Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.690
Filter
1.
Front Cell Infect Microbiol ; 14: 1434775, 2024.
Article in English | MEDLINE | ID: mdl-39224702

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV), a significant pathogen affecting the swine industry globally, has been shown to manipulate host cell processes, including autophagy, to facilitate its replication and survival within the host. Autophagy, an intracellular degradation process crucial for maintaining cellular homeostasis, can be hijacked by viruses for their own benefit. During PRRSV infection, autophagy plays a complex role, both as a defense mechanism of the host and as a tool exploited by the virus. This review explores the current understanding of the molecular mechanisms underlying autophagy induction under PRRSV infection, its impact on virus replication, and the potential implications for viral pathogenesis and antiviral strategies. By synthesizing the latest research findings, this article aims to enhance our understanding of the intricate relationship between autophagy and PRRSV, paving the way for novel therapeutic approaches against this swine pathogen.


Subject(s)
Autophagy , Host-Pathogen Interactions , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Virus Replication , Animals , Porcine respiratory and reproductive syndrome virus/physiology , Porcine respiratory and reproductive syndrome virus/pathogenicity , Swine , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/pathology
2.
Vet Microbiol ; 298: 110241, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39226763

ABSTRACT

Porcine rotavirus (PoRV), a member of the Reoviridae family, constitutes a principal etiological agent of acute diarrhea in piglets younger than eight weeks of age, and it is associated with considerable morbidity and mortality within the swine industry. The G5 genotype rotavirus strain currently predominates in circulation. To develop a safe and effective porcine rotavirus vaccine, we generated an insect cell-baculovirus expression system, and successfully expressed these three viral proteins and assembled them into virus-like particles (VLPs) co-displaying VP2, VP6, and VP7. Transmission electron microscopy (TEM) analysis revealed that the VP2-VP6-VP7 VLPs exhibited a "wheeled" morphology resembling that of native rotavirus particles, with an estimated diameter of approximately 65 nm. To evaluate the immunogenicity and protective efficacy of these VP2-VP6-VP7 VLPs, we immunized BALB/C mice with four escalating doses of the VLPs, ranging from 5 to 40 µg of VLP protein per dose. ELISA-based assessments of PoRV-specific antibodies and T cell cytokines, including IL-4, IL-2, and IFN-γ, demonstrate that immunization with VP2-VP6-VP7 VLPs can effectively elicit both humoral and cellular immune responses in mice, resulting in a notable induction of neutralizing antibodies. On days 4, 6, 8, and 10 post-infection (dpi), the VLP-vaccinated group exhibited significantly reduced levels of PoRV RNA copy numbers when compared to the PBS controls. Histological examination of the duodenum, ileum, and kidneys revealed that VP2-VP6-VP7 VLPs provided effective protection against PoRV induced intestinal injury. Collectively, these findings indicate that the VLPs generated in this study possess strong immunogenicity and suggest the considerable promise of the VLP-based vaccine candidate in the prevention and containment of Porcine Rotavirus infections.

3.
J Forensic Sci ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39228068

ABSTRACT

Vertebrate scavengers represent important taphonomic agents that can act on a body, particularly when in an outdoor environment. Understanding the effects of these agents will direct how and where to search for human remains and influence the likelihood of discovery in a particular region. The current study aimed to identify the taphonomic impact of scavenger guilds in the peri-urban and rural regions of southeastern British Columbia. Vertebrate scavenger activity on pig carcasses was recorded remotely using trail cameras and analyzed to determine temporal scavenging profiles. Both the peri-urban and rural environments produced comparable scavenger guilds, namely: turkey vultures, American crows/northern ravens (classified as "corvids"), American black bears, and coyotes. Although the two locations had different study lengths due to variable degrees of scavenging, for the period that was common to both locations (summer to early fall), the black bear was the most frequent scavenger followed by coyote. However, the dispersal of remains by the mammalian scavengers was distinctly different between sites. Only 12%-33% of skeletal elements were recovered at the rural sites compared to 80%-90% recovered at the peri-urban sites, even though the latter sites had a longer study timeframe. The extended timeframe of the peri-urban sites confirmed that certain scavengers (e.g., turkey vultures and black bears) are only seasonally active in this region. These findings demonstrate the variability of scavenger behavior and the need to assign caution and local ecological knowledge when predicting scavenger trends. Such taphonomic information is relevant for human remains searches in regions with comparable scavenger guilds.

4.
Emerg Microbes Infect ; : 2400559, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39222358

ABSTRACT

ABSTRACTPorcine deltacoronavirus (PDCoV) is an emerging pathogen that can cause severe diarrhea and high mortality in suckling piglets. Moreover, evidence of PDCoV infection in humans has raised concerns regarding potential public health risks. To identify potential therapeutic targets for PDCoV, we performed a genome-wide CRISPR/Cas9 library screening to find key host factors important to PDCoV infection. Several host genes in this screen were enriched, including ANPEP, which encodes the PDCoV receptor aminopeptidase N (APN). Furthermore, we discovered C16orf62, also known as the VPS35 endosomal protein sorting factor like (VPS35L), as an important host factor required for PDCoV infection. C16orf62 is an important component of the multiprotein retriever complex involved in protein recycling in the endosomal compartment and its gene knockout led to a remarkable decrease in the binding and internalization of PDCoV into host cells. While we did not find evidence for direct interaction between C16orf62 and the viral s (spike) protein, C16orf62 gene knockout was shown to downregulate APN expression at the cell surface. This study marks the first instance of a genome-wide CRISPR/Cas9-based screen tailored for PDCoV, revealing C16orf62 as a host factor required for PDCoV replication. These insights may provide promising avenues for the development of antiviral drugs against PDCoV infection.

5.
J Anim Sci Biotechnol ; 15(1): 117, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39223579

ABSTRACT

BACKGROUND: Polystyrene nanoplastics (PS-NPs) are becoming increasingly prevalent in the environment with great advancements in plastic products, and their potential health hazard to animals has received much attention. Several studies have reported the toxicity of PS-NPs to various tissues and cells; however, there is a paucity of information about whether PS-NPs exposure can have toxic effects on mammalian oocytes, especially livestock. Herein, porcine oocytes were used as the model to investigate the potential effects of PS-NPs on mammalian oocytes. RESULTS: The findings showed that different concentrations of PS-NPs (0, 25, 50 and 100 µg/mL) entering into porcine oocytes could induce mitochondrial stress, including a significant decrease in mitochondrial membrane potential (MMP), and the destruction of the balance of mitochondrial dynamic and micromorphology. Furthermore, there was a marked increase in reactive oxygen species (ROS), which led to oocyte lipid peroxidation (LPO). PS-NPs exposure induced abnormal intracellular iron overload, and subsequently increased the expression of transferrin receptor (TfRC), solute carrier family 7 member 11 (SLC7a11), and acyl-CoA synthetase long-chain family member 4 (ACSL4), which resulted in ferroptosis in oocytes. PS-NPs also induced oocyte maturation failure, cytoskeletal dysfunction and DNA damage. Cotreatment with 5 µmol/L ferrostatin-1 (Fer-1, an inhibitor of ferroptosis) alleviated the cellular toxicity associated with PS-NPs exposure during porcine oocyte maturation. CONCLUSIONS: In conclusion, PS-NPs caused ferroptosis in porcine oocytes by increasing oxidative stress and altering lipid metabolism, leading to the failure of oocyte maturation.

6.
Talanta ; 281: 126826, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39245004

ABSTRACT

The highly sensitive detection method for porcine epidemic diarrhea virus (PEDV) is crucial for promptly identify infected pigs and effectively control the spread of the virus. In this study, the sensitization enhancement of organic photoactive material was combined with near zero background noise strategy for PEDV sensitive detection. A novel sensitized signal probe CdS quantum dots-doxycycline complex (CdS QDs-Dox) was prepared serving as a photoelectrochemical (PEC) probe embedded in dsDNA. Subsequently, a thiol-modified upstream inner primer (SH-FIP) was immobilized on the surface of electrode modified with gold nanoparticles (Au NPs) via Au-S bonding, enabling the loop-mediated isothermal amplification (LAMP) of PEDV on the electrode surface. The PEC probe (CdS QDs-Dox) embedded in the amplified dsDNA groove showed an increasing photocurrent signal with the rise of PEDV concentration, establishing a near-zero background LAMP-PEC sensing platform for PEDV detection. Under optimized conditions, the photocurrent intensity of this platform exhibited a good linear relationship with PEDV concentrations ranging from 0.0005 pg/µL to 10 pg/µL, achieving a detection limit as low as 0.17 fg/µL. This platform demonstrates outstanding specificity and sensitivity, thereby enabling precise quantitative detection of diverse pathogens.

7.
Int J Biol Macromol ; : 135403, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39245101

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) caused by porcine reproductive and respiratory syndrome virus (PRRSV) causes considerable economic losses to the global swine industry every year and seriously hinders the healthy development of this industry. Although tremendous efforts have been made over the past 30 years toward the development of prevention and control strategies against PRRSV infection, to date, treatments with proven efficacy have yet to be available due to our incomplete understanding of the molecular basis and complexity of the infection machinery. This review systematically discusses recent advances in the research and development of anti-PRRSV therapies targeting different stages of the viral life cycle. Furthermore, this review puts forward novel intervention targets and research approaches based on our in-depth exploration of virus-host interactions and the latest biological technologies, which have the potential to complement or transform current anti-PRRSV strategies and become breakthrough points for the control of PRRS in the future.

8.
J Reprod Dev ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39218670

ABSTRACT

CRISPR/Cas9-based multiplex genome editing via electroporation is relatively efficient; however, lipofection is versatile because of its ease of use and low cost. Here, we aimed to determine the efficiency of lipofection in CRISPR/Cas9-based multiplex genome editing using growth hormone receptor (GHR) and glycoprotein alpha-galactosyltransferase 1 (GGTA1)-targeting guide RNAs (gRNAs) in pig zygotes. Zona pellucida-free zygotes were collected 10 h after in vitro fertilization and incubated with Cas9, gRNAs, and Lipofectamine 2000 (LP2000) for 5 h. In Experiment 1, we evaluated the mutation efficiency of gRNAs targeting either GHR or GGTA1 in zygotes transfected using LP2000 and cultured in 4-well plates. In Experiment 2, we examined the effects of the culture method on the development, mutation rate, and mutation efficiency of zygotes with simultaneouslydouble-edited GHR and GGTA1, cultured using 4-well (group culture) and 25-well plates (individual culture). In Experiment 3, we assessed the effect of additional GHR-targeted lipofection before and after simultaneous double gRNA-targeted lipofection on the mutation efficiency of edited embryos cultured in 25-well plates. No significant differences in mutation rates were observed between the zygotes edited with either gRNA. Moreover, the formation rate of blastocysts derived from GHR and GGTA1 double-edited zygotes was significantly increased in the 25-well plate culture compared to that in the 4-well plate culture. However, mutations were only observed in GGTA1 when zygotes were transfected with both gRNAs, irrespective of the culture method used. GHR mutations were detected only in blastocysts derived from zygotes subjected to GHR-targeted lipofection before simultaneous double gRNA-targeted lipofection. Overall, our results suggest that additional lipofection before simultaneous double gRNA-targeted lipofection induces additional mutations in the zygotes.

9.
Int J Biol Macromol ; 279(Pt 2): 135299, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233171

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) causes enormous economic losses to the pork industry, and its extensive cell tropism poses a substantial challenge to public health and safety. However, the invasion mechanisms and relevant host factors of PEDV remain poorly understood. In this study, we identified 422 differentially expressed genes related to PEDV infection through transcriptome analysis. Among these, Annexin A2 (ANXA2), Prohibitin-2 (PHB2), and Caveolin-2 (CAV2) were identified through screening and verifying as having a specific interaction with the PEDV S protein, and positive regulation of PEDV internalization was validated by siRNA and overexpression tests. Subsequently, using host membrane protein interaction networks and co-immunoprecipitation analysis, we found that ANXA2 PHB2 or CAV2 directly interact with Rab11a. Next, we constructed a pseudovirus model (LV-PEDV S-GFP) to further confirm that the downregulation of Rab11a could promote PEDV invasion. In detail, ANXA2, PHB2, or CAV2 promoted PEDV invasion via downregulating Rab11a. Furthermore, we showed that the S-protein fusion peptide (FP) was sufficient for S-protein interaction with ANXA2, PHB2, CAV2, and Rab11a, and the addition of exogenous GTP could regulate the efficiency of PEDV invasion. Collectively, ANXA2, PHB2, or CAV2 influenced the membrane fusion of PEDV with host cells through the host restriction factor Rab11a. This study could be targeted for future research to develop strategies for the control of PEDV.

10.
Knee ; 51: 18-34, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39236635

ABSTRACT

INTRODUCTION: Utilizing large animal model like male pig for biomechanical studies offers a cost-effective approach to understanding human joint and tissue mechanics. Our study explores the osteology and meniscus anatomy of the male porcine stifle joint and compares it to human knee joint parameters, aiming to provide a valuable reference for orthopaedic research and surgical training. METHODS: We examined 60 male porcine stifle joints and analyzed their menisci and bones. Dissections were meticulously performed, with measurements taken using digital Vernier calipers and ImageJ software. These dimensions included bone morphology and meniscal width, height, and volume, followed by statistical analysis using unpaired Student's t-tests. RESULTS: The various measurements of bones and menisci indicated a high degree of anatomical similarity to human knees. The anterior width of the medial meniscus was 12.545 ± 1.763 mm, while the lateral meniscus was 14.99 ± 1.720 mm. The middle width of the medial meniscus was 12.065 ± 1.691 mm, compared to the lateral meniscus at 14.375 ± 1.732 mm. The posterior width was 15.25 ± 1.741 mm for the medial meniscus and 16.39 ± 1.662 mm for the lateral meniscus. The femoral intercondylar notch dimensions widened and became shallower with age, resembling the maturation patterns seen in human knee development. The average volume of the medial meniscus was 4.30 ± 0.13 ml, while the lateral meniscus was 5.9 ± 0.29 ml. The aspect ratio of the femoral condyles was 1.04 ± 0.04 (0.95-1.11), while the aspect ratio of the tibial condyles was 0.65 ± 0.02 (0.61-0.70), measured via digital Vernier calipers. These findings were statistically significant, showcasing the male porcine model's relevance in replicating human knee mechanics (p < 0.05). CONCLUSION: Male porcine stifle joints present a valid and accessible model for knee anatomy research. Our study underscores the value of the male porcine model in understanding human knee joint biomechanics and supports its continued use in orthopaedic research and training. These findings have significant implications for advancing orthopaedic research methodologies and enhancing surgical training practices by providing a reliable and anatomically comparable model.

11.
Theriogenology ; 230: 37-45, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39243630

ABSTRACT

Extracellular vesicles, also known as exosomes, influence numerous cellular functions by regulating different signaling pathways. However, their role in animal reproduction remains understudied. This study aimed to evaluate the effects of porcine follicular fluid-derived exosomes (pff-Exos) on porcine oocyte in vitro maturation and parthenogenetic embryo development. We obtained pff-Exos through mixed-method ultracentrifugation and size-exclusion chromatography. Transmission electron microscopy revealed an increase in the expression of exosome markers in the first four of thirteen fractions. The number of pff-Exo was 2.2 × 106 particles per microliter. The highest maturation rate of porcine oocytes treated with pff-Exo was observed with 1.1 × 107 particles of pff-Exo in the absence of porcine follicular fluid (pFF) culture conditions. Moreover, increased expression of Gdf9 and Bmp15 was observed. The developmental rate was the highest upon treatment with 1.1 × 107 particles of pff-Exo, which increased the total cell number in blastocysts. Embryonic development to the 2-cell stage was similar between the control and pff-Exo groups; however, development to the 4-cell stage and blastocyst was significantly increased in the pff-Exo group (61.6 ± 6.08 % and 29.72 ± 1.41 %, respectively; P < 0.05) compared with that in the control group (42.0 ± 5.19 % and 18.14 ± 1.78 %, respectively). The expression levels of Oct4, Sox2, Bcl2, Elf4, and Gcn5 significantly increased at the pff-Exo 2-cell stage, whereas those of Bax, Hdac1, Hdac6, and Sirt6 decreased. Specifically, the Oct4, Sox2, Elf4, Gcn5, and Hdac6 levels remained stable in pff-Exo 4-cell embryos, whereas those of p53 and Hat1 were reduced and increased, respectively. Treatment with pffExos significantly increased H3K9 and H3K14 acetylation levels. These results demonstrate that pff-Exo affects the in vitro maturation of porcine oocytes and early embryonic development by regulating gene expression.

12.
Int J Biol Macromol ; : 135375, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39244115

ABSTRACT

Porcine deltacoronavirus (PDCoV) poses a significant threat to both the pig industry and public safety, and has recently been identified in humans. Currently, there are no commercially available vaccines or antiviral treatments for PDCoV. In this study, recombinant porcine interferon δ8 (rINF-δ8) expressed by the HEK 293F expression system was used to evaluated its antiviral activity against PDCoV both in vitro and in vivo. Results demonstrated that rIFN-δ8 displayed non-toxic to ST cells and primary PAMs, and effectively inhibited PDCoV replication in a dose-dependent manner in vitro, with complete suppression of virus replication at a concentration of 2 µg/ml. Treatment of piglets with two doses of 25 µg/kg of rIFN-δ8 reduced clinical symptoms, decreased virus shedding, alleviated intestinal damage, and lowered the viral load in the jejunum and ileum. Furthermore, the levels of interferon-stimulated genes (ISGs) such as Viper, Mx1, ISG15, IFIT1, OSA, and IFITM1 were significantly increased both in vitro and in vivo, with elevated ISG levels sustained for at least 3 days in vivo. These findings suggest that rIFN-δ8 has the potential to serve as an effective antiviral agent for preventing PDCoV in pigs in the future.

13.
J Hand Microsurg ; 16(4): 100128, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39234362

ABSTRACT

Introduction: Animal models in orthopaedic surgical training have raised concerns about ethics and availability, prompting the search for non-animal alternatives. The 3D-printed silicone tendon model has emerged as a potential alternative due to its hygiene and reusability. This study aimed to compare the effectiveness of the two models for flexor tendon repair training. Materials and methods: A survey involved 25 postgraduate trainees with no prior experience in flexor tendon repair. Porcine tendon models and 3D-printed models were used, with participants evaluating accuracy, understanding of pulley systems, joint flexion, tissue feel, and model realism. Repairs were evaluated by experienced surgeons, and participants completed a survey. Results: Both models demonstrated satisfactory accuracy and realistic joint flexion. The porcine model scored higher in anatomical accuracy, while the 3D-printed model excelled in understanding pulley systems. The porcine model provided realistic tissue feel, while the 3D-printed model facilitated anatomy teaching. No significant difference was found in educational utility. The 3D-model was perceived as hygienic and odourless, whereas the porcine model offered better tendon handling. The 3D-model improved visualization of suture placement. Both models were equally accepted and recommended for training. Conclusion: The 3D-printed silicone tendon model is a cost-effective and reproducible alternative to porcine models in flexor tendon repair training. Although the 3D-printed model has limitations in mimicking human tendons, it was equally effective in teaching suturing techniques and improving repair skills. Combining the porcine model and 3D-printed model provides a comprehensive approach to flexor tendon repair training, addressing the limitations of each model and enhancing the educational experience.

14.
Porcine Health Manag ; 10(1): 32, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39228006

ABSTRACT

BACKGROUND: Porcine Epidemic Diarrhea (PED) is a highly contagious disease caused by Porcine Epidemic Diarrhea Virus (PEDV), resulting in a mortality rate of suckling piglets as high as 100%. Vaccination is the primary strategy for controlling PEDV infection, however, there is currently a lack of reliable methods for assessing the efficacy of vaccination. This study aimed to analyze serum and colostrum samples from 75 parturient sows with a specific vaccination strategy to measure levels of IgG, IgA, and neutralizing antibodies (nAbs) against PEDV, and to investigate the correlation between serum and colostrum antibody levels, as well as to identify potential biomarkers that can be used to evaluate immunization effects under field conditions. RESULTS: The findings of correlation analysis between antibody levels of IgA, IgG, and nAbs in serum or colostrum samples revealed that IgG demonstrated the most robust correlation with nAbs exhibiting a correlation coefficient of 0.64 in serum samples. Conversely, IgA exhibited the highest correlation with nAbs, with a correlation coefficient of 0.47 in colostrum samples. Additionally, the correlation analysis of antibody levels between serum and colostrum samples indicated that serum IgA displayed the strongest correlation with colostrum IgA, with a coefficient of 0.63, indicating that serum IgA may serve as a viable alternative indicator for evaluating IgA levels in colostrum samples. To further evaluate the suitability of serum IgA as a substitute marker for colostrum IgA, levels of IgA antibodies in serum samples from sows were examined both pre- and post-parturition. The findings indicated that serum IgA levels were initially low prior to the initial immunization, experienced a notable rise 21 days after immunization, and maintained a significant elevation compared to pre-immunization levels from 21 days pre-parturition to 14 days postpartum, spanning a total of 35 days. CONCLUSIONS: Serum anti-PEDV IgA antibody levels may serve as a valuable predictor for immunization effects, allowing for the assessment of colostrum IgA antibody levels up to 21 days in advance. This insight could enable veterinarians to timely adjust or optimize immunization strategies prior to parturition, thereby ensuring adequate passive immunity is conferred to piglets through colostral transfer postpartum.

15.
Front Microbiol ; 15: 1443295, 2024.
Article in English | MEDLINE | ID: mdl-39228381

ABSTRACT

Currently, the efficacy of vaccination for preventing and controlling PRRSV is insufficient. Therefore, there is an urgent need for novel effective preventive strategies. This study aimed to investigate the antiviral effect of Eucalyptus essential oil (EEO) against PRRSV in vitro. Marc-145 cells were infected with PRRSV (rJXA1-R), and the toxicity of EEO in the cells was measured using the Cell Counting Kit-8 method. Additionally, the antiviral effect of EEO on PRRSV-infected cells was assessed using three treatment methods: drug administration post-PRRSV inoculation (post-treatment), drug administration before PRRSV inoculation (pre-treatment), and simultaneous drug administration and PRRSV inoculation (co-treatment). The EEO could not inhibit virus adsorption and/or replication since post-treatment and pre-treatment did not prevent viral infectivity. However, EEO exerted a significant virucidal effect on PRRSV. When PRRSV-infected cells were treated with 0.0156, 0.0312, and 0.0625% EEO, the cell survival rates were 55.37, 118.96, and 121.67%, respectively, and the titer of progeny virions decreased from 5.77 Log10TCID50 to 5.21 Log10TCID50, 0.55 Log10TCID50, and less than 0.167 Log10TCID50, respectively (where TCID50 is the 50% tissue culture infected dose). The fluorescence intensity of the PRRSV N protein significantly decreased in the indirect immunofluorescence assay. When cells were co-treated with EEO (0.0625%) and PRRSV (1000 TCID50) for 15 min, the viral particles were inactivated, and PRRSV (1000 TCID50) particles loss infectivity when the co-treatment time reached 60 min. In a word, EEO has no obvious therapeutic effect on PRRSV infection, but it can effectively inactivate virus particles and make them lose the ability to infect cells. These findings provide insights for the development and use of EEO to treat PRRS.

16.
Front Vet Sci ; 11: 1422012, 2024.
Article in English | MEDLINE | ID: mdl-39100768

ABSTRACT

Introduction: The enteric microbiome and its possible modulation to improve feed conversion or vaccine efficacy is gaining more attention in pigs. Weaning pigs from their dam, along with many routine procedures, is stressful. A better understanding of the impact of this process on the microbiome may be important for improving pig production. The objective of this study was to develop a weaner pig cannulation model, thus allowing ileum content collection from the same pig over time for 16S rRNA sequencing under different porcine reproductive and respiratory syndrome virus (PRRSV) infection statuses. Methods: A total of 15 3-week-old pigs underwent abdominal surgery and were fitted with an ileum cannula, with ileum contents collected over time. In this pilot study, treatment groups included a NEG-CONTROL group (no vaccination, no PRRSV challenge), a POS-CONTROL group (no vaccination, challenged with PRRSV), a VAC-PRRSV group (vaccinated, challenged with PRRSV), a VAC-PRO-PRRSV group (vaccinated, supplemented with a probiotic, challenged with PRRSV), and a VAC-ANTI-PRRSV group (vaccinated, administered an antibiotic, challenged with PRRSV). We assessed the microbiome over time and measured anti-PRRSV serum antibodies, PRRSV load in serum and nasal samples, and the severity of lung lesions. Results: Vaccination was protective against PRRSV challenge, irrespective of other treatments. All vaccinated pigs mounted an immune response to PRRSV within 1 week after vaccination. A discernible impact of treatment on the diversity, structure, and taxonomic abundance of the enteric microbiome among the groups was not observed. Instead, significant influences on the ileum microbiome were observed in relation to time and treatment. Discussion: The cannulation model described in this pilot study has the potential to be useful in studying the impact of weaning, vaccination, disease challenge, and antimicrobial administration on the enteric microbiome and its impact on pig health and production. Remarkably, despite the cannulation procedures, all vaccinated pigs exhibited robust immune responses and remained protected against PRRSV challenge, as evidenced by the development of anti-PRRSV serum antibodies and viral shedding data.

17.
Front Microbiol ; 15: 1443119, 2024.
Article in English | MEDLINE | ID: mdl-39135875

ABSTRACT

Porcine circovirus 4 (PCV4) was first identified in 2019, categorized within the genus Circovirus in the family Circoviridae. To date, the virus has not been isolated from clinical samples. Meanwhile, many aspects of the biology and pathogenic mechanisms of PCV4 infection remain unknown. In this study, PCV4 was successfully rescued from an infectious clone. We utilized a PCV4 virus stock derived from this infectious clone to intranasally inoculate 4-week-old specific-pathogen-free piglets to evaluate PCV4 pathogenesis. The rescued PCV4 was capable of replicating in both PK-15 cells and piglets, with the virus detectable in nearly all collected samples from the challenge groups. Pathological lesions and PCV4-specific antigens were observed in various tissues and organs, including the lungs, kidneys, lymph nodes, spleen, and liver, in the inoculated piglets. Additionally, the levels of pro-inflammatory cytokines in the serum of the PCV4-inoculated group were significantly elevated compared to the control group, indicating that the induced inflammatory response may contribute to tissue damage associated with PCV4 infection. These findings offer new insights into the pathogenesis and inflammatory responses associated with PCV4-related diseases.

18.
Animals (Basel) ; 14(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39123693

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a rapidly evolving virus that causes outbreaks in pig herds worldwide. Mutations in the S protein of PEDV have led to the emergence of new viral variants, which can reduce vaccine immunity against prevalent strains. To understand the infection and variation pattern of PEDV in China, an extensive epidemiological survey was conducted in northeast China from 2015 to 2022. The genetic diversity of enteroviruses co-infected with PEDV and the PEDV S gene was analyzed, common mutation patterns that may have led to changes in PEDV virulence and infectivity in recent years were identified, and structural changes in the surface of the S protein resulting from mutations in the PEDV S gene from 2011 to 2022 were reviewed. Of note, two distinct mutations in the emerging 2022 HEB strain were identified. These findings provide a basis for a better understanding of PEDV co-infection and genetic evolution in northeast China.

19.
Animals (Basel) ; 14(15)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39123782

ABSTRACT

Porcine pleuropneumonia (PPP) is one of the main causes leading to massive losses in the pig industry, with high economic impacts. Among different etiological agents, Actinobacillus pleuropneumoniae (APP) is responsible for severe fibrinous-necrotizing pleuropneumonia. A total of 19 different APP serotypes are currently recognized. This study aimed to identify APP serotypes isolated from pneumonic lesions in naturally infected and dead pigs in the Piedmont Region and to describe lesions. A total of 107 dead pigs with a suspected PPP diagnosis were included in this study. Lungs were evaluated using gross-pathology scoring systems, histopathology, and APP isolation and serotypes identification by multiplex PCR were conducted. Gross lung lesions were mainly represented by fibrinous pneumonia and pleuropneumonia. APP was isolated in 20/107 (18.7%) samples. PCR indicated APP DNA presence in 53/107 (49.5%) of lung samples. The most observed serotypes were serotype 2 in 24/53 (45.3%) and serotype 6 in 13/53 (24.5%) samples. Moreover, multiplex PCR results suggested a coinfection of different serotypes in five samples. This study emphasizes the importance of an integrated approach, utilizing various techniques, such as gross- and histopathology, and bacteriological culture and PCR, to enhance the diagnosis of APP infections.

20.
J Anim Sci ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39132682

ABSTRACT

Endemic and epidemic outbreaks of porcine reproductive and respiratory syndrome virus (PRRSV) are causing large economic losses in commercial pig production worldwide. Given the complexity of controlling this disease with vaccines or other biosecurity measures, the selection for pigs with a natural resilience to this infection has been proposed as an alternative approach. In this context, we previously reported a vaccine-based protocol to classify 6-week-old female piglets from one farm into resilient and susceptible phenotypes. Subsequent analysis showed that resilient sows had fewer lost piglets during a PRRSV epidemic. In the present study, we validated the results in four additional farms by showing a robust effect on the percentage of piglets lost (P<0.05). We were able to associate the resilient phenotype with a 2-4% reduction in piglet losses on sow farms in both endemic and endemic/epidemic situations. Also consistent with previous results, susceptible sows delivered on average, almost 0.5 more piglets born per parity (P<0.05). However, we show here that resilient sows have a longer stayability in the farm (+57 d; P<0.05) and +0.3 more successful parities (P<0.05), which balances the total number of piglets born and born alive in the full productive life of the sow between the two groups. Resilient sows thus contribute towards to a more sustainable production system, reducing sow replacement and piglet mortality. The validation of this protocol on four independent production farms paves the way for the study of the genetic variation underlying the resilient/susceptible classification, with a view to incorporating this information into selection programs in the future.

SELECTION OF CITATIONS
SEARCH DETAIL