Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.063
Filter
1.
Glob Med Genet ; 11(4): 285-296, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39224462

ABSTRACT

Some human cancers worldwide may be related to human tumor viruses. Knowing, controlling, and managing the viruses that cause cancers remain a problem. Also, tumor viruses use ubiquitin-proteasome system (UPS) that can alter host cellular processes through UPS. Human tumor viruses cause persistent infections, due to their ability to infect their host cells without killing them. Tumor viruses such as Epstein-Barr virus, hepatitis C virus, hepatitis B virus, human papillomaviruses, human T cell leukemia virus, Kaposi's sarcoma-associated herpesvirus, and Merkel cell polyomavirus are associated with human malignancies. They interfere with the regulation of cell cycle and control of apoptosis, which are important for cellular functions. These viral oncoproteins bind directly or indirectly to the components of UPS, modifying cellular pathways and suppressor proteins like p53 and pRb. They can also cause progression of malignancy. In this review, we focused on how viral oncoproteins bind to the components of the UPS and how these interactions induce the degradation of cellular proteins for their survival.

2.
Mol Microbiol ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39233599

ABSTRACT

Many bacteria possess proteasomes and a tagging system that is functionally analogous to the ubiquitin system. In this system, Pup, the tagging protein, marks protein targets for proteasomal degradation. Despite the analogy to the ubiquitin system, where the ubiquitin tag is recycled, it remained unclear whether Pup is similarly recycled, given how the bacterial proteasome does not include a depupylase. We previously showed in vitro that as Pup lacks effective proteasome degradation sites, it is released from the proteasome following target degradation, remaining conjugated to a degradation fragment that can be later depupylated. Here, we tested this model in Mycobacterium smegmatis, using a Pup mutant that is effectively degraded by the proteasome. Our findings indicate that Pup recycling not only occurs in vivo but is also essential to maintain normal pupylome levels and to support bacterial survival under starvation conditions. Accordingly, Pup recycling is an essential process in the mycobacterial Pup-proteasome system.

3.
Genes Dis ; 11(6): 101130, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39220754

ABSTRACT

The recent advances in high throughput sequencing technology have drastically changed the practice of medical diagnosis, allowing for rapid identification of hundreds of genes causing human diseases. This unprecedented progress has made clear that most forms of intellectual disability that affect more than 3% of individuals worldwide are monogenic diseases. Strikingly, a substantial fraction of the mendelian forms of intellectual disability is associated with genes related to the ubiquitin-proteasome system, a highly conserved pathway made up of approximately 1200 genes involved in the regulation of protein homeostasis. Within this group is currently emerging a new class of neurodevelopmental disorders specifically caused by proteasome pathogenic variants which we propose to designate "neurodevelopmental proteasomopathies". Besides cognitive impairment, these diseases are typically associated with a series of syndromic clinical manifestations, among which facial dysmorphism, motor delay, and failure to thrive are the most prominent ones. While recent efforts have been made to uncover the effects exerted by proteasome variants on cell and tissue landscapes, the molecular pathogenesis of neurodevelopmental proteasomopathies remains ill-defined. In this review, we discuss the cellular changes typically induced by genomic alterations in proteasome genes and explore their relevance as biomarkers for the diagnosis, management, and potential treatment of these new rare disease entities.

4.
J Transl Med ; 22(1): 820, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227917

ABSTRACT

BACKGROUND: The prevalence of vascular calcification (VC) in chronic kidney disease (CKD) patients remains substantial, but currently, there are no effective pharmaceutical therapies available. BRCA1/BRCA2-containing complex subunit 36 (BRCC36) has been implicated in osteoblast osteogenic conversion; however, its specific role in VC remains to be fully elucidated. The aim of this study was to investigate the role and underlying mechanisms of BRCC36 in VC. METHODS: The association between BRCC36 expression and VC was examined in radial arteries from patients with CKD, high-adenine-induced CKD mice, and vascular smooth muscle cells (VSMCs). Western blotting, real-time polymerase chain reaction, immunofluorescence, and immunohistochemistry were used to analyse gene expression. Gain- and loss-of-function experiments were performed to comprehensively investigate the effects of BRCC36 on VC. Coimmunoprecipitation and TOPFlash luciferase assays were utilized to further investigate the regulatory effects of BRCC36 on the Wnt/ß-catenin pathway. RESULTS: BRCC36 expression was downregulated in human calcified radial arteries, calcified aortas from CKD mice, and calcified VSMCs. VSMC-specific BRCC36 overexpression alleviated calcium deposition in the vasculature, whereas BRCC36 depletion aggravated VC progression. Furthermore, BRCC36 inhibited the osteogenic differentiation of VSMCs in vitro. Rescue experiments revealed that BRCC36 exerts the protective effects on VC partly by regulating the Wnt/ß-catenin signalling pathway. Mechanistically, BRCC36 inhibited the Wnt/ß-catenin pathway by decreasing the K63-linked ubiquitination of ß-catenin. Additionally, pioglitazone attenuated VC partly through upregulating BRCC36 expression. CONCLUSIONS: Our research results emphasize the critical role of the BRCC36-ß-catenin axis in VC, suggesting that BRCC36 or ß-catenin may be promising therapeutic targets to prevent the progression of VC in CKD patients.


Subject(s)
Mice, Inbred C57BL , Renal Insufficiency, Chronic , Ubiquitination , Vascular Calcification , Wnt Signaling Pathway , beta Catenin , Vascular Calcification/metabolism , Vascular Calcification/pathology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/complications , Animals , beta Catenin/metabolism , Humans , Male , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Osteogenesis , Middle Aged , Cell Differentiation
5.
Elife ; 132024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230574

ABSTRACT

Proteasomes are essential molecular machines responsible for the degradation of proteins in eukaryotic cells. Altered proteasome activity has been linked to neurodegeneration, auto-immune disorders and cancer. Despite the relevance for human disease and drug development, no method currently exists to monitor proteasome composition and interactions in vivo in animal models. To fill this gap, we developed a strategy based on tagging of proteasomes with promiscuous biotin ligases and generated a new mouse model enabling the quantification of proteasome interactions by mass spectrometry. We show that biotin ligases can be incorporated in fully assembled proteasomes without negative impact on their activity. We demonstrate the utility of our method by identifying novel proteasome-interacting proteins, charting interactomes across mouse organs, and showing that proximity-labeling enables the identification of both endogenous and small-molecule-induced proteasome substrates.


Subject(s)
Proteasome Endopeptidase Complex , Proteasome Endopeptidase Complex/metabolism , Animals , Mice , Humans , Mass Spectrometry/methods , Protein Interaction Mapping
6.
Ter Arkh ; 96(6): 635-640, 2024 Jul 07.
Article in Russian | MEDLINE | ID: mdl-39106506

ABSTRACT

In the history of amyloidosis studying the concept of liquids dyscrasia has been predominated and finally it is resulted in accepting a serum protein-precursor as a leading amyloidogenic factor in the disease pathogenesis. Consequently basic diagnostic and treatment strategy was aimed to find and eliminate this protein from the blood and this approach evidenced high effectiveness in most frequent AA and AL-amyloidosis characterized with anomaly high levels of precursors in the blood. At the same time there are less frequent and slower progressing inheritant forms of systemic amyloidosis including transthyretin induced, which are less depending on amyloidogenecity of amyloid precursor and because of that, in example, the effectiveness of transthyretin stabilizers or blockers of its synthesis is limited comparing with the precursor elimination in AA or AL. Developed in the middle of XX century a theory of local synthesis by macrophages is more preferable to describe the pathogenesis of these forms. And modern proteome analysis using give rise to confirm the key meaning of macrophage in the amyloidogenesis and proves necessity to know deeply mechanisms of macrophagial autophagia - basic tool of maintaining intracellular protein homeostasis. That is why it is difficult to hope on high effectiveness of chemical amyloid solvents in vivo, which being under macrophages regulation never could realize its chemical activities.


Subject(s)
Amyloidosis , Humans , Amyloidosis/diagnosis , Amyloidosis/history , Amyloidosis/metabolism , History, 20th Century , History, 21st Century , History, 19th Century
7.
Virology ; 599: 110199, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39116646

ABSTRACT

Hepatitis B virus is one of the leading causes behind the neoplastic transformation of liver tissue and associated mortality. Despite the availability of many therapies and vaccines, the pathogenic landscape of the virus remains elusive; urging the development of novel strategies based on the fundamental infectious and transformative modalities of the virus-host interactome. Ubiquitination is a widely observed post-translational modification of several proteins, which either regulates the proteins' turnover or impacts their functionalities. In recent years, ample amount of literature has accumulated regarding the ubiquitination dynamics of the HBV proteins as well as the host proteins during HBV infection and carcinogenesis; with direct and detailed characterization of the involvement of HBV in these processes. Interestingly, while many of these ubiquitination events restrict HBV life cycle and carcinogenesis, several others promote the emergence of hepatocarcinoma by putting the virus in an advantageous position. This review sums up the snowballing literature on ubiquitination-mediated regulation of the host-HBV crosstalk, with special emphasis on its influence on the establishment and progression of hepatocellular carcinoma on a molecular level. With the advent of cutting-edge ubiquitination-targeted therapeutic approaches, the findings emanating from this review may potentiate the identification of novel anti-HBV targets for the formulation of novel anticancer strategies to control the HBV-induced hepato-carcinogenic process on a global scale.

8.
Phytother Res ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120474

ABSTRACT

Calycosin (Caly), a flavonoid compound, demonstrates a variety of beneficial properties. However, the specific mechanisms behind Caly's anticancer effects remain largely unexplored. Network pharmacology was used to explore the potential targets of Caly in renal cancer. Additionally, RNA-seq sequencing was used to detect changes in genes in renal cancer cells after Caly treatment. Validation was carried out through quantitative reverse transcription-PCR and Western blot analysis. The luciferase reporter assay was applied to pinpoint the interaction site between MAZ and HAS2. Furthermore, the immunoprecipitation assay was utilized to examine the ubiquitination and degradation of MAZ. In vivo experiments using cell line-derived xenograft mouse models were performed to assess Calycosin's impact on cancer growth. Network pharmacology research suggests Caly plays a role in promoting apoptosis and inhibiting cell adhesion in renal cancer. In vitro, Caly has been observed to suppress proliferation, colony formation, and metastasis of renal cancer cells while also triggering apoptosis. Additionally, it appears to diminish hyaluronic acid synthesis by downregulating HAS2 expression. MAZ is identified as a transcriptional regulator of HAS2 expression. Calycosin further facilitates the degradation of MAZ via the ubiquitin-proteasome pathway. Notably, Caly demonstrates efficacy in reducing the growth of renal cell carcinoma xenograft tumors in vivo. Our findings indicate that Caly suppresses the proliferation, metastasis, and progression of renal cell carcinoma through its action on the MAZ/HAS2 signaling pathway. Thus, Caly represents a promising therapeutic candidate for the treatment of renal cell carcinoma.

9.
Mol Cell ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39173636

ABSTRACT

Stress granules (SGs) are conserved reversible cytoplasmic condensates enriched with aggregation-prone proteins assembled in response to various stresses. How plants regulate SG dynamics is unclear. Here, we show that 26S proteasome is a stable component of SGs, promoting the overall clearance of SGs without affecting the molecular mobility of SG components. Increase in either temperature or duration of heat stress reduces the molecular mobility of SG marker proteins and suppresses SG clearance. Heat stress induces dramatic ubiquitylation of SG components and enhances the activities of SG-resident proteasomes, allowing the degradation of SG components even during the assembly phase. Their proteolytic activities enable the timely disassembly of SGs and secure the survival of plant cells during the recovery from heat stress. Therefore, our findings identify the cellular process that de-couples macroscopic dynamics of SGs from the molecular dynamics of its constituents and highlights the significance of the proteasomes in SG disassembly.

10.
Sci Rep ; 14(1): 19288, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39164386

ABSTRACT

Because hepatic stellate cells (HSCs) play a major role in fibrosis, we focused on HSCs as a potential target for the treatment of liver fibrosis. In this study, we attempted to identify drug candidates to inactivate HSCs and found that several proteasome inhibitors (PIs) reduced HSC viability. Our data showed that a second-generation PI, carfilzomib (CZM), suppressed the expression of fibrotic markers in primary murine HSCs at low concentrations of 5 or 10 nM. Since CZM was not toxic to HSCs up to a concentration of 12.5 nM, we examined its antifibrotic effects further. CZM achieved a clear reduction in liver fibrosis in the carbon tetrachloride (CCl4)-induced mouse model of liver fibrosis without worsening of liver injury. Mechanistically, RNA sequence analysis of primary HSCs revealed that CZM inhibits mitosis in HSCs. In the CCl4-injured liver, amphiregulin, which is known to activate mitogenic signaling pathways and fibrogenic activity and is upregulated in murine and human metabolic dysfunction-associated steatohepatitis (MASH), was downregulated by CZM administration, leading to inhibition of mitosis in HSCs. Thus, CZM and next-generation PIs in development could be potential therapeutic agents for the treatment of liver fibrosis via inactivation of HSCs without liver injury.


Subject(s)
Hepatic Stellate Cells , Liver Cirrhosis , Oligopeptides , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Animals , Oligopeptides/pharmacology , Oligopeptides/therapeutic use , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/chemically induced , Mice , Male , Disease Models, Animal , Carbon Tetrachloride , Humans , Mice, Inbred C57BL , Mitosis/drug effects , Proteasome Inhibitors/pharmacology , Amphiregulin/metabolism , Cell Survival/drug effects
11.
Sci Rep ; 14(1): 18772, 2024 08 13.
Article in English | MEDLINE | ID: mdl-39138277

ABSTRACT

Computational pharmacogenomics can potentially identify new indications for already approved drugs and pinpoint compounds with similar mechanism-of-action. Here, we used an integrated drug repositioning approach based on transcriptomics data and structure-based virtual screening to identify compounds with gene signatures similar to three known proteasome inhibitors (PIs; bortezomib, MG-132, and MLN-2238). In vitro validation of candidate compounds was then performed to assess proteasomal proteolytic activity, accumulation of ubiquitinated proteins, cell viability, and drug-induced expression in A375 melanoma and MCF7 breast cancer cells. Using this approach, we identified six compounds with PI properties ((-)-kinetin-riboside, manumycin-A, puromycin dihydrochloride, resistomycin, tegaserod maleate, and thapsigargin). Although the docking scores pinpointed their ability to bind to the ß5 subunit, our in vitro study revealed that these compounds inhibited the ß1, ß2, and ß5 catalytic sites to some extent. As shown with bortezomib, only manumycin-A, puromycin dihydrochloride, and tegaserod maleate resulted in excessive accumulation of ubiquitinated proteins and elevated HMOX1 expression. Taken together, our integrated drug repositioning approach and subsequent in vitro validation studies identified six compounds demonstrating properties similar to proteasome inhibitors.


Subject(s)
Bortezomib , Drug Repositioning , Proteasome Inhibitors , Humans , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/chemistry , Drug Repositioning/methods , Bortezomib/pharmacology , Transcriptome , Proteasome Endopeptidase Complex/metabolism , Cell Line, Tumor , MCF-7 Cells , Molecular Docking Simulation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Puromycin/pharmacology , Gene Expression Profiling , Cell Survival/drug effects
12.
Sci Rep ; 14(1): 18576, 2024 08 10.
Article in English | MEDLINE | ID: mdl-39127727

ABSTRACT

Repurposing of FDA-approved drugs is a quick and cost-effective alternative to de novo drug development. Here, we identify genes involved in bortezomib sensitivity, predict cancer types that may benefit from treatment with bortezomib, and evaluate the mechanism-of-action of bortezomib in breast cancer (BT-474 and ZR-75-30), melanoma (A-375), and glioblastoma (A-172) cells in vitro. Cancer cell lines derived from cancers of the blood, kidney, nervous system, and skin were found to be significantly more sensitive to bortezomib than other organ systems. The in vitro studies confirmed that although bortezomib effectively inhibited the ß5 catalytic site in all four cell lines, cell cycle arrest was only induced in G2/M phase and apoptosis in A-375 and A-172 after 24h. The genomic and transcriptomic analyses identified 33 genes (e.g. ALDH18A1, ATAD2) associated with bortezomib resistance. Taken together, we identified biomarkers predictive of bortezomib sensitivity and cancer types that might benefit from treatment with bortezomib.


Subject(s)
Antineoplastic Agents , Bortezomib , Drug Repositioning , Hematologic Neoplasms , Kidney Neoplasms , Humans , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Bortezomib/pharmacology , Bortezomib/therapeutic use , Cell Line, Tumor , Drug Repositioning/methods , Drug Resistance, Neoplasm/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Multiomics
13.
DNA Repair (Amst) ; 142: 103751, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39180935

ABSTRACT

Since the report of "DNA untwisting" activity in 1972, ∼50 years of research has revealed seven topoisomerases in humans (TOP1, TOP1mt, TOP2α, TOP2ß, TOP3α, TOP3ß and Spo11). These conserved regulators of DNA topology catalyze controlled breakage to the DNA backbone to relieve the torsional stress that accumulates during essential DNA transactions including DNA replication, transcription, and DNA repair. Each topoisomerase-catalyzed reaction involves the formation of a topoisomerase cleavage complex (TOPcc), a covalent protein-DNA reaction intermediate formed between the DNA phosphodiester backbone and a topoisomerase catalytic tyrosine residue. A variety of perturbations to topoisomerase reaction cycles can trigger failure of the enzyme to re-ligate the broken DNA strand(s), thereby generating topoisomerase DNA-protein crosslinks (TOP-DPC). TOP-DPCs pose unique threats to genomic integrity. These complex lesions are comprised of structurally diverse protein components covalently linked to genomic DNA, which are bulky DNA adducts that can directly impact progression of the transcription and DNA replication apparatus. A variety of genome maintenance pathways have evolved to recognize and resolve TOP-DPCs. Eukaryotic cells harbor tyrosyl DNA phosphodiesterases (TDPs) that directly reverse 3'-phosphotyrosyl (TDP1) and 5'-phoshotyrosyl (TDP2) protein-DNA linkages. The broad specificity Mre11-Rad50-Nbs1 and APE2 nucleases are also critical for mitigating topoisomerase-generated DNA damage. These DNA-protein crosslink metabolizing enzymes are further enabled by proteolytic degradation, with the proteasome, Spartan, GCNA, Ddi2, and FAM111A proteases implicated thus far. Strategies to target, unfold, and degrade the protein component of TOP-DPCs have evolved as well. Here we survey mechanisms for addressing Topoisomerase 1 (TOP1) and Topoisomerase 2 (TOP2) DPCs, highlighting systems for which molecular structure information has illuminated function of these critical DNA damage response pathways.

14.
J Biol Chem ; 300(9): 107616, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39089586

ABSTRACT

Targeted protein degradation is an emergent and rapidly evolving therapeutic strategy. In particular, biologics-based targeted degradation modalities (bioPROTACs) are relatively under explored compared to small molecules. Here, we investigate how target affinity, cellular localization, and valency of bioPROTACs impact efficacy of targeted degradation of the oncogenic phosphatase src-homology 2 containing protein tyrosine phosphatase-2 (SHP2). We identify bivalent recruitment of SHP2 by bioPROTACs as a broadly applicable strategy to improve potency. Moreover, we demonstrate that SHP2-targeted bioPROTACs can effectively counteract gain-of-function SHP2 mutants present in cancer, which are otherwise challenging to selectively target with small molecule constructs. Overall, this study demonstrates the utility of bioPROTACs for challenging targets, and further explicates design principles for therapeutic bioPROTACs.

15.
Front Pharmacol ; 15: 1403424, 2024.
Article in English | MEDLINE | ID: mdl-39119616

ABSTRACT

Background: Bortezomib (BTZ), a primary treatment for MM, but its effectiveness can be reduced by interactions with vicinal diol moieties (VDMs) in polyphenols. Despite this, it's debated whether BTZ therapy necessitates avoiding polyphenol-rich products, given the low bioavailability of polyphenols. Additionally, it remains unclear whether the structure of polyphenols contributes to their BTZ antagonism. Therefore, our study aims to unravel the structure-activity relationship of dietary polyphenols and their BTZ antagonism at daily diet-achievable physiological concentrations. Methods: We assessed the antagonistic effects of 25 polyphenols against BTZ using cell viability assays in RPMI 8226 cells. ChemGPS-NP helped analyze the structural similarity. Additionally, long-term cytotoxicity assays evaluated these effects at physiologically relevant concentrations. Results: By cell viability assays, we found a positive correlation between the number of VDMs in gallotannins and their BTZ antagonism. Moreover, the origin and configuration of VDMs, rather than the total VDM concentration, play a pivotal role in the combined antagonistic effects against BTZ in gallotannins. Additionally, ChemGPS-NP analysis indicated that the aromaticity and C-3 hydroxyl group in flavonoids' C-rings enhance their BTZ antagonism. Finally, long-term cytotoxicity assays reveal that gallic acid (GA), epigallocatechin (EGC), and epigallocatechin gallate (EGCG), at their physiological concentrations-attainable through tea consumption-significantly and synergistically antagonize BTZ. Conclusion: Due to the potential for these polyphenols to reduce the effectiveness of BTZ, it is advisable for MM patients undergoing BTZ treatment to reduce their consumption of foods high in VDM-containing polyphenols.

16.
Sci Rep ; 14(1): 20159, 2024 08 29.
Article in English | MEDLINE | ID: mdl-39215164

ABSTRACT

Capacitation is an essential post-testicular maturation event endowing spermatozoa with fertilizing capacity within the female reproductive tract, significant for fertility, reproductive health, and contraception. By using a human-relevant large animal model, the domestic boar, this study focuses on furthering our understanding of the involvement of the ubiquitin-proteasome system (UPS) in sperm capacitation. The UPS is a universal, evolutionarily conserved, cellular proteome-wide degradation and recycling machinery, that has been shown to play a significant role in reproduction during the past two decades. Herein, we have used a bottom-up proteomic approach to (i) monitor the capacitation-related changes in the sperm protein levels, and (ii) identify the targets of UPS regulation during sperm capacitation. Spermatozoa were capacitated under proteasomal activity-permissive and inhibiting conditions and extracted sperm proteins were subjected to high-resolution mass spectrometry. We report that 401 individual proteins differed at least two-fold in abundance (P < 0.05) after in vitro capacitation (IVC) and 13 proteins were found significantly different (P < 0.05) between capacitated spermatozoa with proteasomal inhibition compared to the vehicle control. These proteins were associated with biological processes including sperm capacitation, sperm motility, metabolism, binding to zona pellucida, and proteasome-mediated catabolism. Changes in RAB2A, CFAP161, and TTR during IVC were phenotyped by immunocytochemistry, image-based flow cytometry, and Western blotting. We conclude that (i) the sperm proteome is subjected to extensive remodeling during sperm capacitation, and (ii) the UPS has a narrow range of distinct protein substrates during capacitation. This knowledge highlights the importance of the UPS in sperm capacitation and offers opportunities to identify novel pharmacological targets to modulate sperm fertilizing ability for the benefit of human reproductive health, assisted reproductive therapy, and contraception, as well as reproductive management in food animal agriculture.


Subject(s)
Proteasome Endopeptidase Complex , Proteomics , Sperm Capacitation , Spermatozoa , Ubiquitin , Sperm Capacitation/physiology , Animals , Male , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Swine , Spermatozoa/metabolism , Spermatozoa/physiology , Proteomics/methods , Proteome/metabolism
17.
Autophagy ; : 1-17, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39113571

ABSTRACT

Aging is often accompanied by a decline in proteostasis, manifested as an increased propensity for misfolded protein aggregates, which are prevented by protein quality control systems, such as the ubiquitin-proteasome system (UPS) and macroautophagy/autophagy. Although the role of the UPS and autophagy in slowing age-induced proteostasis decline has been elucidated, limited information is available on how these pathways can be activated in a collaborative manner to delay proteostasis-associated aging. Here, we show that activation of the UPS via the pharmacological inhibition of USP14 (ubiquitin specific peptidase 14) using IU1 improves proteostasis and autophagy decline caused by aging or proteostatic stress in Drosophila and human cells. Treatment with IU1 not only alleviated the aggregation of polyubiquitinated proteins in aging Drosophila flight muscles but also extended the fly lifespan with enhanced locomotive activity via simultaneous activation of the UPS and autophagy. Interestingly, the effect of this drug disappeared when proteasomal activity was inhibited, but was evident upon proteostasis disruption by foxo mutation. Overall, our findings shed light on potential strategies to efficiently ameliorate age-associated pathologies associated with perturbed proteostasis.Abbreviations: AAAs: amino acid analogs; foxo: forkhead box, sub-group O; IFMs: indirect flight muscles; UPS: ubiquitin-proteasome system; USP14: ubiquitin specific peptidase 14.

18.
Expert Opin Drug Saf ; : 1-8, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39157912

ABSTRACT

BACKGROUND: The use of proteasome inhibitors (PIs), namely Bortezomib and Carfilzomib, revolutionized multiple myeloma (MM) treatment. Understanding their distinct adverse event (AE) profiles aids in tailored treatment plans. RESEARCH DESIGN AND METHODS: We analyzed FDA Adverse Event Reporting System (FAERS) data (Q1 2012-Q4 2023) for Bortezomib and Carfilzomib, utilizing reporting odds ratio (ROR), proportional reporting ratio (PRR), and Bayesian confidence propagation neural network (BCPNN). RESULTS: FAERS yielded 19,720 Bortezomib and 12,252 Carfilzomib AE reports. Males aged 45-65 exhibited higher AE susceptibility. Common AE systems included Infections, Nervous System Disorders, Blood Disorders, General Disorders, Cardiac Disorders, and Renal Disorders. New Bortezomib signals were sepsis and colitis. Carfilzomib exhibited elevated cardiac and renal toxicity but reduced peripheral neuropathy and thrombocytopenia. CONCLUSIONS: FAERS analysis revealed new AE signals (sepsis, colitis) for Bortezomib and highlighted Carfilzomib's heightened cardiac and renal risks compared to Bortezomib. Balancing PIs' benefits and risks is crucial for clinical decision-making.

20.
Proc Natl Acad Sci U S A ; 121(33): e2405964121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39121161

ABSTRACT

Ubiquitination is one of the most common posttranslational modifications in eukaryotic cells. Depending on the architecture of polyubiquitin chains, substrate proteins can meet different cellular fates, but our understanding of how chain linkage controls protein fate remains limited. UBL-UBA shuttle proteins, such as UBQLN2, bind to ubiquitinated proteins and to the proteasome or other protein quality control machinery elements and play a role in substrate fate determination. Under physiological conditions, UBQLN2 forms biomolecular condensates through phase separation, a physicochemical phenomenon in which multivalent interactions drive the formation of a macromolecule-rich dense phase. Ubiquitin and polyubiquitin chains modulate UBQLN2's phase separation in a linkage-dependent manner, suggesting a possible link to substrate fate determination, but polyubiquitinated substrates have not been examined directly. Using sedimentation assays and microscopy we show that polyubiquitinated substrates induce UBQLN2 phase separation and incorporate into the resulting condensates. This substrate effect is strongest with K63-linked substrates, intermediate with mixed-linkage substrates, and weakest with K48-linked substrates. Proteasomes can be recruited to these condensates, but proteasome activity toward K63-linked and mixed linkage substrates is inhibited in condensates. Substrates are also protected from deubiquitinases by UBQLN2-induced phase separation. Our results suggest that phase separation could regulate the fate of ubiquitinated substrates in a chain-linkage-dependent manner, thus serving as an interpreter of the ubiquitin code.


Subject(s)
Adaptor Proteins, Signal Transducing , Autophagy-Related Proteins , Ubiquitination , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/chemistry , Autophagy-Related Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Humans , Polyubiquitin/metabolism , Proteasome Endopeptidase Complex/metabolism , Biomolecular Condensates/metabolism , Biomolecular Condensates/chemistry , Ubiquitin/metabolism , Ubiquitin/chemistry , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Ubiquitinated Proteins/metabolism , Ubiquitinated Proteins/isolation & purification , Ubiquitinated Proteins/chemistry , Phase Separation
SELECTION OF CITATIONS
SEARCH DETAIL