Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Biomed Pharmacother ; 179: 117421, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39241568

ABSTRACT

Lung diseases have complex pathogenesis and treatment challenges, showing an obvious increase in the rate of diagnosis and death every year. Therefore, elucidating the mechanism for their pathogenesis and treatment ineffective from novel views is essential and urgent. Methyltransferase-like 3 (METTL3) is a novel post-transcriptional regulator for gene expression that has been implicated in regulating lung diseases, including that observed in chronic conditions such as pulmonary fibrosis (PF), pulmonary arterial hypertension (PAH), and chronic obstructive pulmonary disease (COPD), as well as acute conditions such as pneumonia, severe acute respiratory syndrome coronavirus 2 infection, and sepsis-induced acute respiratory distress syndrome. Notably, a comprehensive summary and analysis of findings from these studies might help understand lung diseases from the novel view of METTL3-regulated mechanism, however, such a review is still lacking. Therefore, this review aims to bridge such shortage by summarising the roles of METTL3 in lung diseases, establishing their interrelationships, and elucidating the potential applications of METTL3 regarding diagnosis, treatment, and prognosis. The analysis collectively suggests METTL3 is contributable to the onset and progression of these lung diseases, thereby prospecting METTL3 as a valuable biomarker for their diagnosis, treatment, and prognosis. In conclusion, this review offers elucidation into the correlation between METTL3 and lung diseases in both research and clinical settings and highlights potential avenues for exploring the roles of METTL3 in the respiratory system.


Subject(s)
Lung Diseases , Methyltransferases , Humans , Methyltransferases/metabolism , Methyltransferases/genetics , Lung Diseases/genetics , Lung Diseases/enzymology , Animals , COVID-19 , Biomarkers/metabolism , Lung/pathology , Lung/enzymology , Prognosis
2.
Kidney Blood Press Res ; 49(1): 787-798, 2024.
Article in English | MEDLINE | ID: mdl-39159608

ABSTRACT

INTRODUCTION: Renal cell carcinoma (RCC) is a common type of kidney cancer with limited treatment options and a high mortality rate. Therefore, it is essential to understand the role and mechanism of key genes in RCC development and progression. This study aimed to analyze the role of zinc fingers and homeoboxes 2 (ZHX2) in RCC and the underlying mechanism. METHODS: RNA expression was analyzed by quantitative real-time polymerase chain reaction, while protein expression was analyzed by Western blotting assay and immunohistochemistry assay. Cell viability was evaluated using CCK-8 assay, and cell proliferation was assessed by EdU assay. The rate of cell apoptosis was quantified by flow cytometry. Transwell assays were conducted to analyze cell migration and invasion. The sphere formation assay was performed to assess the formation of microspheres. Additionally, m6A RNA immunoprecipitation assay and RNA immunoprecipitation assay were utilized to investigate the relationship between ZHX2 and two proteins, methyltransferase like 3 (METTL3) and insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1). The stability of ZHX2 mRNA was analyzed through the Actinomycin D assay. Furthermore, a xenograft mouse model assay was conducted to analyze the effect of ZHX2 overexpression and METTL3 silencing on RCC cell tumor properties in vivo. RESULTS: ZHX2 expression was upregulated in both RCC tissues and cells when compared with healthy renal tissues and human renal cortex proximal convoluted tubule epithelial cells. Depletion of ZHX2 inhibited RCC cell proliferation, migration, invasion, and spheroid-forming capacity but promoted cell apoptosis. Moreover, it was found that METTL3-mediated m6A methylation of ZHX2 and IGF2BP1 also stabilized ZHX2 through m6A methylation modification. Furthermore, ZHX2 overexpression showed a potential for attenuating the effects induced by METTL3 silencing and counteracted the inhibitory effect of METTL3 depletion on tumor formation in vivo. CONCLUSION: METTL3 and IGF2BP1-mediated m6A modification of ZHX2 promoted RCC progression. The finding suggests that ZHX2 may serve as a potential therapeutic target in RCC, providing valuable insights for future clinical interventions.


Subject(s)
Carcinoma, Renal Cell , Homeodomain Proteins , Kidney Neoplasms , Methyltransferases , RNA-Binding Proteins , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Humans , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Animals , Mice , Cell Line, Tumor , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Proliferation , Cell Movement , Apoptosis
3.
Front Oncol ; 14: 1402126, 2024.
Article in English | MEDLINE | ID: mdl-38966069

ABSTRACT

Background: RNA methyltransferase-like 3 (METTL3) is responsible for methyl group transfer in the progression of N 6-methyladenosine (m6A) modification. This epigenetic feature contributes to the structural and functional regulation of RNA and consequently may promote tumorigenesis, tumor progression, and cellular response to anticancer treatment (chemo-, radio-, and immunotherapy). In head and neck squamous cell carcinoma (HNSCC), the commonly used chemotherapy is cisplatin. Unfortunately, cisplatin resistance is still a major cause of tumor relapse and patients' death. Thus, this study aimed to investigate the role of METTL3 on cellular response to cisplatin in HNSCC in vitro models. Materials and methods: HNSCC cell lines (H103, FaDu, and Detroit-562) with stable METTL3 knockdown (sgMETTL3) established with CRISPR-Cas9 system were treated with 0.5 tolerable plasma level (TPL) and 1 TPL of cisplatin. Further, cell cycle distribution, apoptosis, CD44/CD133 surface marker expression, and cell's ability to colony formation were analyzed in comparison to controls (cells transduced with control sgRNA). Results: The analyses of cell cycle distribution and apoptosis indicated a significantly higher percentage of cells with METTL3 knockdown 1) arrested in the G2/S phase and 2) characterized as a late apoptotic or death in comparison to control. The colony formation assay showed intensified inhibition of a single cell's ability to grow into a colony in FaDu and Detroit-562 METTL3-deficient cells, while a higher colony number was observed in H103 METTL3 knockdown cells after cisplatin treatment. Also, METTL3 deficiency significantly increased cancer stem cell markers' surface expression in all studied cell lines. Conclusion: Our findings highlight the significant influence of METTL3 on the cellular response to cisplatin, suggesting its potential as a promising therapeutic target for addressing cisplatin resistance in certain cases of HNSCC.

4.
Breast Cancer Res ; 26(1): 110, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961497

ABSTRACT

Breast cancer (BC) is a highly prevalent malignancy worldwide, with complex pathogenesis and treatment challenges. Research reveals that methyltransferase-like 3 (METTL3) is widely involved in the pathogenesis of several tumors through methylation of its target RNAs, and its role and mechanisms in BC are also extensively studied. In this review, we aim to provide a comprehensive interpretation of available studies and elucidate the relationship between METTL3 and BC. This review suggests that high levels of METTL3 are associated with the pathogenesis, poor prognosis, and drug resistance of BC, suggesting METTL3 as a potential diagnostic or prognostic biomarker and therapeutic target. Collectively, this review provides a comprehensive understanding of how METTL3 functions through RNA methylation, which provides a valuable reference for future fundamental studies and clinical applications.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Methyltransferases , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , Drug Resistance, Neoplasm/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Methyltransferases/antagonists & inhibitors , Biomarkers, Tumor/metabolism , Prognosis , Molecular Targeted Therapy , Animals
5.
Cell Signal ; 121: 111303, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39019337

ABSTRACT

BACKGROUND: N6-methyladenosine (m6A) mRNA modification and mitochondrial function hold paramount importance in the advancement of metabolic dysfunction-associated steatotic liver disease (MASLD). AIM: The aim of this study was to elucidate the impact of m6A on hepatic mitochondrial dysfunction and provide a novel perspective for a more comprehensive understanding of the pathogenesis of MASLD. METHODS: High-throughput screening methods were used to identify the underlying transcriptome and proteome changes in MASLD model mice. Western blotting, blue native gel electrophoresis (BNGE), dot blot, and Seahorse analyses were conducted to identify and validate the underlying regulatory mechanisms of m6A on mitochondria. RESULTS: In vivo, abnormal m6A modification in MASLD was attributed to the upregulation of methyltransferase like 3 (Mettl3) and the downregulation of YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) induced by high-fat foods. In vitro, knockdown of Mettl3 inhibited hepatic oxidative phosphorylation (OXPHOS) and the mitochondrial respiratory chain (MRC), while overexpression of Mettl3 promoted these processes. However, knockout of the reader protein YTHDF1, which plays a crucial role in the m6A modification process, counteracted the effect of Mettl3 and suppressed mitochondrial OXPHOS. CONCLUSIONS: In MASLD, damage to the MRC may be regulated by the Mettl3-m6A-YTHDF1 axis, particularly by the role of YTHDF1. Modulation of the Mettl3-m6A-YTHDF1 axis has the potential to improve mitochondrial function, alleviate MASLD symptoms, and decrease the likelihood of disease progression.


Subject(s)
Adenosine , Methyltransferases , RNA-Binding Proteins , Methyltransferases/metabolism , Animals , RNA-Binding Proteins/metabolism , Mice , Adenosine/analogs & derivatives , Adenosine/metabolism , Male , Mice, Inbred C57BL , Mitochondria/metabolism , Oxidative Phosphorylation , Fatty Liver/metabolism , Humans , Disease Models, Animal
6.
Respir Res ; 25(1): 276, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010105

ABSTRACT

BACKGROUND: The pathogenesis of acute lung injury (ALI) involves a severe inflammatory response, leading to significant morbidity and mortality. N6-methylation of adenosine (m6A), an abundant mRNA nucleotide modification, plays a crucial role in regulating mRNA metabolism and function. However, the precise impact of m6A modifications on the progression of ALI remains elusive. METHODS: ALI models were induced by either intraperitoneal injection of lipopolysaccharide (LPS) into C57BL/6 mice or the LPS-treated alveolar type II epithelial cells (AECII) in vitro. The viability and proliferation of AECII were assessed using CCK-8 and EdU assays. The whole-body plethysmography was used to record the general respiratory functions. M6A RNA methylation level of AECII after LPS insults was detected, and then the "writer" of m6A modifications was screened. Afterwards, we successfully identified the targets that underwent m6A methylation mediated by METTL3, a methyltransferase-like enzyme. Last, we evaluated the regulatory role of METTL3-medited m6A methylation at phosphatase and tensin homolog (Pten) in ALI, by assessing the proliferation, viability and inflammation of AECII. RESULTS: LPS induced marked damages in respiratory functions and cellular injuries of AECII. The m6A modification level in mRNA and the expression of METTL3, an m6A methyltransferase, exhibited a notable rise in both lung tissues of ALI mice and cultured AECII cells subjected to LPS treatment. METTL3 knockdown or inhibition improved the viability and proliferation of LPS-treated AECII, and also reduced the m6A modification level. In addition, the stability and translation of Pten mRNA were enhanced by METTL3-mediated m6A modification, and over-expression of PTEN reversed the protective effect of METTL3 knockdown in the LPS-treated AECII. CONCLUSIONS: The progression of ALI can be attributed to the elevated levels of METTL3 in AECII, as it promotes the stability and translation of Pten mRNA through m6A modification. This suggests that targeting METTL3 could offer a novel approach for treating ALI.


Subject(s)
Acute Lung Injury , Alveolar Epithelial Cells , Cell Proliferation , Methyltransferases , Mice, Inbred C57BL , PTEN Phosphohydrolase , RNA, Messenger , Animals , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/genetics , Acute Lung Injury/pathology , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Mice , Cell Proliferation/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology , Male , RNA, Messenger/metabolism , Cell Survival/physiology , Cell Survival/drug effects , Methylation , Adenosine/analogs & derivatives , Adenosine/metabolism , Lipopolysaccharides/toxicity , RNA Stability , Cells, Cultured
7.
Transl Lung Cancer Res ; 13(5): 1121-1136, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38854947

ABSTRACT

Non-small cell lung cancer (NSCLC) is a malignant cancer that with high incidence, recurrence, and mortality rates in human beings, posing significant threats to human health. Moreover, effective early diagnosis of NSCLC remains limited primarily by the lack of accurate biomarkers. Therefore, there is an urgent need to understand the mechanisms underlying NSCLC pathogenesis and treatment failure. Methyltransferase-like 3 (METTL3) is a prototypical member of a family of which its members transfer methyl groups. It has been implicated in modulating the pathogenesis of NSCLC, as well as conferring resistance to NSCLC therapeutics. The targeting of METTL3 for NSCLC treatment has been reported. However, the relationship between METTL3 and NSCLC remains to be demonstrated. In this review, we discuss relevant interrelationships by summarising the studies on METTL3 in NSCLC pathogenesis, therapeutic resistance, and clinical applications. Current research suggests that the upregulation of METTL3 expression propels the tumorigenesis, progression, and treatment resistance of NSCLC. Therefore, we propose that METTL3 is an excellent candidate biomarker for NSCLC diagnosis and prognosis. Therapeutic targeting of METTL3 has significant potential for NSCLC treatment. This review provides a summary of the association between METTL3 and NSCLC, which would be a valuable reference for both basic and clinical research.

8.
Free Radic Biol Med ; 222: 72-84, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38825211

ABSTRACT

Premature ovarian insufficiency (POI) is a clinical syndrome characterised by a decline in ovarian function in women before 40 years of age and is associated with oestradiol deficiency and a complex pathogenesis. However, the aetiology of POI is still unclear and effective preventative and treatment strategies are still lacking. Methyltransferase like 3 (METTL3) is an RNA methyltransferase that is involved in spermatogenesis, oocyte development and maturation, early embryonic development, and embryonic stem cell differentiation and formation, but its role in POI is unknown. In the present study, METTL3 deficiency in follicular theca cells was found to lead to reduced fertility in female mice, with a POI-like phenotype, and METTL3 knockout promoted ovarian inflammation. Further, a reduction in METTL3 in follicular theca cells led to a decrease in the m6A modification of pri-miR-21, which further reduced pri-miR-21 recognition and binding by DGCR8 proteins, leading to a decrease in the synthesis of mature miR-21-5p. Decrease of miR-21-5p promoted the secretion of interleukin-1ß (IL-1ß) from follicular theca cells. Acting in a paracrine manner, IL-1ß inhibited the cAMP-PKA pathway and activated the NF-κB pathway in follicular granulosa cells. This activation increased the levels of reactive oxygen species in granulosa cells, causing disturbances in the intracellular Ca2+ balance and mitochondrial damage. These cellular events ultimately led to granulosa cell apoptosis and a decrease in oestradiol synthesis, resulting in POI development. Collectively, these findings reveal how METTL3 deficiency promotes the expression and secretion of IL-1ß in theca cells, which regulates ovarian functions, and proposes a new theory for the development of POI disease.


Subject(s)
Interleukin-1beta , Methyltransferases , Primary Ovarian Insufficiency , Theca Cells , Animals , Female , Humans , Mice , Gene Expression Regulation , Granulosa Cells/metabolism , Granulosa Cells/pathology , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Primary Ovarian Insufficiency/pathology , Primary Ovarian Insufficiency/genetics , Primary Ovarian Insufficiency/metabolism , Signal Transduction , Theca Cells/metabolism , Theca Cells/pathology
9.
FASEB J ; 38(11): e23693, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38809685

ABSTRACT

N6-methylated adenosine (m6A) is a crucial RNA modification in eukaryotes, particularly in cancer. However, its role in cervical cancer (CC) is unclear. We aimed to elucidate the part of m6A in CC by analyzing methyltransferase-like 3 (METTL3) expression, identifying downstream targets, and exploring the underlying mechanism. We assessed METTL3 expression in CC using western blotting, quantitative polymerase chain reaction (qPCR), and immunohistochemistry. In vitro and in vivo experiments examined METTL3's role in CC. We employed RNA sequencing, methylated RNA immunoprecipitation sequencing, qPCR, and RNA immunoprecipitation qPCR to explore METTL3's mechanism in CC. METTL3 expression was upregulated in CC, promoting cell proliferation and metastasis. METTL3 knockdown inhibited human cervical cancer by inactivating AKT/mTOR signaling pathway. METTL3-mediated m6A modification was observed in CC cells, targeting phosphodiesterase 3A (PDE3A). METTL3 catalyzed m6A modification on PDE3A mRNA through YTH domain family protein 3 (YTHDF3). Our study indicated the mechanism of m6A modification in CC and suggested the METTL3/YTHDF3/PDE3A axis as a potential clinical target for CC treatment.


Subject(s)
Adenosine , Cell Proliferation , Methyltransferases , Uterine Cervical Neoplasms , Animals , Female , Humans , Mice , Adenosine/analogs & derivatives , Adenosine/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Methyltransferases/metabolism , Methyltransferases/genetics , Mice, Inbred BALB C , Mice, Nude , Signal Transduction , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , RNA Methylation/genetics
10.
J Cell Physiol ; 239(6): e31289, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685566

ABSTRACT

Follicular cysts are a common reproductive disorder in domestic animals that cause considerable economic losses to the farming industry. Effective prevention and treatment methods are lacking because neither the pathogenesis nor formation mechanisms of follicular cysts are well-understood. In this study, we first investigated the granulosa cells (GCs) of cystic follicles isolated from pigs. We observed a significant reduction in the expression of methyltransferase-like 3 (METTL3). Subsequent experiments revealed that METTL3 downregulation in GCs caused a decrease in m6A modification of pri-miR-21. This reduction further inhibited DGCR8 recognition and binding to pri-miR-21, dampening the synthesis of mature miR-21-5p. Additionally, the decrease in miR-21-5p promotes IL-1ß expression in GCs. Elevated IL-1ß activates the NFκB pathway, in turn upregulating apoptotic genes TNFa and BAX/BCL2. The subsequent apoptosis of GCs and inhibition of autophagy causes downregulation of CYP19A1 expression. These processes lower oestrogen secretion and contribute to follicular cyst formation. In conclusion, our findings provide a foundation for understanding and further exploring the mechanisms of follicular-cyst development in farm animals. This work has important implications for treating ovarian disorders in livestock and could potentially be extended to humans.


Subject(s)
Apoptosis , Granulosa Cells , Methyltransferases , MicroRNAs , Animals , Female , Apoptosis/genetics , Cells, Cultured , Down-Regulation , Follicular Cyst/genetics , Follicular Cyst/pathology , Follicular Cyst/metabolism , Granulosa Cells/metabolism , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , Signal Transduction , Swine , RNA-Binding Proteins/metabolism
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167112, 2024 04.
Article in English | MEDLINE | ID: mdl-38432455

ABSTRACT

The dysregulation of N6-methyladenosine (m6A) on mRNAs is involved in the pathogenesis of rheumatoid arthritis (RA). Methyltransferase-like 3 (METTL3), serving as a central m6A methyltransferase, is highly expressed in macrophages, synovial tissues and RA fibroblast-like synoviocytes (RA-FLS) of RA patients. However, METTL3-mediated m6A modification on target mRNAs and the molecular mechanisms involved in RA-FLS remain poorly defined. Our research demonstrated that METTL3 knockdown decreased the proliferation, migratory and invasive abilities of RA-FLS. Notably, we identified the adhesion molecule with Ig like domain 2 (AMIGO2) as a probable downstream target of both METTL3 and YTH Domain Containing 2 (YTHDC2) in RA-FLS. We revealed that AMIGO2 augmented the activation of RA-FLS and can potentially reverse the phenotypic effects induced by the knockdown of either METTL3 or YTHDC2. Mechanistically, METTL3 knockdown decreased m6A modification in the 5'-untranslated region (5'UTR) of AMIGO2 mRNA, which diminished its interaction with YTHDC2 in RA-FLS. Our findings unveiled that silencing of METTL3 inhibited the proliferation and aggressive behaviors of RA-FLS by downregulating AMIGO2 expression in an m6A-YTHDC2 dependent mechanism, thereby underscoring the pivotal role of the METTL3-m6A-YTHDC2-AMIGO2 axis in modulating RA-FLS phenotypes.


Subject(s)
Arthritis, Rheumatoid , Synoviocytes , Humans , Cell Proliferation , Arthritis, Rheumatoid/pathology , Synovial Membrane/metabolism , Synoviocytes/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Nerve Tissue Proteins/metabolism , RNA Helicases/metabolism , RNA Helicases/pharmacology
12.
Cell Rep ; 43(4): 113999, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38554281

ABSTRACT

Motor neuron (MN) demise is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Post-transcriptional gene regulation can control RNA's fate, and defects in RNA processing are critical determinants of MN degeneration. N6-methyladenosine (m6A) is a post-transcriptional RNA modification that controls diverse aspects of RNA metabolism. To assess the m6A requirement in MNs, we depleted the m6A methyltransferase-like 3 (METTL3) in cells and mice. METTL3 depletion in embryonic stem cell-derived MNs has profound and selective effects on survival and neurite outgrowth. Mice with cholinergic neuron-specific METTL3 depletion display a progressive decline in motor behavior, accompanied by MN loss and muscle denervation, culminating in paralysis and death. Reader proteins convey m6A effects, and their silencing phenocopies METTL3 depletion. Among the m6A targets, we identified transactive response DNA-binding protein 43 (TDP-43) and discovered that its expression is under epitranscriptomic control. Thus, impaired m6A signaling disrupts MN homeostasis and triggers neurodegeneration conceivably through TDP-43 deregulation.


Subject(s)
Cholinergic Neurons , Methyltransferases , Neuromuscular Diseases , Animals , Humans , Mice , Adenosine/metabolism , Adenosine/analogs & derivatives , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/genetics , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Motor Neurons/metabolism , Motor Neurons/pathology , Neuromuscular Diseases/metabolism , Neuromuscular Diseases/pathology
13.
EBioMedicine ; 102: 105041, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484555

ABSTRACT

BACKGROUND: Chemoresistance is a critical factor contributing to poor prognosis in clinical patients with cancer undergoing postoperative adjuvant chemotherapy. The role of gut microbiota in mediating resistance to tumour chemotherapy remains to be investigated. METHODS: Patients with CRC were categorised into clinical benefit responders (CBR) and no clinical benefit responders (NCB) based on chemotherapy efficacy. Differential bacterial analysis using 16S rRNA sequencing revealed Desulfovibrio as a distinct microbe between the two groups. Employing a syngeneic transplantation model, we assessed the effect of Desulfovibrio on chemotherapy by measuring tumour burden, weight, and Ki-67 expression. We further explored the mechanisms underlying the compromised chemotherapeutic efficacy of Desulfovibrio using metabolomics, western blotting, colony formation, and cell apoptosis assays. FINDINGS: In comparison, Desulfovibrio was more abundant in the NCB group. In vivo experiments revealed that Desulfovibrio colonisation in the gut weakened the efficacy of FOLFOX. Treatment with Desulfovibrio desulfuricans elevates serum S-adenosylmethionine (SAM) levels. Interestingly, SAM reduced the sensitivity of CRC cells to FOLFOX, thereby promoting the growth of CRC tumours. These experiments suggest that SAM promotes the growth and metastasis of CRC by driving the expression of methyltransferase-like 3 (METTL3). INTERPRETATION: A high abundance of Desulfovibrio in the intestines indicates poor therapeutic outcomes for postoperative neoadjuvant FOLFOX chemotherapy in CRC. Desulfovibrio drives the manifestation of METTL3 in CRC, promoting resistance to FOLFOX chemotherapy by increasing the concentration of SAM. FUNDING: This study is supported by Wuxi City Social Development Science and Technology Demonstration Project (N20201005).


Subject(s)
Colorectal Neoplasms , Desulfovibrio desulfuricans , Humans , Apoptosis , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Desulfovibrio desulfuricans/genetics , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Methyltransferases , RNA, Ribosomal, 16S/genetics , Leucovorin , Organoplatinum Compounds , Antineoplastic Combined Chemotherapy Protocols
14.
Exp Cell Res ; 437(1): 113990, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38462207

ABSTRACT

This study aims to explore the role of methyltransferase-like 3 (METTL3) modulation of ferroptosis in the pathogenesis of trophoblast-mediated preeclampsia. The expression of METTL3 and acyl-CoA synthetase long chain family member 4 (ACSL4) was measured in clinical placental tissues and trophoblasts using qPCR and Western blot techniques. The effects of METTL3 on the symptoms of preeclampsia were also validated in rat models. METTL3 and ACSL4 were upregulated in placental tissues from patients with preeclampsia and in hypoxia-induced trophoblasts. METTL3 silencing increased the migration and invasion of trophoblasts cultured under hypoxic conditions. Knockdown of METTL3 increased cell viability and suppressed ferroptosis in hypoxia-stimulated trophoblasts. Hypoxia increased the level of m6A in cells, whereas silencing METTL3 partially reversed this change. Silencing METTL3 resulted in a decrease in m6A modification of ACSL4 mRNA, which led to a reduction in ACSL4 mRNA stability. ACSL4 upregulation partially reversed the effects of METTL3 silencing on cell viability, migration, invasion, and ferroptosis in hypoxia-stimulated trophoblasts. Inhibition of METTL3 in preeclampsia rats decreased blood pressure, urine protein levels, fetal survival rate, and ACSL4-mediated ferroptosis. METTL3 elevates ferroptosis to inhibit the migration and invasion of trophoblasts and in vivo preeclampsia symptoms by catalyzing the m6A modification of ACSL4 mRNA.


Subject(s)
Ferroptosis , Pre-Eclampsia , Animals , Female , Humans , Pregnancy , Rats , Ferroptosis/genetics , Hypoxia , Methyltransferases/genetics , Placenta , Pre-Eclampsia/genetics , RNA, Messenger , Trophoblasts
15.
Article in English | MEDLINE | ID: mdl-38482615

ABSTRACT

BACKGROUND: Many studies have demonstrated that the expression of methyltransferase- like 3 (METTL3) is altered in various inflammatory diseases. Its specific mechanistic role in the intestinal inflammatory response during sepsis remains limited and requires further investigation. OBJECTIVES: Explore the potential mechanism of METTL3 in the intestinal inflammatory response during sepsis. MATERIALS AND METHODS: Immunohistochemical analysis was utilized to detect the expression of METTL3 in the necrotic intestine of patients with intestinal necrosis and the small intestine of cecal ligation and puncture (CLP) mice. Mice were subjected to the CLP and Sham surgeries, intestine tissue was harvested and performed HE staining, and ELISA to examine intestinal inflammatory responses, while TUNEL staining was applied to detect intestinal cell apoptosis. Additionally, ELISA was used to detect diamine oxidase (DAO) and intestinal fatty acid binding protein (I-FABP) levels in intestinal tissue. Immunohistochemistry and RT-qPCR were also employed to examine the mRNA and protein expression levels of Zona Occludens 1 (ZO-1) and Claudin-1. Finally, transcriptomic sequencing was performed on the small intestine tissues of METTL3 Knock-out (KO) and Wild-type (WT) mice in response to sepsis. RESULTS: METTL3 exhibited lower expression level in the necrotic intestine of patients and the small intestine of CLP mice. Loss of METTL3 in CLP mice triggered significantly higher expression of TNF-α and IL-18, down-regulated expression of ZO-1 and claudin-1, and decreased expression of DAO and I-FABP in the intestinal tissue. KEGG enrichment analysis showed that the differential genes were significantly enriched in immune-related pathways. CONCLUSION: This study reveals a novel mechanism responsible for exacerbated intestinal inflammation orchestrated by METTL3. Particularly, METTL3 null mice displayed decreased ZO- 1 and Claudin-1 expression, which largely hampered intestinal epithelial barrier function, resulting in bacterial and toxin translocation and intestinal immune activation and inflammation against sepsis.

16.
J Cell Mol Med ; 28(4): e18128, 2024 02.
Article in English | MEDLINE | ID: mdl-38332508

ABSTRACT

Several studies have highlighted the functional indispensability of methyltransferase-like 3 (METTL3) in the reproductive system. However, a review that comprehensively interprets these studies and elucidates their relationships is lacking. Therefore, the present work aimed to review studies that have investigated the functions of METTL3 in the reproductive system (including spermatogenesis, follicle development, gametogenesis, reproductive cancer, asthenozoospermia and assisted reproduction failure). This review suggests that METTL3 functions not only essential for normal development, but also detrimental in the occurrence of disorders. In addition, promising applications of METTL3 as a diagnostic or prognostic biomarker and therapeutic target for reproductive disorders have been proposed. Collectively, this review provides comprehensive interpretations, novel insights, potential applications and future perspectives on the role of METTL3 in regulating the reproductive system, which may be a valuable reference for researchers and clinicians.


Subject(s)
Methyltransferases , RNA , Male , Humans , Methyltransferases/genetics , Spermatogenesis/genetics , Reproduction/genetics , Genitalia
17.
Gene ; 908: 148281, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38360124

ABSTRACT

The upregulation of methyltransferase-like 3 (METTL3) has been associated with the progression of esophageal cancer. However, METTL3-induced N6-methyladenosine (m6A) alterations on the downstream target mRNAs in esophageal squamous cell carcinoma (ESCC) are not yet fully understood. Our study revealed that silencing METTL3 resulted in a significant decrease in ESCC cell proliferation and metastasis in vitro and in vivo. Additionally, the adhesion molecule with Ig like domain 2 (AMIGO2) was identified as a potential downstream target of both METTL3 and YTH Domain-Containing Protein 1 (YTHDC1) in ESCC cells. Functionally, AMIGO2 augmented the malignant behaviors of ESCC cells in vitro and in vivo, and its overexpression can rescue the inhibition of the proliferation and migration in ESCC cells induced by METTL3 or YTHDC1 knockdown. Furthermore, our findings revealed that knockdown of METTL3 decreased m6A modification in the 5'-untranslated regions (5'UTR) of AMIGO2 precursor mRNA (pre-mRNA), and YTHDC1 interacted with AMIGO2 pre-mRNA to regulate AMIGO2 expression by modulating the splicing process of AMIGO2 pre-mRNA in ESCC cells. These findings highlighted a novel role of the METTL3-m6A-YTHDC1-AMIGO2 axis in regulating ESCC cell proliferation and motility, suggesting its potential as a therapeutic target for ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Neoplasms/pathology , RNA Precursors/metabolism , Cell Proliferation/genetics , Up-Regulation , Methyltransferases/genetics , Methyltransferases/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , RNA Splicing Factors/genetics
18.
Front Immunol ; 15: 1335774, 2024.
Article in English | MEDLINE | ID: mdl-38322265

ABSTRACT

The tumor microenvironment (TME) is a heterogeneous ecosystem comprising cancer cells, immune cells, stromal cells, and various non-cellular components, all of which play critical roles in controlling tumor progression and response to immunotherapies. Methyltransferase-like 3 (METTL3), the core component of N 6-methyladenosine (m6A) writer, is frequently associated with abnormalities in the m6A epitranscriptome in different cancer types, impacting both cancer cells and the surrounding TME. While the impact of METTL3 on cancer cells has been extensively reviewed, its roles in TME and anti-cancer immunity have not been comprehensively summarized. This review aims to systematically summarize the functions of METTL3 in TME, particularly its effects on tumor-infiltrating immune cells. We also elaborate on the underlying m6A-dependent mechanism. Additionally, we discuss ongoing endeavors towards developing METTL3 inhibitors, as well as the potential of targeting METTL3 to bolster the efficacy of immunotherapy.


Subject(s)
Methyltransferases , Neoplasms , Tumor Microenvironment , Cell Line, Tumor , Methyltransferases/genetics , RNA , Humans , Neoplasms/genetics
19.
Neurotox Res ; 42(1): 15, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349604

ABSTRACT

Cerebral ischemic stroke (CIS) is the main cause of disability. METTL3 is implicated in CIS, and we explored its specific mechanism. Middle cerebral artery occlusion (MCAO) rat model and oxygen-glucose deprivation/reperfusion (OGD/R) HAPI cell model were established and treated with LV-METTL3 or DAA, oe-METTL3, miR-335-3p mimics, or DAA, to assess their effects on MCAO rat neurological and motor function, cerebral infarction area, brain water content, microglial activation, blood-brain barrier (BBB) permeability, and NLRP3 inflammasome activation. METTL3, pri-miR-335-3p, mature miR-335-3p, and miR-335-3p mRNA levels were assessed by RT-qPCR; M1/M2 microglial phenotype proportion and M1/M2 microglia ratio, inflammatory factor levels, and m6A modification were assessed. MCAO rats manifested cerebral ischemia injury. METTL3 was under-expressed in CIS. METTL3 overexpression inhibited microglial activation and M1 polarization and BBB permeability in MCAO rats and inhibited OGD/R-induced microglial activation and reduced M1 polarization. METTL3 regulated miR-335-3p expression and inhibited NLRP3 inflammasome activation. m6A methylation inhibition averted METTL3's effects on NLRP3 activation, thus promoting microglial activation in OGD/R-induced cells and METTL3's effects on BBB permeability in MCAO rats. Briefly, METTL3 regulated miR-335-3p expression through RNA m6A methylation and inhibited NLRP3 inflammasome activation, thus repressing microglial activation, BBB permeability, and protecting against CIS.


Subject(s)
Adenine , Brain Injuries , Ischemic Stroke , MicroRNAs , Stroke , Animals , Rats , Adenine/analogs & derivatives , Antiviral Agents , Blood-Brain Barrier , Cerebral Infarction , Glucose , Inflammasomes , Microglia , MicroRNAs/genetics , NLR Family, Pyrin Domain-Containing 3 Protein , RNA Methylation
20.
Biomed Pharmacother ; 172: 116157, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301420

ABSTRACT

Methyltransferase-like 3 (METTL3), a component of the RNA N6-methyladenosine (m6A) modification with a specific catalytic capacity, controls gene expression by actively regulating RNA splicing, nuclear export, stability, and translation, determines the fate of RNAs and assists in regulating biological processes. Studies conducted in recent decades have demonstrated the pivotal regulatory role of METTL3 in liver disorders, including hepatic lipid metabolism disorders, liver fibrosis, nonalcoholic steatohepatitis, and liver cancer. Although METTL3's roles in these diseases have been extensively investigated, the regulatory network of METTL3 and its potential applications remain unexplored. In this review, we provide a comprehensive overview of the roles and mechanisms of METTL3 implicated in these diseases, establish a regulatory network of METTL3, evaluate the potential for targeting METTL3 for diagnosis and treatment, and discuss avenues for future development and research. We found relatively upregulated expressions of METTL3 in these liver diseases, demonstrating its potential as a diagnostic biomarker and therapeutic target.


Subject(s)
Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Methyltransferases/genetics , Liver Cirrhosis , Catalysis , RNA
SELECTION OF CITATIONS
SEARCH DETAIL