Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.889
Filter
1.
Proc Natl Acad Sci U S A ; 121(37): e2413104121, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39231211

ABSTRACT

The retinal fovea in human and nonhuman primates is essential for high acuity and color vision. Within the fovea lies specialized circuitry in which signals from a single cone photoreceptor are largely conveyed to one ON and one OFF type midget bipolar cell (MBC), which in turn connect to a single ON or OFF midget ganglion cell (MGC), respectively. Restoring foveal vision requires not only photoreceptor replacement but also appropriate reconnection with surviving ON and OFF MBCs and MGCs. However, our current understanding of the effects of cone loss on the remaining foveal midget pathway is limited. We thus used serial block-face electron microscopy to determine the degree of plasticity and potential remodeling of this pathway in adult Macaca fascicularis several months after acute photoreceptor loss upon photocoagulation. We reconstructed MBC structure and connectivity within and adjacent to the region of cone loss. We found that MBC dendrites within the scotoma retracted and failed to reach surviving cones to form new connections. However, both surviving cones and ON and OFF MBC dendrites at the scotoma border exhibited remodeling, suggesting that these neurons can demonstrate plasticity and rewiring at maturity. At six months postlesion, disconnected OFF MBCs clearly lost output ribbon synapses with their postsynaptic partners, whereas the majority of ON MBCs maintained their axonal ribbon numbers, suggesting differential timing or extent in ON and OFF midget circuit remodeling after cone loss. Our findings raise rewiring considerations for cell replacement approaches in the restoration of foveal vision.


Subject(s)
Fovea Centralis , Macaca fascicularis , Retinal Bipolar Cells , Retinal Cone Photoreceptor Cells , Animals , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retinal Bipolar Cells/metabolism , Retinal Bipolar Cells/physiology , Retinal Ganglion Cells/physiology , Retinal Ganglion Cells/pathology , Neuronal Plasticity/physiology , Dendrites/physiology , Visual Pathways , Male
2.
Hum Mol Genet ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39231530

ABSTRACT

Mutations in PRPH2 are a relatively common cause of sight-robbing inherited retinal degenerations (IRDs). Peripherin-2 (PRPH2) is a photoreceptor-specific tetraspanin protein that structures the disk rim membranes of rod and cone outer segment (OS) organelles, and is required for OS morphogenesis. PRPH2 is noteworthy for its broad spectrum of disease phenotypes; both inter- and intra-familial heterogeneity have been widely observed and this variability in disease expression and penetrance confounds efforts to understand genotype-phenotype correlations and pathophysiology. Here we report the generation and initial characterization of a gene-edited animal model for PRPH2 disease associated with a nonsense mutation (c.1095:C>A, p.Y285X), which is predicted to truncate the peripherin-2 C-terminal domain. Young (P21) Prph2Y285X/WT mice developed near-normal photoreceptor numbers; however, OS membrane architecture was disrupted, OS protein levels were reduced, and in vivo and ex vivo electroretinography (ERG) analyses found that rod and cone photoreceptor function were each severely reduced. Interestingly, ERG studies also revealed that rod-mediated downstream signaling (b-waves) were functionally compensated in the young animals. This resiliency in retinal function was retained at P90, by which time substantial IRD-related photoreceptor loss had occurred. Altogether, the current studies validate a new mouse model for investigating PRPH2 disease pathophysiology, and demonstrate that rod and cone photoreceptor function and structure are each directly and substantially impaired by the Y285X mutation. They also reveal that Prph2 mutations can induce a functional compensation that resembles homeostatic plasticity, which can stabilize rod-derived signaling, and potentially dampen retinal dysfunction during some PRPH2-associated IRDs.

3.
Stem Cell Res Ther ; 15(1): 278, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39227908

ABSTRACT

BACKGROUND: The immunomodulatory oligodeoxynucleotide (ODN) IMT504 might harbor antifibrotic properties within the liver. METHODS: Fibrosis models were induced in mice through thioacetamide (TAA) administration and bile-duct ligation. Cre-loxP mice were utilized to identify GLAST + Wnt1 + bone marrow stromal progenitors (BMSPs) and to examine their contribution with cells in the liver. In vivo and in vitro assays; flow-cytometry, immunohistochemistry, and qPCR were conducted. RESULTS: IMT504 demonstrated significant inhibition of liver fibrogenesis progression and reversal of established fibrosis. Early responses to IMT504 involved the suppression of profibrogenic and proinflammatory markers, coupled with an augmentation of hepatocyte proliferation. Additionally, this ODN stimulated the proliferation and mobilization of GLAST + Wnt1 + BMSPs, likely amplifying their contribution with endothelial- and hepatocytes-like cells. Moreover, IMT504 significantly modulated the expression levels of Wnt ligands and signaling pathway/target genes specifically within GLAST + Wnt1 + BMSPs, with minimal impact on other BMSPs. Intriguingly, both IMT504 and conditioned media from IMT504-pre-treated GLAST + Wnt1 + BMSPs shifted the phenotype of fibrotic macrophages, hepatic stellate cells, and hepatocytes, consistent with the potent antifibrotic effects observed. CONCLUSION: In summary, our findings identify IMT504 as a promising candidate molecule with potent antifibrotic properties, operating through both direct and indirect mechanisms, including the activation of GLAST + Wnt1 + BMSPs.


Subject(s)
Liver Cirrhosis , Mesenchymal Stem Cells , Wnt1 Protein , Animals , Mice , Liver Cirrhosis/pathology , Liver Cirrhosis/drug therapy , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Wnt1 Protein/metabolism , Wnt1 Protein/genetics , Liver/drug effects , Liver/pathology , Liver/metabolism , Oligodeoxyribonucleotides/pharmacology , Male , Mice, Inbred C57BL , Hepatocytes/metabolism , Hepatocytes/drug effects , Thioacetamide
4.
PNAS Nexus ; 3(9): pgae315, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39228815

ABSTRACT

The deformation mechanism in amorphous solids subjected to external shear remains poorly understood because of the absence of well-defined topological defects mediating the plastic deformation. The notion of soft spots has emerged as a useful tool to characterize the onset of irreversible rearrangements and plastic flow, but these entities are not clearly defined in terms of geometry and topology. In this study, we unveil the phenomenology of recently discovered, precisely defined topological defects governing the microscopic mechanical and yielding behavior of a model 3D glass under shear deformation. We identify the existence of vortex-like and antivortex-like topological defects within the 3D nonaffine displacement field. The number density of these defects exhibits a significant anticorrelation with the plastic events, with defect proliferation-annihilation cycles matching the alternation of elastic-like segments and catastrophic plastic drops, respectively. Furthermore, we observe collective annihilation of these point-like defects via plastic events, with large local topological charge fluctuations in the vicinity of regions that feature strong nonaffine displacements. We reveal that plastic yielding is driven by several large sized clusters of net negative topological charge, the massive annihilation of which triggers the onset of plastic flow. These findings suggest a geometric and topological characterization of soft spots and pave the way for the mechanistic understanding of topological defects as mediators of plastic deformation in glassy materials.

5.
Aging Cell ; : e14291, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39236310

ABSTRACT

Dopamine D3 receptors (D3Rs) modulate neuronal activity in several brain regions including the hippocampus. Although previous studies reported that blocking D3Rs exerts pro-cognitive effects, their involvement in hippocampal synaptic function and memory in the healthy and aged brain has not been thoroughly investigated. We demonstrated that in adult wild type (WT) mice, D3R pharmacological blockade or genetic deletion as in D3 knock out (KO) mice, converted the weak form of long-term potentiation (LTP1) into the stronger long-lasting LTP (LTP2) via the cAMP/PKA pathway, and allowed the formation of long-term memory. D3R effects were mainly mediated by post-synaptic mechanisms as their blockade enhanced basal synaptic transmission (BST), AMPAR-mediated currents, mEPSC amplitude, and the expression of the post-synaptic proteins PSD-95, phospho(p)GluA1 and p-CREB. Consistently, electron microscopy revealed a prevalent expression of D3Rs in post-synaptic dendrites. Interestingly, with age, D3Rs decreased in axon terminals while maintaining their levels in post-synaptic dendrites. Indeed, in aged WT mice, blocking D3Rs reversed the impairment of LTP, BST, memory, post-synaptic protein expression, and PSD length. Notably, aged D3-KO mice did not exhibit synaptic and memory deficits. In conclusion, we demonstrated the fundamental role of D3Rs in hippocampal synaptic function and memory, and their potential as a therapeutic target to counteract the age-related hippocampal cognitive decline.

6.
J Psychosom Res ; 186: 111909, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39236646

ABSTRACT

OBJECTIVE: We studied gene-environment, as well as gene-gene interaction to elucidate their effects on symptom severity and predict clinical outcomes in functional neurological disorders (FND). METHODS: Eighty-five patients with mixed FND were genotyped for ten single-nucleotide polymorphisms (SNP) from seven different stress-related genes. We tested cross-sectionally the association between genotype and the symptomatology of FND (symptom severity assessed with the examiner-based clinical global impression score [CGI] and age of onset). Clinical outcome was assessed in 52 patients who participated in a follow-up clinical visit after eight months (following their individual therapies as usual). We tested longitudinally the association between genotype and clinical outcome in FND. We examined the contribution of each SNP and their interaction between them to FND symptomatology and outcome. RESULTS: We identified a nominal association between tryptophan hydroxylase 1 (TPH1) rs1800532 and symptom severity (CGI1) in FND under a codominant model (T/T: ßT/T = 2.31, seT/T = 0.57; G/T: ßG/T = -0.18, seG/T = 0.29, P = 0.035), with minor allele (T) carriers presenting more severe symptoms. An association was identified between TPH1 and clinical outcome, suggesting that major allele (G) carriers were more likely to have an improved outcome under a codominant model (G/T: ORG/T = 0.18, CIG/T = [0.02-1.34]; T/T: ORT/T = 2.08, CIT/T = [0.30-14.53], P = 0.041). Our analyses suggested a significant gene-gene interaction for TPH2 (rs4570625) and OXTR (rs2254298) on symptom severity, and a significant gene-gene interaction for TPH1, TPH2 and BDNF (rs1491850) on clinical outcome. CONCLUSION: FND might arise from a complex interplay between individual predisposing risk genes involved in the serotonergic pathway and their gene-gene interactions.

7.
Glob Chang Biol ; 30(9): e17488, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39238185

ABSTRACT

Anthropogenically induced changes to the natural world are increasingly exposing organisms to stimuli and stress beyond that to which they are adapted. In aquatic systems, it is thought that certain life stages are more vulnerable than others, with embryos being flagged as highly susceptible to environmental stressors. Interestingly, evidence from across a wide range of taxa suggests that aquatic embryos can hatch prematurely, potentially as an adaptive response to external stressors, despite the potential for individual costs linked with underdeveloped behavioural and/or physiological functions. However, surprisingly little research has investigated the prevalence, causes and consequences of premature hatching, and no compilation of the literature exists. Here, we review what is known about premature hatching in aquatic embryos and discuss how this phenomenon is likely to become exacerbated with anthropogenically induced global change. Specifically, we (1) review the mechanisms of hatching, including triggers for premature hatching in experimental and natural systems; (2) discuss the potential implications of premature hatching at different levels of biological organisation from individuals to ecosystems; and (3) outline knowledge gaps and future research directions for understanding the drivers and consequences of premature hatching. We found evidence that aquatic embryos can hatch prematurely in response to a broad range of abiotic (i.e. temperature, oxygen, toxicants, light, pH, salinity) and biotic (i.e. predators, pathogens) stressors. We also provide empirical evidence that premature hatching appears to be a common response to rapid thermal ramping across fish species. We argue that premature hatching represents a fascinating yet untapped area of study, and the phenomenon may provide some additional resilience to aquatic communities in the face of ongoing global change.


Subject(s)
Climate Change , Embryo, Nonmammalian , Animals , Embryo, Nonmammalian/physiology , Aquatic Organisms/physiology , Ecosystem , Stress, Physiological , Embryonic Development
8.
Elife ; 132024 Sep 10.
Article in English | MEDLINE | ID: mdl-39255004

ABSTRACT

In birds and insects, the female uptakes sperm for a specific duration post-copulation known as the ejaculate holding period (EHP) before expelling unused sperm and the mating plug through sperm ejection. In this study, we found that Drosophila melanogaster females shortens the EHP when incubated with males or mated females shortly after the first mating. This phenomenon, which we termed male-induced EHP shortening (MIES), requires Or47b+ olfactory and ppk23+ gustatory neurons, activated by 2-methyltetracosane and 7-tricosene, respectively. These odorants raise cAMP levels in pC1 neurons, responsible for processing male courtship cues and regulating female mating receptivity. Elevated cAMP levels in pC1 neurons reduce EHP and reinstate their responsiveness to male courtship cues, promoting re-mating with faster sperm ejection. This study established MIES as a genetically tractable model of sexual plasticity with a conserved neural mechanism.


Subject(s)
Drosophila melanogaster , Pheromones , Sexual Behavior, Animal , Animals , Female , Male , Drosophila melanogaster/physiology , Sexual Behavior, Animal/physiology , Pheromones/metabolism , Neurons/physiology , Neurons/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Cyclic AMP/metabolism
9.
Mar Environ Res ; 202: 106733, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39255628

ABSTRACT

Variation in nitrogen (N) availability significantly influences population dynamics and the productivity of marine phytoplankton. As N availability in the ocean is conditioned by the N source, it is important to understand the capacity of phytoplankton organisms to adjust their physiology and dynamics under different N conditions. We investigated the growth dynamics of Thalassiosira weissflogii, a coastal diatom, in response to different N sources (Nitrate, NO3-; Ammonium, NH4+; urea, CH4N2O) and availabilities (45 and 5 µM). Our findings demonstrate that T. weissflogii can display plastic adjustments in population dynamics to different N sources. These responses evidenced a greater preference for NH4+ and urea than NO3-, particularly under high N availability. The relative growth rate (µ) is higher (1.18 ± 0.01) under NH4+-high treatment compared to NO3--high (1.01 ± 0.01). The carrying capacity (K) varied only among concentrations, indicating equal N utilization efficiency for biomass production. No effects of N source were detected under the low concentration, suggesting that the preference for NH4⁺ and urea was diminished by limited nitrogen supply due to potential interactions. These results provide valuable insights into the physiological flexibility of T. weissflogii to varying N conditions, shedding light on the ecological success and resilience of this species in highly variable coastal environments.

10.
eNeuro ; 11(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-39256039

ABSTRACT

Alteration of synaptic function in the dorsal horn (DH) has been implicated as a cellular substrate for the development of neuropathic pain, but certain details remain unclear. In particular, the lack of information on the types of synapses that undergo functional changes hinders the understanding of disease pathogenesis from a synaptic plasticity perspective. Here, we addressed this issue by using optogenetic and retrograde tracing ex vivo to selectively stimulate first-order nociceptors expressing Nav1.8 (NRsNav1.8) and record the responses of spinothalamic tract neurons in spinal lamina I (L1-STTNs). We found that spared nerve injury (SNI) increased excitatory postsynaptic currents (EPSCs) in L1-STTNs evoked by photostimulation of NRsNav1.8 (referred to as Nav1.8-STTN EPSCs). This effect was accompanied by a significant change in the failure rate and paired-pulse ratio of synaptic transmission from NRsNav1.8 to L1-STTN and in the frequency (not amplitude) of spontaneous EPSCs recorded in L1-STTNs. However, no change was observed in the ratio of AMPA to NMDA receptor-mediated components of Nav1.8-STTN EPSCs or in the amplitude of unitary EPSCs constituting Nav1.8-STTN EPSCs recorded with extracellular Ca2+ replaced by Sr2+ In addition, there was a small increase (approximately 10%) in the number of L1-STTNs showing immunoreactivity for phosphorylated extracellular signal-regulated kinases in mice after SNI compared with sham. Similarly, only a small percentage of L1-STTNs showed a lower action potential threshold after SNI. In conclusion, our results show that SNI induces presynaptic modulation at NRNav1.8 (consisting of both peptidergic and nonpeptidergic nociceptors) synapses on L1-STTNs forming the lateral spinothalamic tract.


Subject(s)
Excitatory Postsynaptic Potentials , NAV1.8 Voltage-Gated Sodium Channel , Nociceptors , Spinothalamic Tracts , Synaptic Transmission , Animals , NAV1.8 Voltage-Gated Sodium Channel/metabolism , NAV1.8 Voltage-Gated Sodium Channel/genetics , Nociceptors/metabolism , Nociceptors/physiology , Spinothalamic Tracts/metabolism , Excitatory Postsynaptic Potentials/physiology , Male , Synaptic Transmission/physiology , Mice , Optogenetics , Mice, Inbred C57BL , Mice, Transgenic
11.
Neuroimage ; : 120840, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39241900

ABSTRACT

Previous studies of operant learning have addressed neuronal activities and network changes in specific brain areas, such as the striatum, sensorimotor cortex, prefrontal/orbitofrontal cortices, and hippocampus. However, how changes in the whole-brain network are caused by cellular-level changes remains unclear. We therefore combined resting-state functional magnetic resonance imaging (rsfMRI) and whole-brain immunohistochemical analysis of early growth response 1 (EGR1), a marker of neural plasticity, to elucidate the temporal and spatial changes in functional networks and underlying cellular processes during operant learning. We used an 11.7-Tesla MRI scanner and whole-brain immunohistochemical analysis of EGR1 in mice during the early and late stages of operant learning. In the operant training, mice received a reward when they pressed left and right buttons alternately, and were punished with a bright light when they made a mistake. A group of mice (n = 22) underwent the first rsfMRI acquisition before behavioral sessions, the second acquisition after 3 training-session-days (early stage), and the third after 21 training-session-days (late stage). Another group of mice (n = 40) was subjected to histological analysis 15 minutes after the early or late stages of behavioral sessions. Functional connectivity increased between the limbic areas and thalamus or auditory cortex after the early stage of training, and between the motor cortex, sensory cortex, and striatum after the late stage of training. The density of EGR1-immunopositive cells in the motor and sensory cortices increased in both the early and late stages of training, whereas the density in the amygdala increased only in the early stage of training. The subcortical networks centered around the limbic areas that emerged in the early stage have been implicated in rewards, pleasures, and fears. The connectivities between the motor cortex, somatosensory cortex, and striatum that consolidated in the late stage have been implicated in motor learning. Our multimodal longitudinal study successfully revealed temporal shifts in brain regions involved in behavioral learning together with the underlying cellular-level plasticity between these regions. Our study represents a first step towards establishing a new experimental paradigm that combines rsfMRI and immunohistochemistry to link macroscopic and microscopic mechanisms involved in learning.

13.
Colloids Surf B Biointerfaces ; 245: 114210, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39243708

ABSTRACT

A transistor inspired by biological systems, which possesses synaptic and sensing capabilities, has demonstrated significant promise in the field of neuromorphic electronics and sensory systems resembling the human brain. Despite the remarkable advancements in emulating neuromorphic operations, the development of a synaptic FET with a bionic architecture, extended lifespan, minimal energy usage, and marker monitoring capability remains challenging. In this work, a synaptic transistor based on NiAl-layer double hydroxides nanosheets is reported. The synaptic transistor exhibits a significant ratio of on/off current (1.35×107) and possesses a high transconductance value (10.05 mS). The successful emulation included key synaptic characteristics, such as excitatory/inhibitory postsynaptic current, paired-pulse facilitation/depression, short-term plasticity spike amplitude-dependent plasticity, spike timing-dependent plasticity, as well as spike number-dependent plasticity. A consumption of 64.8 pJ per spike was achieved as a result of the efficient carrier transfer pathway facilitated by the nanosheets composed of double hydroxides. In addition, the FET's linear detection region (with a coefficient R2=0.811) encompassed atrazine concentrations ranging from 10 pg/mL to 0.1 µg/mL, thanks to its high surface area and significant transconductance. Therefore, this study presents a potential approach for achieving energy-efficient neuromorphic computing and high-performance synaptic devices.

14.
J Mol Neurosci ; 74(3): 76, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39251453

ABSTRACT

Cocaine use disorder (CUD) is a chronic neuropsychiatric disorder estimated to effect 1-3% of the population. Activity-dependent neuroprotective protein (ADNP) is essential for brain development and functioning, shown to be protective in fetal alcohol syndrome and to regulate alcohol consumption in adult mice. The goal of this study was to characterize the role of ADNP, and its active peptide NAP (NAPVSIPQ), which is also known as davunetide (investigational drug) in mediating cocaine-induced neuroadaptations. Real time PCR was used to test levels of Adnp and Adnp2 in the nucleus accumbens (NAc), ventral tegmental area (VTA), and dorsal hippocampus (DH) of cocaine-treated mice (15 mg/kg). Adnp heterozygous (Adnp +/-)and wild-type (Adnp +/-) mice were further tagged with excitatory neuronal membrane-expressing green fluorescent protein (GFP) that allowed for in vivo synaptic quantification. The mice were treated with cocaine (5 injections; 15 mg/kg once every other day) with or without NAP daily injections (0.4 µg/0.1 ml) and sacrificed following the last treatment. We analyzed hippocampal CA1 pyramidal cells from 3D confocal images using the Imaris x64.8.1.2 (Oxford Instruments) software to measure changes in dendritic spine density and morphology. In silico ADNP/NAP/cocaine structural modeling was performed as before. Cocaine decreased Adnp and Adnp2 expression 2 h after injection in the NAc and VTA of male mice, with mRNA levels returning to baseline levels after 24 h. Cocaine further reduced hippocampal spine density, particularly synaptically weaker immature thin and stubby spines, in male Adnp+/+) mice while increasing synaptically stronger mature (mushroom) spines in Adnp+/-) male mice and thin and stubby spines in females. Lastly, we showed that cocaine interacts with ADNP on a zinc finger domain identical to ketamine and adjacent to a NAP-zinc finger interaction site. Our results implicate ADNP in cocaine abuse, further placing the ADNP gene as a key regulator in neuropsychiatric disorders. Ketamine/cocaine and NAP treatment may be interchangeable to some degree, implicating an interaction with adjacent zinc finger motifs on ADNP and suggestive of a potential sex-dependent, non-addictive NAP treatment for CUD.


Subject(s)
Cocaine , Hippocampus , Nerve Tissue Proteins , Neuronal Plasticity , Animals , Male , Mice , Cocaine/pharmacology , Female , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuronal Plasticity/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice, Inbred C57BL , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Dendritic Spines/drug effects , Dendritic Spines/metabolism , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/drug effects , Oligopeptides
15.
Front Hum Neurosci ; 18: 1445595, 2024.
Article in English | MEDLINE | ID: mdl-39253068

ABSTRACT

Parkinson disease (PD) is a neurodegenerative disorder that causes motor and cognitive deficits, presenting complex challenges for therapeutic interventions. Repetitive transcranial magnetic stimulation (rTMS) is a type of neuromodulation that can produce plastic changes in neural activity. rTMS has been trialed as a therapy to treat motor and non-motor symptoms in persons with Parkinson disease (PwP), particularly treatment-refractory postural instability and gait difficulties such as Freezing of Gait (FoG), but clinical outcomes have been variable. We suggest improving rTMS neuromodulation therapy for balance and gait abnormalities in PwP by targeting brain regions in cognitive-motor control networks. rTMS studies in PwP often targeted motor targets such as the primary motor cortex (M1) or supplementary motor area (SMA), overlooking network interactions involved in posture-gait control disorders. We propose a shift in focus toward alternative stimulation targets in basal ganglia-cortex-cerebellum networks involved in posture-gait control, emphasizing the dorsolateral prefrontal cortex (dlPFC), cerebellum (CB), and posterior parietal cortex (PPC) as potential targets. rTMS might also be more effective if administered during behavioral tasks designed to activate posture-gait control networks during stimulation. Optimizing stimulation parameters such as dosage and frequency as used clinically for the treatment of depression may also be useful. A network-level perspective suggests new directions for exploring optimal rTMS targets and parameters to maximize neural plasticity to treat postural instabilities and gait difficulties in PwP.

16.
Curr Pharm Des ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39253923

ABSTRACT

Magnesium (Mg2+) is a crucial mineral involved in numerous cellular processes critical for neuronal health and function. This review explores the multifaceted roles of Mg2+, from its biochemical interactions at the cellular level to its impact on cognitive health and behavioral regulation. Mg2+ acts as a cofactor for over 300 enzymatic reactions, including those involved in ATP synthesis, nucleic acid stability, and neurotransmitter release. It regulates ion channels, modulates synaptic plasticity, and maintains the structural integrity of cell membranes, which are essential for proper neuronal signaling and synaptic transmission. Recent studies have highlighted the significance of Mg2+ in neuroprotection, showing its ability to attenuate oxidative stress, reduce inflammation, and mitigate excitotoxicity, thereby safeguarding neuronal health. Furthermore, Mg2+ deficiency has been linked to a range of neuropsychiatric disorders, including depression, anxiety, and cognitive decline. Supplementation with Mg2+, particularly in the form of bioavailable compounds such as Magnesium-L-Threonate (MgLT), Magnesium-Acetyl-Taurate (MgAT), and other Magnesium salts, has shown some promising results in enhancing synaptic density, improving memory function, and alleviating symptoms of mental health disorders. This review highlights significant current findings on the cellular mechanisms by which Mg2+ exerts its neuroprotective effects and evaluates clinical and preclinical evidence supporting its therapeutic potential. By elucidating the comprehensive role of Mg2+ in neuronal health, this review aims to underscore the importance of maintaining optimal Mg2+ levels for cognitive function and behavioral regulation, advocating for further research into Mg2+ supplementation as a viable intervention for neuropsychiatric and neurodegenerative conditions.

17.
Eur J Neurosci ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39258329

ABSTRACT

Paired associative stimulation (PAS) is a combination of transcranial magnetic stimulation (TMS) and peripheral nerve stimulation (PNS). PAS can induce long-term potentiation (LTP)-like plasticity in humans, manifested as motor-evoked potential (MEP) enhancement. We have developed a variant of PAS ("high-PAS"), which consists of high-frequency PNS and high-intensity TMS and targets spinal plasticity and promotes rehabilitation after spinal cord injury (SCI). Vagus nerve stimulation (VNS) promotes LTP-like plasticity and enhances recovery in SCI and stroke in humans and animals when combined with repetitive motor training. We combined high-PAS with simultaneous noninvasive transcutaneous auricular VNS (aVNS) to determine if aVNS enhances the extent of PAS-induced MEP amplitude increase. Sixteen healthy participants were stimulated for 20 min in four different sessions (PAS, PAS + aVNS, PAS + shamVNS, and aVNS) in a randomized single-blind setup. MEPs were measured before, immediately after, and at 30, 60, and 90 min post-stimulation. Stimulation protocols with PAS significantly potentiated MEPs (p = 0.005) when compared with aVNS (p = 0.642). Although not significant, MEP enhancement observed after PAS (43.5%) is further increased by aVNS (49.7%) and electrical earlobe stimulation (63.9%). Our aVNS setup failed to significantly enhance the effect of PAS, but sham VNS revealed a trend towards enhanced plasticity. Optimization of auricular VNS stimulation setup is required for possible tests of patients with SCI.

18.
Evolution ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39258466

ABSTRACT

Understanding how evolution and phenotypic plasticity contribute to variation in heat tolerance is crucial to predict responses to warming. Here we analyze 272 thermal death time curves of 53 fish species acclimated to different temperatures and quantify their relative contributions. Analyses show that evolution and plasticity account, respectively, for 80.5 % and 12.4 % of the variation in elevation across curves, whereas their slope remained invariant. Evolutionary and plastic adaptive responses differ in magnitude, with heat tolerance increasing 0.54 ºC between species and 0.32 ºC within species for every 1 ºC increase in environmental temperatures. After successfully predicting critical temperatures under ramping conditions to validate these estimates, we show that fish populations can only partly ameliorate the impact of warming waters via thermal acclimation and this deficit in plasticity could increase as the warming accelerates.

19.
J Pineal Res ; 76(6): e13006, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39221552

ABSTRACT

Methamphetamine (METH) is an addictive drug that threatens human health. The supramammillary nucleus (SuM) and its neural circuits play key roles in the regulation of spatial memory retrieval, and hippocampal contextual or social memory. Melatonin (MLT), a pineal hormone, can regulate hypothalamic-neurohypophysial activity. Our previous study showed that MLT attenuates METH-induced locomotor sensitization. However, whether MLT regulates SuM function and participates in METH-induced contextual memory retrieval remains unclear. Using a mouse model of METH-conditioned place preference (CPP) and sensitization, we found that METH activated c-Fos expression and elevated calcium (Ca²âº) levels in SuM neurons. Chemogenetic inhibition of SuM attenuates CPP and sensitization. Pretreatment with MLT decreased c-Fos expression and Ca2+ levels in the SuM and reversed METH-induced addictive behavior, effects that were blocked with the selective MT2 receptors antagonist 4P-PDOT and the MT1 receptors antagonist S26131. Furthermore, MLT reduced SuM synaptic plasticity, glutamate (Glu) release, and neuronal oscillations caused by METH, which were blocked by 4P-PDOT. In conclusion, our data revealed that MLT regulates neuronal synaptic plasticity in the SuM, likely through the MLT receptors (MTs), and plays a role in modulating METH-addictive behavior.


Subject(s)
Melatonin , Methamphetamine , Neuronal Plasticity , Animals , Melatonin/pharmacology , Methamphetamine/pharmacology , Neuronal Plasticity/drug effects , Mice , Male , Mice, Inbred C57BL , Hypothalamus, Posterior/drug effects , Hypothalamus, Posterior/metabolism
20.
Article in English | MEDLINE | ID: mdl-39221579

ABSTRACT

In the vanguard of neuromorphic engineering, we develop a paradigm of biocompatible polymer memcapacitors using a seamless solution process, unleashing comprehensive synaptic capabilities depending on both the stimulation form and history. Like the human brain to learn and adapt, the memcapacitors exhibit analogue-type and evolvable capacitance shifts that mirror the complex flexibility of synaptic strengthening and weakening. With increasing frequency and intensity of the stimulation, the memcapacitors demonstrate an evolution from short-term plasticity (STP) to long-term plasticity (LTP), and even to metaplasticity (MP) at a higher level. A physical picture, featuring the stimulus-controlled spatiotemporal ion redistribution in the polymer, elaborates the origin of the memcapacitive prowess and resultant versatile synaptic plasticity. The distinctive MP behavior endows the memcapacitors with a dynamic learning rate (LR), which is utilized in an artificial neural network. The superiority of implementing a dynamic LR compared with conventional practices of using constant LR shines light on the potential of the memcapacitors to exploit organic neuromorphic computing hardware.

SELECTION OF CITATIONS
SEARCH DETAIL