Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
Cureus ; 16(8): e65961, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39221308

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) is essential in the proper function of many essential cellular processes in the human body. The purpose of this review is to investigate the effect of nicotinamide mononucleotide (NMN), a NAD+ precursor, on physical performance and evaluate the safety profile of supplementation. A systematic review search criteria following the guidelines from the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was performed in four databases for randomized controlled trials on NMN supplementation. Study variables included title, author, publication date, study year, number of patients, dosage, mean age, mean follow-up time, pre- and post-intervention reported outcomes, and rates of complications. Ten studies, including 437 patients, with a mean age of 58.0 years (35.1 to 81.1 years) and a mean follow-up time of 9.6 weeks (4 to 12 weeks) were included in this study. NMN dosages ranged from 150 to 1200 mg/day. Mean pre-intervention grip strength (two studies) and skeletal mass index (two studies) were 29.9 kilograms (kg) (range: 21.4-40.1 kg) and 7.4 kg/m2 (range: 6.9-7.65 kg/m2), respectively. Mean post-intervention grip strength and skeletal mass index were 30.5 kg (range: 21.7-41.9 kg) and 7.4 kg/m2 (6.8-7.64 kg/m2), respectively. There were no serious adverse effects observed. Moreover, of the reported side effects, they were determined to be independent of NMN supplementation. Therefore, patients taking NMN supplementation demonstrated non-significantly improved physical performance parameters. NMN is well tolerated with no serious adverse effects observed.

2.
EMBO Mol Med ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169162

ABSTRACT

Chemotherapy induced ovarian failure and infertility is an important concern in female cancer patients of reproductive age or younger, and non-invasive, pharmacological approaches to maintain ovarian function are urgently needed. Given the role of reduced nicotinamide adenine dinucleotide phosphate (NADPH) as an essential cofactor for drug detoxification, we sought to test whether boosting the NAD(P)+ metabolome could protect ovarian function. We show that pharmacological or transgenic strategies to replenish the NAD+ metabolome ameliorates chemotherapy induced female infertility in mice, as measured by oocyte yield, follicle health, and functional breeding trials. Importantly, treatment of a triple-negative breast cancer mouse model with the NAD+ precursor nicotinamide mononucleotide (NMN) reduced tumour growth and did not impair the efficacy of chemotherapy drugs in vivo or in diverse cancer cell lines. Overall, these findings raise the possibility that NAD+ precursors could be a non-invasive strategy for maintaining ovarian function in cancer patients, with potential benefits in cancer therapy.

3.
Curr Pharm Des ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39171590

ABSTRACT

BACKGROUND: The beneficial effects of nicotinamide mononucleotide (NMN) on heart disease have been reported, but the effects of NMN on high-fat diet-induced hypertrophic cardiomyopathy (HCM) and its mechanisms of action are unclear. In this study, we systematically explored the effects and mechanism of action of NMN in HCM using network pharmacology and molecular docking. METHODS: Active targets of NMN were obtained from SWISS, CNKI, PubMed, DrugBank, BingingDB, and ZINC databases. HCM-related targets were retrieved from GEO datasets combined with GeneCards, OMIM, PharmGKB, and DisGeNET databases. A Protein-Protein Interaction (PPI) network was built to screen the core targets. DAVID was used for GO and KEGG pathway enrichment analyses. The tissue and organ distribution of targets was evaluated. Interactions between potential targets and active compounds were assessed by molecular docking. A molecular dynamics simulation was conducted for the optimal core protein-compound complexes obtained by molecular docking. RESULTS: In total, 265 active targets of NMN and 3918 potential targets of HCM were identified. A topological analysis of the PPI network revealed 10 core targets. GO and KEGG pathway enrichment analyses indicated that the effects of NMN were mediated by genes related to inflammation, apoptosis, and oxidative stress, as well as the FOXO and PI3K-Akt signaling pathways. Molecular docking and molecular dynamics simulations revealed good binding ability between the active compounds and screened targets. CONCLUSION: The possible targets and pathways of NMN in the treatment of HCM have been successfully predicted by this investigation. It provides a novel approach for further investigation into the molecular processes of NMN in HCM treatment.

4.
J Transl Med ; 22(1): 805, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39215316

ABSTRACT

Nicotinamide mononucleotide (NMN), a crucial intermediate in NAD + synthesis, can rapidly transform into NAD + within the body after ingestion. NMN plays a pivotal role in several important biological processes, including energy metabolism, cellular aging, circadian rhythm regulation, DNA repair, chromatin remodeling, immunity, and inflammation. NMN has emerged as a key focus of research in the fields of biomedicine, health care, and food science. Recent years have witnessed extensive preclinical studies on NMN, offering valuable insights into the pathogenesis of age- and aging-related diseases. Given the sustained global research interest in NMN and the substantial market expectations for the future, here, we comprehensively review the milestones in research on NMN biotherapy over the past 10 years. Additionally, we highlight the current research on NMN in the field of digestive system diseases, identifying existing problems and challenges in the field of NMN research. The overarching aim of this review is to provide references and insights for the further exploration of NMN within the spectrum of digestive system diseases.


Subject(s)
Digestive System Diseases , Humans , Digestive System Diseases/therapy , Animals , Biological Therapy/methods
5.
FASEB J ; 38(14): e23804, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39037422

ABSTRACT

Natural Nicotinamide Adenine Dinucleotide (NAD+) precursors have attracted much attention due to their positive effects in promoting ovarian health. However, their target tissue, synthesis efficiency, advantages, and disadvantages are still unclear. This review summarizes the distribution of NAD+ at the tissue, cellular and subcellular levels, discusses its biosynthetic pathways and the latest findings in ovary, include: (1) NAD+ plays distinct roles both intracellularly and extracellularly, adapting its distribution in response to requirements. (2) Different precursors differs in target tissues, synthetic efficiency, biological utilization, and adverse effects. Importantly: tryptophan is primarily utilized in the liver and kidneys, posing metabolic risks in excess; nicotinamide (NAM) is indispensable for maintaining NAD+ levels; nicotinic acid (NA) constructs a crucial bridge between intestinal microbiota and the host with diverse functions; nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN) increase NAD+ systemically and can be influenced by delivery route, tissue specificity, and transport efficiency. (3) The biosynthetic pathways of NAD+ are intricately intertwined. They provide multiple sources and techniques for NAD+ synthesis, thereby reducing the dependence on a single molecule to maintain cellular NAD+ levels. However, an excess of a specific precursor potentially influencing other pathways. In addition, Protein expression analysis suggest that ovarian tissues may preferentially utilize NAM and NMN. These findings summarize the specific roles and potential of NAD+ precursors in enhancing ovarian health. Future research should delve into the molecular mechanisms and intervention strategies of different precursors, aiming to achieve personalized prevention or treatment of ovarian diseases, and reveal their clinical application value.


Subject(s)
NAD , Niacinamide , Ovary , Humans , NAD/metabolism , NAD/biosynthesis , Ovary/metabolism , Female , Animals , Niacinamide/metabolism , Niacinamide/biosynthesis , Biosynthetic Pathways , Nicotinamide Mononucleotide/metabolism
6.
Biochem Biophys Res Commun ; 731: 150371, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39004065

ABSTRACT

Vascular endothelial cytoskeletal disruption leads to increased vascular permeability and is involved in the pathogenesis and progression of various diseases. Oxidative stress can increase vascular permeability by weakening endothelial cell-to-cell junctions and decrease intracellular nicotinamide adenine dinucleotide (NAD+) levels. However, it remains unclear how intracellular NAD+ variations caused by oxidative stress alter the vascular endothelial cytoskeletal organization. In this study, we demonstrated that oxidative stress activates poly (ADP-ribose [ADPr]) polymerase (PARP), which consume large amounts of intracellular NAD+, leading to cytoskeletal disruption in vascular endothelial cells. We found that hydrogen peroxide (H2O2) could transiently disrupt the cytoskeleton and reduce intracellular total NAD levels in human umbilical vein endothelial cells (HUVECs). H2O2 stimulation led to rapid increase in ADPr protein levels in HUVECs. Pharmaceutical PARP inhibition counteracted H2O2-induced total NAD depletion and cytoskeletal disruption, suggesting that NAD+ consumption by PARP induced cytoskeletal disruption. Additionally, supplementation with nicotinamide mononucleotide (NMN), the NAD+ precursor, prevented both intracellular total NAD depletion and cytoskeletal disruption induced by H2O2 in HUVECs. Inhibition of the NAD+ salvage pathway by FK866, a nicotinamide phosphoribosyltransferase inhibitor, maintained H2O2-induced cytoskeletal disruption, suggesting that intracellular NAD+ plays a crucial role in recovery from cytoskeletal disruption. Our findings provide further insights into the potential application of PARP inhibition and NMN supplementation for the treatment and prevention of diseases involving vascular hyperpermeability.


Subject(s)
Cytoskeleton , Human Umbilical Vein Endothelial Cells , Hydrogen Peroxide , NAD , Oxidative Stress , Poly(ADP-ribose) Polymerases , Humans , Cytoskeleton/metabolism , Cytoskeleton/drug effects , NAD/metabolism , Oxidative Stress/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Poly(ADP-ribose) Polymerases/metabolism , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/toxicity , Hydrogen Peroxide/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Cells, Cultured
7.
Biomed Pharmacother ; 178: 117199, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39053426

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of ß-amyloid (Aß) plaques and neurofibrillary tangles composed of tau protein in the brain. These neuropathological hallmarks contribute to cognitive impairment by inducing neuronal loss in the cerebral cortex and hippocampus. Unfortunately, current therapeutic approaches only target symptomatic relief and do not impede disease progression. Nicotinamide mononucleotide (NMN), a precursor of nicotinamide adenine dinucleotide (NAD+), has emerged as a promising candidate for the treatment of age-related neurodegenerative disorders. NMN supplementation could restore NAD+ levels, thereby alleviating neuronal damage and slowing the progression of AD and other aging-associated diseases. AD is closely associated with autophagic impairment and oxidative stress. Our in vivo experiments demonstrated that NMN could ameliorate pathological and behavioral impairments in AD mice. Specifically, NMN enhanced autophagy and promoted p-tau clearance. Meanwhile, NMN could activate the Nrf2/Keap1/NQO1 pathway, thereby reducing the oxidative stress. Immunofluorescence results demonstrated that NMN could alleviate neuronal damage in AD mice. Furthermore, in vitro results showed that the p-tau clearance and antioxidant stress effects of NMN were suppressed by autophagy inhibitor, chloroquine (CQ) or bafilomycin A1 (BafA1), in Aß-induced PC12 cells. Lastly, when Nrf2 was knocked down, the antioxidant stress, autophagy enhancement, and p-tau clearance effects of NMN were all inhibited. In conclusion, our research indicates that NMN exerts therapeutic effect against AD by activating autophagy and the Nrf2/Keap1/NQO1 pathway through a mutual regulating mechanism of autophagy and antioxidative stress. These findings highlight the promising potential of NMN for the treatment of AD.


Subject(s)
Alzheimer Disease , Autophagy , NF-E2-Related Factor 2 , Nicotinamide Mononucleotide , Oxidative Stress , Animals , Oxidative Stress/drug effects , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Autophagy/drug effects , Nicotinamide Mononucleotide/pharmacology , Nicotinamide Mononucleotide/therapeutic use , Mice , NF-E2-Related Factor 2/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , tau Proteins/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Mice, Transgenic , Male , Disease Models, Animal , NAD(P)H Dehydrogenase (Quinone)/metabolism , PC12 Cells , Rats , Amyloid beta-Peptides/metabolism , Mice, Inbred C57BL , Signal Transduction/drug effects
8.
Biochem Biophys Res Commun ; 728: 150346, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-38972085

ABSTRACT

Tissue-specific deficiency of nicotinamide phosphoribosyl transferase (NAMPT), the rate-limiting enzyme of the nicotinamide adenine dinucleotide (NAD+)-salvage pathway, causes a decrease of NAD+ in the tissue, resulting in functional abnormalities. The NAD+-salvage pathway is drastically activated in the mammary gland during lactation, but the significance of this has not been established. To investigate the impact of NAD+ perturbation in the mammary gland, we generated two new lines of mammary gland epithelial-cell-specific Nampt-knockout mice (MGKO). LC-MS/MS analyses confirmed that the levels of NAD+ and its precursor nicotinamide mononucleotide (NMN) were significantly increased in lactating mammary glands. We found that murine milk contained a remarkably high level of NMN. MGKO exhibited a significant decrease in tissue NAD+ and milk NMN levels in the mammary gland during lactation periods. Despite the decline in NAD+ levels, the mammary glands of MGKO appeared to develop normally. Transcriptome analysis revealed that the gene profiles of MGKO were indistinguishable from those of their wild-type counterparts, except for Nampt. Although the NMN levels in milk from MGKO were decreased, the metabolomic profile of milk was otherwise unaltered. The mammary gland also contains adipocytes, but adipocyte-specific deficiency of Nampt did not affect mammary gland NAD+ metabolism or mammary gland development. These results demonstrate that the NAD+ -salvage pathway is activated in mammary epithelial cells during lactation and suggest that this activation is required for production of milk NMN rather than mammary gland development. Our MGKO mice could be a suitable model for exploring the potential roles of NMN in milk.


Subject(s)
Epithelial Cells , Lactation , Mammary Glands, Animal , Mice, Knockout , Milk , Nicotinamide Mononucleotide , Nicotinamide Phosphoribosyltransferase , Animals , Nicotinamide Phosphoribosyltransferase/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Mononucleotide/metabolism , Mammary Glands, Animal/metabolism , Female , Epithelial Cells/metabolism , Milk/metabolism , Mice , Lactation/metabolism , Cytokines/metabolism , NAD/metabolism , Mice, Inbred C57BL
9.
Neurochem Res ; 49(10): 2888-2896, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39037560

ABSTRACT

With the aging global population, Alzheimer's disease (AD) has become a significant social and economic burden, necessitating the development of novel therapeutic strategies. This study investigates the therapeutic potential of nicotinamide mononucleotide (NMN) synbiotics, a combination of NMN, Lactiplantibacillus plantarum CGMCC 1.16089, and lactulose, in mitigating AD pathology. APP/PS1 mice were supplemented with NMN synbiotics and compared against control groups. The effects on amyloid-ß (Aß) deposition, intestinal histopathology, tight junction proteins, inflammatory cytokines, and reactive oxygen species (ROS) levels were assessed. NMN synbiotics intervention significantly reduced Aß deposition in the cerebral cortex and hippocampus by 67% and 60%, respectively. It also ameliorated histopathological changes in the colon, reducing crypt depth and restoring goblet cell numbers. The expression of tight junction proteins Claudin-1 and ZO-1 was significantly upregulated, enhancing intestinal barrier integrity. Furthermore, NMN synbiotics decreased the expression of proinflammatory cytokines IL-1ß, IL-6, and TNF-α, and reduced ROS levels, indicative of attenuated oxidative stress. The reduction in Aß deposition, enhancement of intestinal barrier function, decrease in neuroinflammation, and alleviation of oxidative stress suggest that NMN synbiotics present a promising therapeutic intervention for AD by modulating multiple pathological pathways. Further research is required to elucidate the precise mechanisms, particularly the role of the NLRP3 inflammasome pathway, which may offer a novel target for AD treatment.


Subject(s)
Alzheimer Disease , Synbiotics , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Synbiotics/administration & dosage , Nicotinamide Mononucleotide/therapeutic use , Nicotinamide Mononucleotide/pharmacology , Mice, Transgenic , Mice , Amyloid beta-Peptides/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Male , Cytokines/metabolism
10.
Nutrients ; 16(14)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39064797

ABSTRACT

Nicotinamide mononucleotide (NMN), the direct precursor of nicotinamide adenine dinucleotide (NAD+), is involved in the regulation of many physiological and metabolic reactions in the body. NMN can indirectly affect cellular metabolic pathways, DNA repair, and senescence, while also being essential for maintaining tissues and dynamic metabolic equilibria, promoting healthy aging. Therefore, NMN has found many applications in the food, pharmaceutical, and cosmetics industries. At present, NMN synthesis strategies mainly include chemical synthesis and biosynthesis. Despite its potential benefits, the commercial production of NMN by organic chemistry approaches faces environmental and safety problems. With the rapid development of synthetic biology, it has become possible to construct microbial cell factories to produce NMN in a cost-effective way. In this review, we summarize the chemical and biosynthetic strategies of NMN, offering an overview of the recent research progress on host selection, chassis cell optimization, mining of key enzymes, metabolic engineering, and adaptive fermentation strategies. In addition, we also review the advances in the role of NMN in aging, metabolic diseases, and neural function. This review provides comprehensive technical guidance for the efficient biosynthesis of NMN as well as a theoretical basis for its application in the fields of food, medicine, and cosmetics.


Subject(s)
Metabolic Engineering , Nicotinamide Mononucleotide , Nicotinamide Mononucleotide/metabolism , Humans , Metabolic Engineering/methods , Animals , Aging , Metabolic Networks and Pathways , Fermentation , NAD/biosynthesis , NAD/metabolism
11.
ACS Synth Biol ; 13(8): 2425-2435, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39023319

ABSTRACT

Nicotinamide mononucleotide (NMN) serves as a precursor for NAD+ synthesis and has been shown to have positive effects on the human body. Previous research has predominantly focused on the nicotinamide phosphoribosyltransferase-mediated route (NadV-mediated route) for NMN biosynthesis. In this study, we have explored the de novo NMN biosynthesis route as an alternative pathway to enhance NMN production. Initially, we systematically engineered Escherichia coli to enhance its capacity for NMN synthesis and accumulation, resulting in a remarkable over 100-fold increase in NMN yield. Subsequently, we progressively enhanced the de novo NMN biosynthesis route to further augment NMN production. We screened and identified the crucial role of MazG in catalyzing the enzymatic cleavage of NAD+ to NMN. And the de novo NMN biosynthesis route was optimized and integrated with the NadV-mediated NMN biosynthetic pathways, leading to an intracellular concentration of 844.10 ± 17.40 µM NMN. Furthermore, the introduction of two transporters enhanced the uptake of NAM and the excretion of NMN, resulting in NMN production of 1293.73 ± 61.38 µM. Finally, by engineering an E. coli strain with optimized PRPP synthetase, we achieved the highest NMN production, reaching 3067.98 ± 27.25 µM after 24 h of fermentation at the shake flask level. In addition to constructing an efficient E. coli cell factory for NMN production, our findings provide new insights into understanding the NAD+ salvage pathway and its role in energy metabolism within E. coli.


Subject(s)
Escherichia coli , Metabolic Engineering , NAD , Nicotinamide Mononucleotide , Escherichia coli/metabolism , Escherichia coli/genetics , Nicotinamide Mononucleotide/metabolism , Metabolic Engineering/methods , NAD/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Biosynthetic Pathways/genetics
12.
Sci Rep ; 14(1): 17435, 2024 07 29.
Article in English | MEDLINE | ID: mdl-39075211

ABSTRACT

Adlay millet seeds are well known for excellent health benefits. However, using fungal fermentation to improve their nutritional and functional constituents and the underlying mechanisms has not been thoroughly investigated. Herein, we used Rhizopus oryzae as starter and applied metabolomics combining with quantitative verification to understand the changes of the nutritional and functional profiles of adlay millet seeds. Results showed that a total of 718 metabolites from 18 compound classes were identified. The fermentation with R. oryzae varied 203 differential metabolites, of which 184 became more abundant and 19 got less abundant, and many components such as amino acids, nucleotides, vitamins, flavonoids, terpenoids, and phenols significantly increased after the fermentation process. Interestingly, we found that R. oryzae synthesized high levels of two important beneficial compounds, S-adenosylmethionine (SAMe) and ß-Nicotinamide mononucleotide (ß-NMN), with their contents increased from 0.56 to 370.26 µg/g and 0.55 to 8.32 µg/g, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of enriched metabolites revealed the amino acid metabolic pathways were important for conversion of the primary and secondary metabolites. Specifically, aspartate can up-regulate the biosynthesis of SAMe and ß-NMN. These findings improved our understanding into the effects of R. oryzae fermentation on enhancing the nutritional and functional values of cereal foods.


Subject(s)
Fermentation , Metabolomics , Rhizopus oryzae , Seeds , Seeds/metabolism , Metabolomics/methods , Rhizopus oryzae/metabolism , Millets/metabolism , Metabolome , Rhizopus/metabolism
13.
Ecotoxicol Environ Saf ; 280: 116557, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38850695

ABSTRACT

Decabromodiphenyl ether (BDE-209) is an organic compound that is widely used in rubber, textile, electronics, plastics and other industries. It has been found that BDE-209 has a destructive effect on the reproductive system of mammals. However, the effect of BDE-209 exposure on oocyte quality and whether there is a viable salvage strategy have not been reported. Here, we report that murine oocytes exposed to BDE-209 produce a series of meiostic defects, including increased fragmentation rates and decreased PBE. Furthermore, exposure of oocytes to BDE-209 hinders mitochondrial function and disrupts mitochondrial integrity. Our observations show that supplementation with NMN successfully alleviated the meiosis impairment caused by BDE-209 and averted oocyte apoptosis by suppressing ROS generation. In conclusion, our findings suggest that NMN supplementation may be able to alleviate the oocyte quality impairment induced by BDE-209 exposure, providing a potential strategy for protecting oocytes from environmental pollutant exposure.


Subject(s)
Halogenated Diphenyl Ethers , Oocytes , Reactive Oxygen Species , Animals , Halogenated Diphenyl Ethers/toxicity , Oocytes/drug effects , Mice , Reactive Oxygen Species/metabolism , Female , Apoptosis/drug effects , Mitochondria/drug effects , Environmental Pollutants/toxicity , Meiosis/drug effects , Flame Retardants/toxicity
14.
Biomed Pharmacother ; 176: 116850, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38834006

ABSTRACT

Depression is a prevalent psychiatric disorder with accumulating evidence implicating dysregulation of extracellular adenosine triphosphate (ATP) levels in the medial prefrontal cortex (mPFC). It remains unclear whether facilitating endogenous ATP production and subsequently increasing extracellular ATP level in the mPFC can exert a prophylactic effect against chronic social defeat stress (CSDS)-induced depressive-like behaviors and enhance stress resilience. Here, we found that nicotinamide mononucleotide (NMN) treatment effectively elevated nicotinamide adenine dinucleotide (NAD+) biosynthesis and extracellular ATP levels in the mPFC. Moreover, both the 2-week intraperitoneal (i.p.) injection and 3-week oral gavage of NMN prior to exposure to CSDS effectively prevented the development of depressive-like behavior in mice. These protective effects were accompanied with the preservation of both NAD+ biosynthesis and extracellular ATP level in the mPFC. Furthermore, catalyzing ATP hydrolysis by mPFC injection of the ATPase apyrase negated the prophylactic effects of NMN on CSDS-induced depressive-like behaviors. Prophylactic NMN treatment also prevented the reduction in GABAergic inhibition and the increase in excitability in mPFC neurons projecting to the lateral habenula (LHb). Collectively, these findings demonstrate that the prophylactic effects of NMN on depressive-like behaviors are mediated by preventing extracellular ATP loss in the mPFC, which highlights the potential of NMN supplementation as a novel approach for protecting and preventing stress-induced depression in susceptible individuals.


Subject(s)
Adenosine Triphosphate , Behavior, Animal , Depression , Mice, Inbred C57BL , Nicotinamide Mononucleotide , Prefrontal Cortex , Stress, Psychological , Animals , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Male , Adenosine Triphosphate/metabolism , Nicotinamide Mononucleotide/pharmacology , Depression/drug therapy , Depression/prevention & control , Depression/metabolism , Stress, Psychological/complications , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Mice , Behavior, Animal/drug effects , Social Defeat , NAD/metabolism , Disease Models, Animal
15.
ACS Appl Mater Interfaces ; 16(26): 33723-33732, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38913623

ABSTRACT

LiFePO4 is widely used because of its high safety and cycle stability, but its inefficient electronic conductivity combined with sluggish Li+ diffusivity restricts its performance. To overcome this obstacle, applying a layer of conductive carbon onto the surface of LiFePO4 has the greatest improvement in electronic conductivity and Li+ diffusivity. However, the rate performance of carbon-coated LiFePO4 makes it difficult to meet the application requirements. Although nitrogen doping improves electrochemical performance by providing active sites and electronic conductivity, the N-doped carbon coating is prone to agglomeration, which causes a sharp decrease in capacity when the current rate increases. In this work, a synergistic N, Mn codoping strategy is implemented to overcome the aforementioned drawbacks by disrupting the large agglomeration of C-N bonds, improving the uniformity of the surface coating layer to enhance the completeness of the conductive network and increasing the number of Li+ diffusion channels, and thus accelerating the mass transfer rate under high-rate current. Consequently, this strategy effectively improves the rate capability (119 mA h g-1 at 10 C) while maintaining excellent cycling performance (88% capacity retention over 600 cycles at 5 C). This work improves the rate of ion diffusion and the rate capability of micrometer-sized LiFePO4, thus, enabling its wider application.

16.
Biochem Biophys Res Commun ; 726: 150274, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-38924882

ABSTRACT

Alzheimer's disease (AD) is a complex neurodegenerative condition with growing evidence implicating the gut microbiota in its pathogenesis. This study aimed to investigate the effects of NMN synbiotics, a combination of ß-nicotinamide mononucleotide (NMN), Lactobacillus plantarum, and lactulose, on the gut microbiota composition and metabolic profiles in APP/PS1 transgenic mice. Results demonstrated that NMN synbiotics led to a notable restructuring of the gut microbiota, with a decreased Firmicutes/Bacteroidetes ratio in the AD mice, suggesting a potential amelioration of gut dysbiosis. Alpha diversity indices indicated a reduction in microbial diversity following NMN synbiotics supplementation, while beta diversity analyses revealed a shift towards a more balanced microbial community structure. Functional predictions based on the 16S rRNA data highlighted alterations in metabolic pathways, particularly those related to amino acid and energy metabolism, which are crucial for neuronal health. The metabolomic analysis uncovered a significant impact of NMN synbiotics on the gut metabolome, with normalization of metabolic composition in AD mice. Differential metabolite functions were enriched in pathways associated with neurotransmitter synthesis and energy metabolism, pointing to the potential therapeutic effects of NMN synbiotics in modulating the gut-brain axis and synaptic function in AD. Immunohistochemical staining observed a significant reduction of amyloid plaques formed by Aß deposition in the brain of AD mice after NMN synbiotics intervention. The findings underscore the potential of using synbiotics to ameliorate the neurodegenerative processes associated with Alzheimer's disease, opening new avenues for therapeutic interventions.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Disease Models, Animal , Gastrointestinal Microbiome , Mice, Transgenic , Synbiotics , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/diet therapy , Alzheimer Disease/therapy , Alzheimer Disease/microbiology , Synbiotics/administration & dosage , Mice , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Presenilin-1/metabolism , Presenilin-1/genetics , Nicotinamide Mononucleotide/metabolism , Male , Dysbiosis/metabolism , Dysbiosis/microbiology , Dysbiosis/diet therapy , Dysbiosis/therapy
17.
J Biomed Sci ; 31(1): 49, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735943

ABSTRACT

BACKGROUND: The impact of global overconsumption of simple sugars on bone health, which peaks in adolescence/early adulthood and correlates with osteoporosis (OP) and fracture risk decades, is unclear. Mesenchymal stromal/stem cells (MSCs) are the progenitors of osteoblasts/bone-forming cells, and known to decrease their osteogenic differentiation capacity with age. Alarmingly, while there is correlative evidence that adolescents consuming greatest amounts of simple sugars have the lowest bone mass, there is no mechanistic understanding on the causality of this correlation. METHODS: Bioinformatics analyses for energetics pathways involved during MSC differentiation using human cell information was performed. In vitro dissection of normal versus high glucose (HG) conditions on osteo-/adipo-lineage commitment and mitochondrial function was assessed using multi-sources of non-senescent human and murine MSCs; for in vivo validation, young mice was fed normal or HG-added water with subsequent analyses of bone marrow CD45- MSCs. RESULTS: Bioinformatics analyses revealed mitochondrial and glucose-related metabolic pathways as integral to MSC osteo-/adipo-lineage commitment. Functionally, in vitro HG alone without differentiation induction decreased both MSC mitochondrial activity and osteogenesis while enhancing adipogenesis by 8 h' time due to depletion of nicotinamide adenine dinucleotide (NAD+), a vital mitochondrial co-enzyme and co-factor to Sirtuin (SIRT) 1, a longevity gene also involved in osteogenesis. In vivo, HG intake in young mice depleted MSC NAD+, with oral NAD+ precursor supplementation rapidly reversing both mitochondrial decline and osteo-/adipo-commitment in a SIRT1-dependent fashion within 1 ~ 5 days. CONCLUSIONS: We found a surprisingly rapid impact of excessive glucose, a single dietary factor, on MSC SIRT1 function and osteogenesis in youthful settings, and the crucial role of NAD+-a single molecule-on both MSC mitochondrial function and lineage commitment. These findings have strong implications on future global OP and disability risks in light of current worldwide overconsumption of simple sugars.


Subject(s)
Glucose , Mesenchymal Stem Cells , Mitochondria , NAD , Osteogenesis , Sirtuin 1 , Mesenchymal Stem Cells/metabolism , Sirtuin 1/metabolism , Sirtuin 1/genetics , Osteogenesis/physiology , Mice , Humans , Animals , Mitochondria/metabolism , Glucose/metabolism , NAD/metabolism , Cell Differentiation
18.
J Pineal Res ; 76(4): e12964, 2024 May.
Article in English | MEDLINE | ID: mdl-38803014

ABSTRACT

Circadian disruption such as shift work, jet lag, has gradually become a global health issue and is closely associated with various metabolic disorders. The influence and mechanism of circadian disruption on renal injury in chronic kidney disease (CKD) remains inadequately understood. Here, we evaluated the impact of environmental light disruption on the progression of chronic renal injury in CKD mice. By using two abnormal light exposure models to induce circadian disruption, we found that circadian disruption induced by weekly light/dark cycle reversal (LDDL) significantly exacerbated renal dysfunction, accelerated renal injury, and promoted renal fibrosis in mice with 5/6 nephrectomy and unilateral ureteral obstruction (UUO). Mechanistically, RNA-seq analysis revealed significant immune and metabolic disorder in the LDDL-conditioned CKD kidneys. Consistently, renal content of ATP was decreased and ROS production was increased in the kidney tissues of the LDDL-challenged CKD mice. Untargeted metabolomics revealed a significant buildup of lipids in the kidney affected by LDDL. Notably, the level of ß-NMN, a crucial intermediate in the NAD+ pathway, was found to be particularly reduced. Moreover, we demonstrated that both ß-NMN and melatonin administration could significantly rescue the light-disruption associated kidney dysfunction. In conclusion, environmental circadian disruption may exacerbate chronic kidney injury by facilitating inflammatory responses and disturbing metabolic homeostasis. ß-NMN and melatonin treatments may hold potential as promising approaches for preventing and treating light-disruption associated CKD.


Subject(s)
Circadian Rhythm , Renal Insufficiency, Chronic , Animals , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/etiology , Mice , Male , Circadian Rhythm/physiology , Melatonin/metabolism , Disease Progression , Mice, Inbred C57BL , Photoperiod , Kidney/metabolism , Kidney/pathology
19.
Biomed Pharmacother ; 175: 116682, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703507

ABSTRACT

The interaction between endoplasmic reticulum (ER) and mitochondria has been shown to play a key role in hepatic steatosis during chronic obesity. ß-nicotinamide mononucleotide (NMN) has been reported to regulate obesity, however, its molecular mechanism at the subcellular level remains unclear. Here, NMN improved liver steatosis and insulin resistance in chronic high-fat diet (HFD) mice. RNA-seq showed that compared with the liver of HFD mice, NMN intervention enhanced fat digestion and absorption and stimulated the cholesterol metabolism signaling pathways, while impaired insulin resistance and the fatty acid biosynthesis signaling pathways. Mechanistically, NMN ameliorated mitochondrial dysfunction and ER oxidative stress in the liver of HFD mice by increasing hepatic nicotinamide adenine dinucleotide (NAD+) (P < 0.01) levels. This effect increased the contact sites (mitochondria-associated membranes [MAMs]) between ER and mitochondria, thereby promoting intracellular ATP (P < 0.05) production and mitigating lipid metabolic disturbances in the liver of HFD mice. Taken together, this study provided a theoretical basis for restoring metabolic dynamic equilibrium in the liver of HFD mice by increasing MAMs via the nutritional strategy of NMN supplementation.


Subject(s)
Diet, High-Fat , Endoplasmic Reticulum , Fatty Liver , Insulin Resistance , Liver , Mice, Inbred C57BL , Nicotinamide Mononucleotide , Animals , Insulin Resistance/physiology , Diet, High-Fat/adverse effects , Endoplasmic Reticulum/metabolism , Male , Mice , Liver/metabolism , Liver/pathology , Liver/drug effects , Nicotinamide Mononucleotide/pharmacology , Fatty Liver/metabolism , Lipid Metabolism/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Oxidative Stress/drug effects , Mitochondria, Liver/metabolism , Mitochondria, Liver/drug effects , Endoplasmic Reticulum Stress/drug effects , Signal Transduction
20.
Cell Rep ; 43(5): 114102, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38636518

ABSTRACT

Although dysregulated cholesterol metabolism predisposes aging tissues to inflammation and a plethora of diseases, the underlying molecular mechanism remains poorly defined. Here, we show that metabolic and genotoxic stresses, convergently acting through liver X nuclear receptor, upregulate CD38 to promote lysosomal cholesterol efflux, leading to nicotinamide adenine dinucleotide (NAD+) depletion in macrophages. Cholesterol-mediated NAD+ depletion induces macrophage senescence, promoting key features of age-related macular degeneration (AMD), including subretinal lipid deposition and neurodegeneration. NAD+ augmentation reverses cellular senescence and macrophage dysfunction, preventing the development of AMD phenotype. Genetic and pharmacological senolysis protect against the development of AMD and neurodegeneration. Subretinal administration of healthy macrophages promotes the clearance of senescent macrophages, reversing the AMD disease burden. Thus, NAD+ deficit induced by excess intracellular cholesterol is the converging mechanism of macrophage senescence and a causal process underlying age-related neurodegeneration.


Subject(s)
ADP-ribosyl Cyclase 1 , Cellular Senescence , Cholesterol , Liver X Receptors , Macrophages , Mice, Inbred C57BL , NAD , NAD/metabolism , Animals , Liver X Receptors/metabolism , Macrophages/metabolism , Cellular Senescence/drug effects , Cholesterol/metabolism , ADP-ribosyl Cyclase 1/metabolism , ADP-ribosyl Cyclase 1/genetics , Mice , Humans , Macular Degeneration/metabolism , Macular Degeneration/pathology , Lysosomes/metabolism , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Male
SELECTION OF CITATIONS
SEARCH DETAIL