Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Immunol ; 14: 1080154, 2023.
Article in English | MEDLINE | ID: mdl-36911711

ABSTRACT

Introduction: Immunoglobulin A (IgA) is the main antibody isotype in body fluids such as tears, intestinal mucous, colostrum, and saliva. There are two subtypes of IgA in humans: IgA1, mainly present in blood and mucosal sites, and IgA2, preferentially expressed in mucosal sites like the colon. In clinical practice, immunoglobulins are typically measured in venous or capillary blood; however, alternative samples, including saliva, are now being considered, given their non-invasive and easy collection nature. Several autoimmune diseases have been related to diverse abnormalities in oral mucosal immunity, such as rheumatoid arthritis, Sjogren's syndrome, and systemic lupus erythematosus (SLE). Methods: We decided to evaluate the levels of both IgA subtypes in the saliva of SLE patients. A light chain capture-based ELISA measured specific IgA1 and IgA2 levels in a cohort of SLE patients compared with age and gender-matched healthy volunteers. Results: Surprisingly, our results indicated that in the saliva of SLE patients, total IgA and IgA1 subtype were significantly elevated; we also found that salivary IgA levels, particularly IgA2, positively correlate with anti-dsDNA IgG antibody titers. Strikingly, we also detected the presence of salivary anti-nucleosome IgA antibodies in SLE patients, a feature not previously reported elsewhere. Conclusions: According to our results and upon necessary validation, IgA characterization in saliva could represent a potentially helpful tool in the clinical care of SLE patients with the advantage of being a more straightforward, faster, and safer method than manipulating blood samples.


Subject(s)
Immunoglobulin A, Secretory , Lupus Erythematosus, Systemic , Humans , Immunoglobulin A , Immunoglobulin G , Mouth Mucosa , Biomarkers
2.
Front Immunol ; 12: 712130, 2021.
Article in English | MEDLINE | ID: mdl-34804008

ABSTRACT

Microbiota acquired during labor and through the first days of life contributes to the newborn's immune maturation and development. Mother provides probiotics and prebiotics factors through colostrum and maternal milk to shape the first neonatal microbiota. Previous works have reported that immunoglobulin A (IgA) secreted in colostrum is coating a fraction of maternal microbiota. Thus, to better characterize this IgA-microbiota association, we used flow cytometry coupled with 16S rRNA gene sequencing (IgA-Seq) in human colostrum and neonatal feces. We identified IgA bound bacteria (IgA+) and characterized their diversity and composition shared in colostrum fractions and neonatal fecal bacteria. We found that IgA2 is mainly associated with Bifidobacterium, Pseudomonas, Lactobacillus, and Paracoccus, among other genera shared in colostrum and neonatal fecal samples. We found that metabolic pathways related to epithelial adhesion and carbohydrate consumption are enriched within the IgA2+ fecal microbiota. The association of IgA2 with specific bacteria could be explained because these antibodies recognize common antigens expressed on the surface of these bacterial genera. Our data suggest a preferential targeting of commensal bacteria by IgA2, revealing a possible function of maternal IgA2 in the shaping of the fecal microbial composition in the neonate during the first days of life.


Subject(s)
Antigens/immunology , Colostrum/chemistry , Colostrum/immunology , Gastrointestinal Microbiome/immunology , Immunoglobulin A/immunology , Antigens/chemistry , Bacteria/immunology , Feces/microbiology , Female , Humans , Immunoglobulin A/analysis , Immunoglobulin A/classification , Infant, Newborn , Linear Models , Longitudinal Studies , Pregnancy , Prospective Studies , RNA, Ribosomal, 16S/genetics
3.
Article in English | MEDLINE | ID: mdl-31205733

ABSTRACT

BACKGROUND: Colostrum is the primary source of maternal immunoglobulin A (IgA) for the newborn. IgA participates in protection and regulation mechanisms of the immune response at the neonate's mucosa. Several studies have evaluated infectious diseases and vaccine protocols effects during pregnancy on maternal milk IgA levels, with the aim to understand lactation protecting effect on newborn. However, most of their results demonstrated that there were no differences in the total IgA levels. In humans, IgA has two subclasses (IgA1 and IgA2), they have an anatomical distribution among mucosal compartments, their levels vary after antigen stimulation and are also seen to describe differential affinities in colostrum. Although there are differences between IgA subclasses in several compartments, these studies have excluded specific colostrum IgA1 and IgA2 determination. METHODS: We analyzed data from 900 women in Mexico City. With Pearson correlation, we compared the number of infectious episodes during their pregnancy that was associated with mucosal compartments (skin, respiratory and gastrointestinal tracts) and colostrum IgA subclasses. RESULTS: We show a correlation between increased colostrum IgA1 levels and the number of infectious episodes at respiratory tract and the skin. In contrast, infections at the gastrointestinal tract correlated with increased IgA2 amounts. CONCLUSIONS: Infections present during pregnancy at certain mucosal site increase specific IgA subclasses levels in human colostrum. These results will help in understanding infections and immunizations effects on maternal IgA at the mammary gland, and their impact on the development and protection of the newborn.

SELECTION OF CITATIONS
SEARCH DETAIL