits were observed in fish fed the copper nanoparticle diet, which lacked supplemental dietary iron, thus reinforcing the importance of dietary iron to catfish hematopoiesis. Nonetheless, additional studies are needed to investigate the effects of dietary copper nanoparticle supplementation in catfish diets to better illuminate its effects on the intestinal microbiota.

3.
J Fish Dis ; 47(6): e13938, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38462942

ABSTRACT

Channel catfish (Ictalurus punctatus) are a food fish extensively reared in aquaculture facilities throughout the world and are also among the most abundant wild catfish species in North America, making them a popular target of anglers. Furthermore, channel catfish are important members of aquatic ecosystems; for example, they serve as a glochidial host for the endangered winged mapleleaf mussel (Quadrula fragosa), making them critical for conserving this species through hatchery-based restoration efforts. During a routine health inspection, a novel aquareovirus was isolated from channel catfish used in mussel propagation efforts at a fish hatchery in Wisconsin. This virus was isolated on brown bullhead cells (ATCC CCL-59) and identified through metagenomic sequencing as a novel member of the family Spinareoviridae, genus Aquareovirus. The virus genome consists of 11 segments, as is typical of the aquareoviruses, with phylogenetic relationships based on RNA-dependent RNA polymerase and major outer capsid protein amino acid sequences showing it to be most closely related to golden shiner virus (aquareovirus C) and aquareovirus C/American grass carp reovirus (aquareovirus G) respectively. The potential of the new virus, which we name genictpun virus 1 (GNIPV-1), to cause disease in channel catfish or other species remains unknown.


Subject(s)
Fish Diseases , Genome, Viral , Ictaluridae , Phylogeny , Animals , Ictaluridae/virology , Wisconsin , Fish Diseases/virology , Reoviridae/isolation & purification , Reoviridae/genetics , Reoviridae/classification , Reoviridae/physiology , Bivalvia/virology , Aquaculture
4.
J Aquat Anim Health ; 36(1): 3-15, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37859458

ABSTRACT

OBJECTIVE: Columnaris disease is a leading cause of disease-related losses in the catfish industry of the southeastern United States. The term "columnaris-causing bacteria" (CCB) has been coined in reference to the four described species that cause columnaris disease: Flavobacterium columnare, F. covae, F. davisii, and F. oreochromis. Historically, F. columnare, F. covae, and F. davisii have been isolated from columnaris disease cases in the catfish industry; however, there is a lack of knowledge of which CCB species are most prevalent in farm-raised catfish. The current research objectives were to (1) sample columnaris disease cases from the U.S. catfish industry and identify the species of CCB involved and (2) determine the virulence of the four CCB species in Channel Catfish Ictalurus punctatus in controlled laboratory challenges. METHODS: Bacterial isolates or swabs of external lesions from catfish were collected from 259 columnaris disease cases in Mississippi and Alabama during 2015-2019. The DNA extracted from the samples was analyzed using a CCB-specific multiplex polymerase chain reaction to identify the CCB present in each diagnostic case. Channel Catfish were challenged by immersion with isolates belonging to each CCB species to determine virulence at ~28°C and 20°C. RESULT: Flavobacterium covae was identified as the predominant CCB species impacting the U.S. catfish industry, as it was present in 94.2% (n = 244) of diagnostic case submissions. Challenge experiments demonstrated that F. covae and F. oreochromis were highly virulent to Channel Catfish, with most isolates resulting in near 100% mortality. In contrast, F. columnare and F. davisii were less virulent, with most isolates resulting in less than 40% mortality. CONCLUSION: Collectively, these results demonstrate that F. covae is the predominant CCB in the U.S. catfish industry, and research aimed at developing new control and prevention strategies should target this bacterial species. The methods described herein can be used to continue monitoring the prevalence of CCB in the catfish industry and can be easily applied to other industries to identify which Flavobacterium species have the greatest impact.


Subject(s)
Catfishes , Fish Diseases , Flavobacteriaceae Infections , Ictaluridae , Animals , Ictaluridae/microbiology , Flavobacterium/genetics , Flavobacteriaceae Infections/epidemiology , Flavobacteriaceae Infections/veterinary , Flavobacteriaceae Infections/microbiology , Southeastern United States/epidemiology , Fish Diseases/epidemiology , Fish Diseases/microbiology
5.
Fish Physiol Biochem ; 50(1): 183-196, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37291452

ABSTRACT

Hypoxia is the most significant factor that threatens the health and even survival of freshwater and marine fish. Priority should be given to the investigation of hypoxia adaptation mechanisms and their subsequent modulation. Acute and chronic studies were designed for the current study. Acute hypoxia comprised of normoxia dissolved oxygen (DO) 7.0 ± 0.5 mg/mL (N0), low-oxygen 5.0 ± 0.5 mg/mL(L0), and hypoxia 1.0 ± 0.1 mg/mL (H0) and 300 mg/L Vc for hypoxia regulation (N300, L300, H300). Chronic hypoxia comprised of normoxia (DO 7.0 ± 0.5 mg/mL) with 50 mg/kg Vc in the diet (N50) and low oxygen (5.0 ± 0.5 mg/mL) with 50, 250, 500 mg/kg Vc in the diet (L50, L250, L500) to assess the effect of Vc in hypoxia. The growth, behavior, hematological parameters, metabolism, antioxidants, and related inflammatory factors of channel catfish were investigated, and it was found that channel catfish have a variety of adaptive mechanisms in response to acute and chronic hypoxia. Under acute 5 mg/mL DO, the body color lightened (P < 0.05) and reverted to normal with 300 mg/mL Vc. PLT was significantly elevated after 300 mg/L Vc (P < 0.05), indicating that Vc can effectively restore hemostasis following oxygen-induced tissue damage. Under acute hypoxia, the significantly increased of cortisol, blood glucose, the gene of pyruvate kinase (pk), and phosphofructokinase (pfk), together with the decreased expression of fructose1,6-bisphosphatase (fbp) and the reduction in myoglycogen, suggested that Vc might enhance the glycolytic ability of the channel catfish. And the enzyme activities of superoxide dismutase (SOD) and catalase (CAT) and the gene expression of sod rose significantly, showing that Vc might improve the antioxidant capacity of the channel catfish. The significant up-regulation of tumor necrosis factor-alpha (tnf-α), interleukin-1ß (il-1ß), and cd68 under acute hypoxia implies that hypoxia may generate inflammation in channel catfish, whereas the addition of Vc and down-regulation of these genes suggests that Vc suppresses inflammation under acute hypoxia. We found that the final weight, WGR, FCR, and FI of channel catfish were significantly reduced under chronic hypoxia, and that feeding 250 mg/kg of Vc in the diet was effective in alleviating the growth retardation caused by hypoxia. The significant increase in cortisol, blood glucose, myoglycogen, and the expression of tnf-α, il-1ß, and cd68 (P < 0.05) and the significant decrease in lactate (P < 0.05) under chronic hypoxia indicated that the channel catfish had gradually adapted to the survival threat posed by hypoxia and no longer relied on carbohydrates as their primary source of energy. While the addition of Vc did not appear to increase the energy supply of the fish under hypoxia in terms of glucose metabolism, but the significantly decreased expression of tnf-α, il-1ß, and cd68 (P < 0.05) also were found, indicating that chronic hypoxia, similar acute hypoxia, may increase inflammation in the channel catfish. This study indicates that under acute stress, channel catfish withstand stress by raising energy supply through glycolysis, and acute hypoxic stress significantly promotes inflammation in channel catfish, but Vc assists the channel catfish resist stress by raising glycolysis, antioxidant capacity, and decreasing the production of inflammatory markers. Under chronic hypoxia, the channel catfish no longer utilize carbohydrates as their primary energy source, and Vc may still effectively reduce inflammation in the channel catfish under hypoxia.


Subject(s)
Antioxidants , Ictaluridae , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Ascorbic Acid/metabolism , Ictaluridae/physiology , Hydrocortisone/metabolism , Blood Glucose , Tumor Necrosis Factor-alpha/metabolism , Vitamins , Hypoxia , Inflammation , Oxygen/metabolism , Superoxide Dismutase/metabolism
6.
Article in English | MEDLINE | ID: mdl-38128380

ABSTRACT

Growth is an important economically trait for aquatic animals. The popularity of farmed channel catfish (Ictalurus punctatus) in China has recently surged, prompting a need for research into the genetic mechanisms that drive growth and development to expedite the selection of fast-growing variants. In this study, the brain, liver and muscle transcriptomes of channel catfish between fast-growing and slow-growing groups were analyzed using RNA-Seq. Totally, 63, 110 and 86 differentially expressed genes (DEGs) were from brain, liver and muscle tissues. DEGs are primarily involved in growth, development, metabolism and immunity, which are related to the growth regulation of channel catfish, such as growth hormone receptor b (ghrb), fibroblast growth factor receptor 4 (fgfr4), bone morphogenetic protein 1a (bmp1a), insulin-like growth factor 2a (igf2a), collagen, type I, alpha 1a (col1a1a), acyl-CoA synthetase long chain family member 2 (acsl2) and caveolin 1 (cav1). This study advances our knowledge of the genetic mechanisms accounting for differences in growth rate and offers crucial gene resources for future growth-related molecular breeding programs in channel catfish.


Subject(s)
Ictaluridae , Animals , Ictaluridae/genetics , Transcriptome , Gene Expression Profiling , Liver , Muscles , Brain
7.
Heliyon ; 9(9): e20081, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37810135

ABSTRACT

This study aims to elucidate the evolution of catfish research publications over recent decades, identify emerging research clusters, examine keyword patterns, determine major contributors (including authors, organizations, and funding agencies), and analyze their collaborative networks and citation bursts on a global scale. The USA, Brazil, China, and India collectively contribute approximately 67% of the total catfish research publications, with a marked increase in prevalence since 2016. The most frequently occurring and dominant keywords are "channel catfish" and "responses," respectively. Intriguingly, our findings reveal 28 distinct article clusters, with prominent clusters including "yellow catfish," "channel catfish", "pectoral girdle," "African catfish", "Rio Sao Francisco basin," "Edwardsiella ictaluri," and "temperature mediated". Concurrently, keyword clustering generates seven main clusters: "new species", "growth performance", "heavy metal", "gonadotropin-releasing", "essential oil", and "olfactory receptor". This study further anticipates future research directions, offering fresh perspectives on the catfish literature landscape. To the best of our knowledge, this is the first article to conduct a comprehensive mapping review of catfish research publications worldwide.

8.
Fish Shellfish Immunol ; 141: 109051, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37689228

ABSTRACT

Herein, the effects of Agaricus bisporus Polysaccharides (ABPs) on anti-channel catfish virus (CCV) infections to promote their application in channel catfish culture were explored. Transcriptome and metabolome analyses were conducted on the spleen of a CCV-infected channel catfish model fed with or without ABPs. CCV infections upregulated many immune and apoptosis-related genes, such as IL-6, IFN-α3, IFN-γ1, IL-26, Casp3, Casp8, and IL-10, and activated specific immunity mediated by B cells. However, after adding ABPs, the expression of inflammation-related genes decreased in CCV-infected channel catfish, and the inflammatory inhibitors NLRC3 were upregulated. Meanwhile, the expression of apoptosis-related genes was reduced, indicating that ABPs can more rapidly and strongly enhance the immunity of channel catfish to resist viral infection. Moreover, the metabonomic analysis showed that channel catfish had a high energy requirement during CCV infection, and ABPs could enhance the immune function of channel catfish. In conclusion, ABPs can enhance the antiviral ability of channel catfish by enhancing immune response and regulating inflammation. Thus, these findings provided new insights into the antiviral response effects of ABPs, which might support their application in aquaculture.


Subject(s)
Fish Diseases , Ictaluridae , Ictalurivirus , Animals , Immunity , Inflammation , Antiviral Agents
9.
Fish Shellfish Immunol ; 140: 108941, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37463648

ABSTRACT

To promote the application of Agaricus bisporus polysaccharides (ABPs) in channel catfish (Ictalurus punctatus) culture, we evaluated the effects of ABPs on the growth, immunity, antioxidant, and antibacterial activity of channel catfish. When the amount of ABPs was 250 mg/kg, channel catfish's weight gain and specific growth rates increased significantly while the feed coefficient decreased. We also found that adding ABPs in the feed effectively increased the activities of ACP, MDA, T-SOD, AKP, T-AOC, GSH, and CAT enzymes and immune-related genes such as IL-1ß, Hsp70, and IgM in the head kidney of channel catfish. Besides, long-term addition will not cause pathological damage to the head kidney. When the amount of ABPs was over 125 mg/kg, the protection rate of channel catfish was more than 60%. According to the intestinal transcriptome analysis, the addition of ABPs promoted the expression of intestinal immunity genes and growth metabolism-related genes and enriched multiple related KEEG pathways. When challenged by Yersinia ruckeri infection, the immune response of channel catfish fed with ABPs was intenser and quicker. Additionally, the 16S rRNA gene sequencing analysis showed that the composition of the intestinal microbial community of channel catfish treated with ABPs significantly changed, and the abundance of microorganisms beneficial to channel catfish growth, such as Firmicutes and Bacteroidota increased. In conclusion, feeding channel catfish with ABPs promoted growth, enhanced immunity and antioxidant, and improved resistance to bacterial infections. Our current results might promote the use of ABPs in channel catfish and even other aquacultured fish species.


Subject(s)
Fish Diseases , Ictaluridae , Yersinia Infections , Animals , Antioxidants/metabolism , Yersinia ruckeri/physiology , RNA, Ribosomal, 16S , Diet/veterinary , Polysaccharides
10.
Pathogens ; 12(5)2023 May 02.
Article in English | MEDLINE | ID: mdl-37242340

ABSTRACT

Virulent Aeromonas hydrophila (vAh) strains that cause motile Aeromonas septicemia (MAS) in farmed channel catfish (Ictalurus punctatus) have been an important problem for more than a decade. However, the routes of infection of vAh in catfish are not well understood. Therefore, it is critical to study the pathogenicity of vAh in catfish. To this goal, a new bioluminescence expression plasmid (pAKgfplux3) with the chloramphenicol acetyltransferase (cat) gene was constructed and mobilized into vAh strain ML09-119, yielding bioluminescent vAh (BvAh). After determining optimal chloramphenicol concentration, plasmid stability, bacteria number-bioluminescence relationship, and growth kinetics, the catfish were challenged with BvAh, and bioluminescent imaging (BLI) was conducted. Results showed that 5 to 10 µg/mL chloramphenicol was suitable for stable bioluminescence expression in vAh, with some growth reduction. In the absence of chloramphenicol, vAh could not maintain pAKgfplux3 stably, with the half-life being 16 h. Intraperitoneal injection, immersion, and modified immersion (adipose fin clipping) challenges of catfish with BvAh and BLI showed that MAS progressed faster in the injection group, followed by the modified immersion and immersion groups. BvAh was detected around the anterior mouth, barbels, fin bases, fin epithelia, injured skin areas, and gills after experimental challenges. BLI revealed that skin breaks and gills are potential attachment and entry portals for vAh. Once vAh breaches the skin or epithelial surfaces, it can cause a systemic infection rapidly, spreading to all internal organs. To our best knowledge, this is the first study that reports the development of a bioluminescent vAh and provides visual evidence for catfish-vAh interactions. Findings are expected to provide a better understanding of vAh pathogenicity in catfish.

11.
Sci Total Environ ; 891: 164319, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37236480

ABSTRACT

The widespread consumption of nanoplastics (NPs) and bisphenol A (BPA) affected the aquatic ecosystem and imposed risks to the safety of aquatic organisms. This study was aimed at assessing the ecotoxicological effects of single and combined exposure to BPA and polystyrene nanoplastics (PSNPs) on the channel catfish (Ictalurus punctatus). A total of 120 channel catfish were separated into four groups with triplicate (each contains 10 fish) and exposed to chlorinated tap water (control group), PSNP single exposure (0.3 mg/L), BPA single exposure (500 µg/L) and PSNPs (0.3 mg/L) + BPA (500 µg/L) co-exposure for 7 days. Our results showed a relatively higher intestinal accumulation of PSNPs in co-exposure group, compared to PSNP single exposure group. Histopathological analysis showed that single exposure to PSNPs and BPA caused breakage of intestinal villi and swelling of hepatocytes in channel catfish, while the co-exposure exacerbated the histopathological damage. In addition, co-exposure significantly increased SOD, CAT activities and MDA contents in the intestine and liver, inducing oxidative stress. In terms of immune function, the activities of ACP and AKP were significantly decreased. The expressions of immune-related genes such as IL-1ß, TLR3, TLR5, hepcidin and ß-defensin were significantly up-regulated, and the expression of IL-10 was down-regulated. Additionally, the co-exposure significantly altered the composition of the intestinal microbiota, leading to an increase in the Shannon index and a decrease in the Simpson index. In summary, this study revealed that mixture exposure to PSNPs and BPA exacerbated toxic effects on histopathology, oxidative stress, immune function and intestinal microbiota in channel catfish. It emphasized the threat of NPs and BPA to the health of aquatic organisms and human food safety, with a call for effective ways to regulate the consumption of these anthropogenic chemicals.


Subject(s)
Gastrointestinal Microbiome , Ictaluridae , Animals , Humans , Polystyrenes/toxicity , Polystyrenes/metabolism , Ictaluridae/metabolism , Microplastics/toxicity , Microplastics/metabolism , Ecosystem , Intestines
12.
Sci Total Environ ; 876: 162828, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-36924966

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are resistant to breakdown and are now considered ubiquitous and concerning contaminants. Although scientific and legislative interest in these compounds has greatly increased in recent decades, our knowledge about their environmental fate and their effects on organisms is still incomplete, especially those of the new generation PFAS. In this study, we analysed the level of PFAS contamination in the fish fauna of the Po River, the most important waterway in Italy, to evaluate the influence of different factors (such as fish ecological traits and parasitism) on the accumulation of 17 PFAS. After solvent extraction and purification, hepatic or intestinal tissues from forty specimens of bleak, channel catfish, and barbel were analysed by liquid chromatography coupled with mass spectrometry (LOQ = 2.5 ng/g w.w.). The prevalent PFAS were perfluorooctane sulfonate (PFOS), present in all samples at the highest concentration (reaching a maximum of 126.4 ng/g and 114.4 ng/g in bleak and channel catfish, respectively), and long-chain perfluoroalkyl carboxylic acids (PFDA and PFUnDA). Perfluorooctanoic acid and new generation PFAS (Gen X and C6O4) were not detected. Comparison of the hepatic contamination between the benthic channel catfish and the pelagic bleak showed similar concentrations of PFOS (p > 0.05) but significantly higher concentrations of other individual PFAS and of the sum of all measured PFAS (p < 0.05) in bleak. No correlation was found between the hepatic level of PFAS and fish size in channel catfish. For the first time, PFAS partitioning in a parasite-fish system was studied: intestinal acanthocephalans accumulated PFOS at lower levels than the intestinal tissue of their host (barbel), in contrast to what has been reported for other pollutants (e.g., metals). The infection state did not significantly alter the level of PFAS accumulation in fish, and acanthocephalans do not appear to be a good bioindicator of PFAS pollution.


Subject(s)
Acanthocephala , Alkanesulfonic Acids , Fluorocarbons , Ictaluridae , Water Pollutants, Chemical , Animals , Rivers/chemistry , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Ictaluridae/metabolism , Alkanesulfonic Acids/analysis , Italy
13.
Front Immunol ; 13: 989075, 2022.
Article in English | MEDLINE | ID: mdl-36532002

ABSTRACT

In China, channel catfish (Ictalurus punctatus) is an important aquaculture species; however, haemorrhagic disease (Aeromonas hydrophila induced disease) in these fish has caused tremendous economic loss due to high morbidity and mass mortality in the breeding industry. The role of cortisol in bacterial diseases, particularly in the acute phase, remains unclear. In this study, liver transcriptome (RNA-seq) and chromatin accessibility (ATAC-seq) analyses were employed to investigate the early functional role of cortisol in Aeromonas hydrophila-stimulated responses. Our experiments confirmed that A. hydrophila infection can initially significantly increase serum cortisol levels at 1 h after infection. At this time point, the increased serum cortisol levels can significantly regulate A. hydrophila-regulated genes by affecting both transcriptome and chromatin accessibility. Cross-analysis of RNA-seq and ATAC-seq revealed that a certain gene group (92 target_DEGs) was regulated at an early time point by cortisol. KEGG enrichment analysis revealed that the top three pathways according to target_DEGs were cancer, glutathione metabolism, and the Notch signalling pathway. The protein-protein interaction analysis of target_DEGs revealed that they may be primarily involved in cell proliferation, CD8+ T cell function, glutathione synthesis, and activation of the NF-κB signalling pathway. This suggests that after the emergence of immune stress, the early regulation of cortisol is positive against the immune response. It is possible that in this situation, the animal is attempting to avoid dangerous situations and risks and then cope with the imbalance produced by the stressor to ultimately restore homeostasis. Our results will contribute to future research on fish and provide valuable insight regarding the mechanism of immune regulation by cortisol and the study of bacterial haemorrhagic disease in channel catfish.


Subject(s)
Fish Diseases , Gram-Negative Bacterial Infections , Ictaluridae , Animals , Aeromonas hydrophila , Hydrocortisone/metabolism , Transcriptome , Chromatin/metabolism , Liver , Glutathione/metabolism
14.
Mar Biotechnol (NY) ; 24(5): 843-855, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35943638

ABSTRACT

Effects of CRISPR/Cas9 knockout of the melanocortin-4 receptor (mc4r) gene in channel catfish, Ictalurus punctatus, were investigated. Three sgRNAs targeting the channel catfish mc4r gene in conjunction with Cas9 protein were microinjected in embryos and mutation rate, inheritance, and growth were studied. Efficient mutagenesis was achieved as demonstrated by PCR, Surveyor® assay, and DNA sequencing. An overall mutation rate of 33% and 33% homozygosity/bi-allelism was achieved in 2017. Approximately 71% of progeny inherited the mutation. Growth was generally higher in MC4R mutants than controls (CNTRL) at all life stages and in both pond and tank environments. There was a positive relationship between zygosity and growth, with F1 homozygous/bi-allelic mutants reaching market size 30% faster than F1 heterozygotes in earthen ponds (p = 0.022). At the stocker stage (~ 50 g), MC4R × MC4R mutants generated in 2019 were 40% larger than the mean of combined CNTRL × CNTRL families (p = 0.005) and 54% larger than F1 MC4R × CNTRL mutants (p = 0.001) indicating mutation may be recessive. With a high mutation rate and inheritance of the mutation as well as improved growth, the use of gene-edited MC4R channel catfish appears to be beneficial for application on commercial farms.


Subject(s)
Ictaluridae , Animals , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , Gene Editing , Humans , Ictaluridae/genetics , Ictaluridae/metabolism , Mutation , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism
15.
Int J Mol Sci ; 23(14)2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35886966

ABSTRACT

The hybrids of female channel catfish (Ictalurus punctatus) and male blue catfish (I. furcatus) account for >50% of US catfish production due to superior growth, feed conversion, and disease resistance compared to both parental species. However, these hybrids can rarely be naturally spawned. Sperm collection is a lethal procedure, and sperm samples are now cryopreserved for fertilization needs. Previous studies showed that variation in sperm quality causes variable embryo hatch rates, which is the limiting factor in hybrid catfish breeding. Biomarkers as indicators for sperm quality and reproductive success are currently lacking. To address this, we investigated expression changes caused by cryopreservation using transcriptome profiles of fresh and cryopreserved sperm. Sperm quality measurements revealed that cryopreservation significantly increased oxidative stress levels and DNA fragmentation, and reduced sperm kinematic parameters. The present RNA-seq study identified 849 upregulated genes after cryopreservation, including members of all five complexes in the mitochondrial electron transport chain, suggesting a boost in oxidative phosphorylation activities, which often lead to excessive production of reactive oxygen species (ROS) associated with cell death. Interestingly, functional enrichment analyses revealed compensatory changes in gene expression after cryopreservation to offset detrimental effects of ultra-cold storage: MnSOD was induced to control ROS production; chaperones and ubiquitin ligases were upregulated to correct misfolded proteins or direct them to degradation; negative regulators of apoptosis, amide biosynthesis, and cilium-related functions were also enriched. Our study provides insight into underlying molecular mechanisms of sperm cryoinjury and lays a foundation to further explore molecular biomarkers on cryo-survival and gamete quality.


Subject(s)
Catfishes , Ictaluridae , Animals , Biomarkers/metabolism , Catfishes/genetics , Catfishes/metabolism , Cryopreservation/methods , Female , Gene Expression Profiling , Ictaluridae/genetics , Male , Reactive Oxygen Species/metabolism , Semen/metabolism , Sperm Motility , Spermatozoa/metabolism , Transcriptome
16.
Microorganisms ; 10(7)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35889053

ABSTRACT

The type III secretion system (T3SS) effector EseN is encoded on the Edwardsiella ictaluri chromosome and is homologous to a family of T3SS effector proteins with phosphothreonine lyase activity. Previously we demonstrated that E. ictaluri invasion activates extracellular signal-regulated kinases 1 and 2 (ERK1/2) early in the infection, which are subsequently inactivated by EseN. Comparative transcriptomic analysis showed a total of 753 significant differentially expressed genes in head-kidney-derived macrophages (HKDM) infected with an EseN mutant (∆EseN) compared to HKDM infected with wild-type (WT) strains. This data strongly indicates classical activation of macrophages (the M1 phenotype) in response to E. ictaluri infection and a significant role for EseN in the manipulation of this process. Our data also indicates that E. ictaluri EseN is involved in the modulation of pathways involved in the immune response to infection and expression of several transcription factors, including NF-κß (c-rel and relB), creb3L4, socs6 and foxo3a. Regulation of transcription factors leads to regulation of proinflammatory interleukins (IL-8, IL-12a, IL-15, IL-6) and cyclooxygenase-2 (COX-2) expression. Inhibition of COX-2 mRNA by WT E. ictaluri leads to decreased production of prostaglandin E2 (PGE2), which is the product of COX-2 activity. Collectively, our results indicate that E. ictaluri EseN is an important player in the modulation of host immune responses to E.ictaluri infection.

17.
Front Microbiol ; 13: 914868, 2022.
Article in English | MEDLINE | ID: mdl-35733967

ABSTRACT

Streptococcus iniae is a zoonotic pathogen, which seriously threatens aquaculture and human health worldwide. Antibiotics are the preferred way to treat S. iniae infection. However, the unreasonable use of antibiotics leads to the enhancement of bacterial resistance, which is not conducive to the prevention and treatment of this disease. Therefore, it is urgent to find new efficient and environmentally friendly antibacterial agents to replace traditional antibiotics. In this study, the antibacterial activity and potential mechanism of thymol against S. iniae were evaluated by electron microscopy, lactate dehydrogenase, DNA and protein leakage and transcriptomic analysis. Thymol exhibited potent antibacterial activity against S. iniae in vitro, and the MIC and MBC were 128 and 256µg/mL, respectively. SEM and TEM images showed that the cell membrane and cell wall were damaged, and the cells were abnormally enlarged and divided. 2MIC thymol disrupted the integrity of cell walls and membranes, resulting in the release of intracellular macromolecules including nucleotides, proteins and inorganic ions. The results of transcriptomic analysis indicated that thymol interfered with energy metabolism and membrane transport, affected DNA replication, repair and transcription in S. iniae. In vivo studies showed that thymol had a protective effect on experimental S. iniae infection in channel catfish. It could reduce the cumulative mortality of channel catfish and the number of S. iniae colonization in tissues, and increase the activities of non-specific immune enzymes in serum, including catalase, superoxide dismutase, lysozyme and acid phosphatase. Taken together, these findings suggested that thymol may be a candidate plant agent to replace traditional antibiotics for the prevention and treatment of S. iniae infection.

18.
J Parasitol ; 108(2): 141-158, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35353188

ABSTRACT

The echinostomatid Drepanocephalus spathans (syn. Drepanocephalus auritus) parasitizes the double-crested cormorant Phalacrocorax auritus. In North America, the marsh rams-horn snail Planorbella trivolvis and ghost rams-horn snail Biomphalaria havanensis serve as snail intermediate hosts, both of which inhabit catfish aquaculture ponds in the southeastern United States. Studies have demonstrated D. spathans exposure can be lethal to juvenile channel catfish Ictalurus punctatus. Two studies were undertaken to elucidate the life cycle of D. spathans to establish a developmental time line. In both studies, D. spathans cercariae collected from naturally infected P. trivolvis individuals were used to infect channel catfish fingerlings, which were then fed to double-crested cormorants (DCCOs) that had been pharmaceutically dewormed. In study 1, laboratory-reared P. trivolvis and B. havanensis individuals were placed in aviary ponds with experimentally infected DCCO and examined bi-weekly for release of cercariae. Trematode eggs were observed in the feces of exposed birds 3 days post-infection. Birds were sacrificed 18 days post-exposure (dpe), and gravid adults morphologically and molecularly consistent with D. spathans were recovered. Snails from the aviary pond were observed shedding D. spathans cercariae 18-54 dpe. In study 2, trematode eggs were observed in the feces of exposed DCCOs beginning 8 dpe. Once eggs were observed, birds were allowed to defecate into clean tanks containing naïve laboratory-reared P. trivolvis individuals. Additionally, eggs from experimental DCCO feces were recovered by sedimentation and placed in an aquarium housing laboratory-reared P. trivolvis individuals. Birds in study 2 were sacrificed after 60 days, and gravid D. spathans specimens were recovered. Snails from the experimental DCCO tanks shed D. spathans cercariae 89-97 dpe. Lastly, trematode eggs were isolated and observed for the hatching of miracidia, which emerged on average after 16 days at ambient temperatures. No D. spathans adults were observed in control birds fed non-parasitized fish. This is the first experimental confirmation of the D. spathans life cycle, resolving previously unknown developmental time lines. In addition, the effects of fixation on adult trematode morphology were assessed, clarifying reports of pronounced morphological plasticity for D. spathans.


Subject(s)
Echinostomatidae , Ictaluridae , Trematoda , Trematode Infections , Animals , Life Cycle Stages , Male , Sheep , Trematode Infections/veterinary , United States
19.
Article in English | MEDLINE | ID: mdl-34607243

ABSTRACT

Previous research on swimming exercise in fish has focused on muscle building and quality of flesh. However, the effects of hepatic amino acid and fatty acid composition, liver gene expression profile, and intestinal microbiota are poorly understood. In this study, channel catfish (Ictalurus punctatus) were subjected to a 4-week swimming exercise, and liver transcriptome and intestinal microbiota analyses were performed to broaden our understanding of fish under exercise. When compared to non-exercised channel catfish (N-EXF), exercised channel catfish (EXF) had improved arachidonic acid (C20:4n6; ARA), docosahexaenoic acid (C22:6n3; DHA), aspartic acid (Asp) and glycine (Gly). The liver transcriptome analysis revealed 2912 differentially expressed genes and numerous enriched signaling pathways including those involved in nutrient synthesis, such as biosynthesis of unsaturated fatty acids and amino acids; glucose metabolism, such as glycolysis/gluconeogenesis, insulin signaling, and AMPK signaling pathways; and oxygen transport, such as HIF-1, PI3K-Akt, and MAPK signaling pathways. In addition, bacterial 16S rRNA gene sequencing data revealed that long-term exercise increased bacterial diversity and richness, and changed the intestinal microbial composition in channel catfish. In summary, this study provides insights into hepatic metabolic pathways, candidate genes, and intestinal microbiota underlying the long-term exercised channel catfish.


Subject(s)
Gastrointestinal Microbiome , Ictaluridae , Amino Acids , Animals , Fatty Acids , Ictaluridae/genetics , Liver , Phosphatidylinositol 3-Kinases , RNA, Ribosomal, 16S , Transcriptome
20.
J Fish Dis ; 44(11): 1725-1751, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34251059

ABSTRACT

The bacterium Edwardsiella piscicida causes significant losses in global aquaculture, particularly channel (Ictalurus punctatus) × blue (I. furcatus) hybrid catfish cultured in the south-eastern United States. Emergence of E. piscicida in hybrid catfish is worrisome given current industry trends towards increased hybrid production. The project objectives were to assess intraspecific genetic variability of E. piscicida isolates recovered from diseased channel and hybrid catfish in Mississippi; and determine virulence associations among genetic variants. Repetitive extragenic palindromic sequence-based PCR (rep-PCR) using ERIC I and II primers was used to screen 158 E. piscicida diagnostic case isolates. A subsample of 39 E. piscicida isolates, representing predominant rep-PCR profiles, was further characterized using BOX and (GTG)5 rep-PCR primers, virulence gene assessment and multilocus sequence analysis (MLSA) targeting housekeeping genes gyrb, pgi and phoU. The MLSA provided greater resolution than rep-PCR, revealing 5 discrete phylogroups that correlated similarly with virulence gene profiles. Virulence assessments using E. piscicida representatives from each MLSA group resulted in 14-day cumulative mortality ranging from 22% to 54% and 63 to 72% in channel and hybrid fingerlings, respectively. Across all phylogroups, mortality was higher in hybrid catfish (p < .05), supporting previous work indicating E. piscicida is an emerging threat to hybrid catfish aquaculture in the south-eastern United States.


Subject(s)
Catfishes/microbiology , Edwardsiella/genetics , Enterobacteriaceae Infections/veterinary , Fish Diseases/microbiology , Animals , Aquaculture , Bacterial Typing Techniques , Edwardsiella/pathogenicity , Microbial Sensitivity Tests , Mississippi , Multilocus Sequence Typing , Phylogeny , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL