Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Waste Manag ; 149: 291-301, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35760015

ABSTRACT

Although the requirements for overall recycling rates can only be met when organic recycling is not overlooked, information is scarce regarding adaption to biowaste composting of existing mechanical-biological treatment (MBT) plants originally designed for stabilization of organic municipal solid waste (OFMSW). Thus, this study aimed to assess the suitability of the operational conditions in the biological part of a full-scale MBT plant now used for stabilization of OFMSW (working line: closed-module-covered-pile-open-pile) with a view to producing compost from biowaste. Temperatures above 75 °C were maintained in the closed module and reached again in the covered pile, indicating that intensive organic-matter mineralization occurred in both stages. In the covered pile, the temperature sharply decreased, indicating depletion of easily biodegradable organic matter. An aerobic 4-day respiration test (AT4) value below 10 mg O2/g dry matter, the cut-off for assessing compost stability, was obtained after 8 weeks. However, a high content of humic substances (HS), reflecting compost maturity, was obtained only after 120 days. The increase in HS content proceeded in two phases. In the first phase (45-84 day), the rate constant and the rate of HS formation were lower than in the second phase (84-120 day) (0.072 vs. 0.087 day-1, 1.97 vs. 3.06 mg C/(g organic matter·d)). All the above-mentioned indicators and the nutrient content (N, P, K, Mg, Ca) in the compost indicates that the biological stage of an MBT plant can successfully treat biowaste. This is in accordance with a circular economy and will contribute to increasing recycling rates.


Subject(s)
Composting , Refuse Disposal , Humic Substances , Recycling , Soil , Solid Waste/analysis
2.
Bioresour Technol ; 314: 123729, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32622279

ABSTRACT

The impact of temperature (20, 35, 45, 55, 70 °C) on volatile fatty acid (VFA) production from biowaste collected at a mechanical-biological treatment plant was analysed. Additionally, relevant streams of the treatment plant were characterised to assess seasonality effects and conceive the integration of a fermentation unit. Batch fermentation tests at 35 °C showed the highest VFA yields (0.49-0.59 gCODVFA/gVS). The VFA yield at 35 °C was 2%, 6%, 10% and 14% higher than at 55, 45, 20 and 70 °C, respectively. The VFA profile was not affected by the fermentation temperature nor seasonality and was dominated by acetic, propionic and butyric acid (75-86% CODVFA). The concentration of non-VFA soluble COD and ammoniacal nitrogen in the fermentation liquor increased with temperature. The fermentation unit in the treatment plant was conceived after the pulper and hydrocyclones and before the anaerobic digester, while the fermenter temperature depends on the VFA application.


Subject(s)
Bioreactors , Fatty Acids, Volatile , Fermentation , Hydrogen-Ion Concentration , Sewage , Temperature
3.
Sci Total Environ ; 518-519: 363-70, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25770949

ABSTRACT

We performed a screening investigation to assess the human health risks of the Integrated Waste Management Facility (IWMF: mechanical-biological treatment (MBT) plant plus municipal solid waste incinerator (MSWI); Ecoparc-3) of Barcelona (Spain). Air concentrations of pollutants potentially released by the MBT plant (VOCs and bioaerosols) and the MSWI (trace elements, PCDD/Fs and PCBs) were determined. Trace elements, PCDD/Fs and PCBs were also analyzed in soil samples. The concentrations of trace elements and bioaerosols were similar to those previously reported in other areas of similar characteristics, while formaldehyde was the predominant VOC. Interestingly, PCDD/F concentrations in soil and air were the highest ever reported near a MSWI in Catalonia, being maximum concentrations 10.8 ng WHO-TEQ/kg and 41.3 fg WHO-TEQ/m(3), respectively. In addition, there has not been any reduction in soils, even after the closure of a power plant located adjacently. Human health risks of PCDD/F exposure in the closest urban nucleus located downwind the MSWI are up to 10-times higher than those nearby other MSWIs in Catalonia. Although results must be considered as very preliminary, they are a serious warning for local authorities. We strongly recommend to conduct additional studies to confirm these findings and, if necessary, to implement measures to urgently mitigate the impact of the MSWI on the surrounding environment. We must also state the tremendous importance of an individual evaluation of MSWIs, rather than generalizing their environmental and health risks.


Subject(s)
Air Pollutants/analysis , Environmental Exposure/statistics & numerical data , Environmental Pollutants/analysis , Incineration , Humans , Risk Assessment , Spain , Waste Disposal Facilities
SELECTION OF CITATIONS
SEARCH DETAIL