Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Eur J Pharmacol ; 977: 176745, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38880220

ABSTRACT

High fat diet (HFD) consumption can cause dysregulation of glucose and lipid metabolism, coupled with increased ectopic lipid deposition in renal tissue leading to steatosis and dysfunction. Sitagliptin is a dipeptidyl peptidase-4 (DPP-4) inhibitor clinically used for type II diabetes therapy; however its effect on renal steatosis in obese state is still uncertain. Herein, obesity was induced by feeding male Wistar rats HFD for 18 weeks, thereafter received either drug vehicle, or sitagliptin (10 mg/kg, PO) along with HFD for further 6 weeks and compared with age-matched rats receiving normal chow diet (NCD). After 24 weeks, serum and kidneys were collected for histological and biochemical assessments. Compared to NCD-fed group, HFD-fed rats displayed marked weight gain, increased fat mass, insulin resistance, dyslipidemia, impaired kidney functions and renal histological alterations. Sitagliptin effectively ameliorated obesity and related metabolic perturbations and improved kidney architecture and function. There were increased levels of triglycerides and cluster of differentiation 36 (CD36) in kidneys of obese rats, that were lowered by sitagliptin therapy. Sitagliptin significantly repressed the expression of lipogenesis genes, while up-regulated genes involved in mitochondrial biogenesis and fatty acid oxidation in kidneys of HFD-fed rats. Sitagliptin was found to induce down-regulation of endoplasmic reticulum (ER) stress and apoptotic markers in kidneys of obese rats. These findings together may emphasize a novel concept that sitagliptin can be an effective therapeutic approach for halting obesity-related renal steatosis and CKD.


Subject(s)
CD36 Antigens , Diet, High-Fat , Endoplasmic Reticulum Stress , Kidney , Obesity , Signal Transduction , Sitagliptin Phosphate , Animals , Male , Rats , CD36 Antigens/metabolism , CD36 Antigens/genetics , Diet, High-Fat/adverse effects , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Endoplasmic Reticulum Stress/drug effects , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Kidney Diseases/etiology , Kidney Diseases/pathology , Kidney Diseases/prevention & control , Obesity/drug therapy , Obesity/metabolism , Obesity/complications , Rats, Wistar , Signal Transduction/drug effects , Sitagliptin Phosphate/pharmacology , Sitagliptin Phosphate/therapeutic use
2.
J Clin Transl Endocrinol ; 36: 100341, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38616864

ABSTRACT

Obesity and chronic kidney disease are two ongoing progressive clinical pandemics of major public health and clinical care significance. Because of their growing prevalence, chronic indolent course and consequent complications both these conditions place significant burden on the health care delivery system especially in developed countries like the United States. Beyond the chance coexistence of both of these conditions in the same patient based on high prevalence it is now apparent that obesity is associated with and likely has a direct causal role in the onset, progression and severity of chronic kidney disease. The causes and underlying pathophysiology of this are myriad, complicated and multi-faceted. In this review, continuing the theme of this special edition of the journal on " The Cross roads between Endocrinology and Nephrology" we review the epidemiology of obesity related chronic kidney disease (ORCKD), and its various underlying causes and pathophysiology. In addition, we delve into the consequent comorbidities and complications associated with ORCKD with particular emphasis on the cardio metabolic consequences and then review the current body of evidence for available strategies for chronic kidney disease modulation in ORCKD as well as the potential unique role of weight reduction and management strategies in its improvement and risk reduction.

3.
Metabolites ; 12(5)2022 May 20.
Article in English | MEDLINE | ID: mdl-35629966

ABSTRACT

The kidneys are organs that require energy from the metabolism of fatty acids and glucose; several studies have shown that the kidneys are metabolically active tissues with an estimated energy requirement similar to that of the heart. The kidneys may regulate the normal and pathological function of circulating lipids in the body, and their glomerular filtration barrier prevents large molecules or large lipoprotein particles from being filtered into pre-urine. Given the permeable nature of the kidneys, renal lipid metabolism plays an important role in affecting the rest of the body and the kidneys. Lipid metabolism in the kidneys is important because of the exchange of free fatty acids and apolipoproteins from the peripheral circulation. Apolipoproteins have important roles in the transport and metabolism of lipids within the glomeruli and renal tubules. Indeed, evidence indicates that apolipoproteins have multiple functions in regulating lipid import, transport, synthesis, storage, oxidation and export, and they are important for normal physiological function. Apolipoproteins are also risk factors for several renal diseases; for example, apolipoprotein L polymorphisms induce kidney diseases. Furthermore, renal apolipoprotein gene expression is substantially regulated under various physiological and disease conditions. This review is aimed at describing recent clinical and basic studies on the major roles and functions of apolipoproteins in the kidneys.

4.
Arch Physiol Biochem ; : 1-10, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34915796

ABSTRACT

The effects of high-fat-associated kidney damage in humans are not completely elucidated. Animal experiments are essential to understanding the mechanisms underlying human diseases. This systematic review aimed to compile evidence of the role of a high-fat diet during the development of renal lipotoxicity and fibrosis of Wistar rats to understand whether this is a satisfactory model for the study of high fat-induced kidney damage. We conducted systematic searches in PUBMED, EMBASE, Lilacs, and Web of Science databases from inception until May 2021. The risk of bias was assessed using SYRCLE toll. Two reviewers independently screened abstracts and reviewed full-text articles. A total of 11 studies were included. The damage varied depending on the age and sex of the animals, time of protocol, and amount of fat in the diet. In conclusion, the Wistar rat is an adequate animal model to assess the effects of a high-fat diet on the kidneys.HighlightsA high-fat diet may promote kidney damage in Wistar rats.Wistar rat is efficient as an animal model to study high-fat-induced kidney damage.The effect of the diet depends on the fat amount, consumption time, and animal age.

5.
Int J Mol Sci ; 22(5)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33670975

ABSTRACT

Excessive intake of fructose results in metabolic syndrome (MS) and kidney damage, partly mediated by its metabolism by fructokinase-C or ketohexokinase-C (KHK-C). Osthol has antioxidant properties, is capable of regulating adipogenesis, and inhibits KHK-C activity. Here, we examined the potential protective role of osthol in the development of kidney disease induced by a Western (high-fat/high-sugar) diet. Control rats fed with a high-fat/high-sugar diet were compared with two groups that also received two different doses of osthol (30 mg/kg/d or 40 mg/kg/d body weight BW). A fourth group served as a normal control and received regular chow. At the end of the follow-up, kidney function, metabolic markers, oxidative stress, and lipogenic enzymes were evaluated. The Western diet induced MS (hypertension, hyperglycemia, hypertriglyceridemia, obesity, hyperuricemia), a fall in the glomerular filtration rate, renal tubular damage, and increased oxidative stress in the kidney cortex, with increased expression of lipogenic enzymes and increased kidney KHK expression. Osthol treatment prevented the development of MS and ameliorated kidney damage by inhibiting KHK activity, preventing oxidative stress via nuclear factor erythroid 2-related factor (Nrf2) activation, and reducing renal lipotoxicity. These data suggest that the nutraceutical osthol might be an ancillary therapy to slow the progression of MS and kidney damage induced by a Western diet.


Subject(s)
Coumarins/pharmacology , Diet, Western/adverse effects , Fructokinases/antagonists & inhibitors , Kidney Diseases/prevention & control , Metabolic Syndrome/prevention & control , Animals , Coumarins/therapeutic use , Diet, Carbohydrate Loading/adverse effects , Diet, High-Fat/adverse effects , Fructokinases/metabolism , Fructose/metabolism , Kidney Diseases/etiology , Kidney Diseases/metabolism , Male , Metabolic Syndrome/etiology , Metabolic Syndrome/metabolism , NF-E2-Related Factor 2 , Oxidative Stress , Protective Agents/pharmacology , Protective Agents/therapeutic use , Rats , Rats, Wistar
6.
Environ Toxicol ; 36(3): 386-395, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33098358

ABSTRACT

Shunaoxin pills (SNX) have been used to treat cerebrovascular diseases in China since 2005. Hypertension is a major risk factor for cerebrovascular disease. This study aimed to explore the synergistic antihypertensive effect of SNX and nifedipine and whether SNX could alleviate nifedipine-induced renal lipotoxicity. During administration, systolic blood pressure was measured weekly. After 5 weeks administration, we examined pathological changes of kidney, renal function, the lipid metabolism index, and adipogenesis genes expression in the kidney tissues, and explored its underlying mechanism. Finally, network pharmacology was used for supplement and verification. As a result, SNX improved the antihypertensive effect of nifedipine and apparently improved nifedipine-induced renal pathological changes, dyslipidemia and the levels of adipogenesis gene expression in kidney tissues. SNX reduced the levels of interleukin-6 and interleukin-1ß in renal tissues, down-regulated the production of malondialdehyde, and increased superoxide dismutase activity and the protein expression of heme oxygenase-1 in kidney tissues. Network pharmacology also showed that SNX could improve nifedipine-induced renal lipotoxicity. The combination of SNX and nifedipine had certain benefits in the treatment of hypertension.


Subject(s)
Antihypertensive Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Nifedipine/pharmacology , Animals , Antihypertensive Agents/therapeutic use , Blood Pressure/drug effects , China , Drugs, Chinese Herbal/therapeutic use , Hypertension/drug therapy , Kidney/drug effects , Lipid Metabolism , Male , Nifedipine/therapeutic use , Rats , Rats, Inbred SHR
7.
Clin Sci (Lond) ; 134(18): 2469-2487, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32940670

ABSTRACT

Sulforaphane (SFN) prevents diabetic nephropathy (DN) in type 2 diabetes (T2D) by up-regulating nuclear factor (erythroid-derived 2)-like 2 (Nrf2). AMP-activated protein kinase (AMPK) can attenuate the pathogenesis of DN by improving renal lipotoxicity along with the activation of Nrf2-mediated antioxidative signaling. Therefore, we investigated whether AMPKα2, the central subunit of AMPK in energy metabolism, is required for SFN protection against DN in T2D, and whether potential cross-talk occurs between AMPKα2 and Nrf2. AMPKα2 knockout (Ampkα2-/-) mice and wildtype (WT) mice were fed a high-fat diet (HFD) or a normal diet (ND) to induce insulin resistance, followed by streptozotocin (STZ) injection to induce hyperglycemia, as a T2D model. Both T2D and control mice were treated with SFN or vehicle for 3 months. At the end of the 3-month treatment, all mice were maintained only on HFD or ND for an additional 3 months without SFN treatment. Mice were killed at sixth month after T2D onset. Twenty-four-hour urine albumin at third and sixth months was significantly increased as renal dysfunction, along with significant renal pathological changes and biochemical changes including renal hypertrophy, oxidative damage, inflammation, and fibrosis in WT T2D mice, which were prevented by SFN in certain contexts, but not in Ampkα2-/- T2D mice. SFN prevention of T2D-induced renal lipotoxicity was associated with AMPK-mediated activation of lipid metabolism and Nrf2-dependent antioxidative function in WT mice, but not in SFN-treated Ampkα2-/- mice. Therefore, SFN prevention of DN is AMPKα2-mediated activation of probably both lipid metabolism and Nrf2 via AMPK/AKT/glycogen synthase kinase (GSK)-3ß/Src family tyrosine kinase (Fyn) pathways.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Antioxidants/metabolism , Diabetes Mellitus, Type 2/prevention & control , Diabetic Nephropathies/prevention & control , Isothiocyanates/therapeutic use , Lipid Metabolism , Metabolic Networks and Pathways , NF-E2-Related Factor 2/metabolism , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/enzymology , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/enzymology , Fibrosis , Gene Deletion , Glycogen Synthase Kinase 3 beta/metabolism , Inflammation/complications , Inflammation/pathology , Isothiocyanates/pharmacology , Kidney/abnormalities , Kidney/drug effects , Kidney/pathology , Lipid Metabolism/drug effects , Metabolic Networks and Pathways/drug effects , Mice, Inbred C57BL , Mice, Knockout , Models, Biological , Oxidative Stress/drug effects , Protective Agents/pharmacology , Protective Agents/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-fyn/metabolism , Sulfoxides , Transcriptional Activation/drug effects
8.
Article in English | MEDLINE | ID: mdl-32534015

ABSTRACT

Dyslipidemia and insulin resistance in obesity can lead to lipotoxicity and cellular damage. Renal lipotoxicity in association with an impairment of lipid metabolism induces renal damage through the activation of inflammation, ER stress, fibrosis and apoptosis. We investigated the effects of a combination treatment of the DPP-4 inhibitor vildagliptin and atorvastatin on renal lipotoxicity related to renal dysfunction and injury in a high-fat high-fructose diet (HFF)-induced insulin resistant condition. Male Wistar rats were fed on a high-fat diet and were given drinking water with 10% fructose for 16 weeks. After that, rats were divided into: no treatment (HFF), treatment with vildagliptin, atorvastatin and vildagliptin plus atorvastatin for 4 weeks. The results demonstrated that the combination treatment prominently improved insulin resistance, dyslipidemia and kidney morphological changes induced by HFF. These changes correlated well with the increased expression of nephrin and podocin and decreased urine protein. Notably, the combined treatment produced greater improvement in renal lipid metabolism through increasing fatty acid oxidation with the decreases in fatty acid transporters and fatty acid synthesis, thereby reducing renal lipid accumulation in HFF rats. The reduction in renal lipotoxicity via diminishing renal inflammation, ER stress, fibrosis and apoptosis was also more significant in the combined treatment group than in the other groups in which the drug was used as a monotherapy. In conclusion, the combination therapy produced synergistic beneficial effects on metabolic parameters, lipid metabolism and accumulation related to renal lipid accumulation-induced lipotoxicity and kidney injury in the HFF-induced insulin resistant model with improved outcomes.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hypoglycemic Agents/therapeutic use , Insulin Resistance , Kidney Diseases/drug therapy , Kidney/drug effects , Vildagliptin/therapeutic use , Animals , Diet, High-Fat/adverse effects , Drug Therapy, Combination , Endoplasmic Reticulum Stress/drug effects , Fructose/adverse effects , Kidney/metabolism , Kidney/pathology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Lipid Metabolism/drug effects , Male , Rats, Wistar
9.
Toxicol Appl Pharmacol ; 396: 114997, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32259528

ABSTRACT

High-fat high-fructose diet (HFF) in obesity can induce dyslipidemia and lipid accumulation both in kidney and liver which related to insulin resistance and lipotoxicity-induced cellular damage. We investigated whether dapagliflozin with or without atorvastatin could improve lipid accumulation-induced kidney and liver injury in HFF-induced insulin resistant rats. Male Wistar rats were fed with HFF for 16 weeks and then received drug treatments for 4 weeks; vehicle, dapagliflozin, atorvastatin and dapagliflozin plus atorvastatin treatment groups. HFF rats demonstrated insulin resistance, dyslipidemia, liver injury and renal dysfunction associated with impaired renal lipid metabolism and lipid accumulation. Dapagliflozin and combination treatment could improve HFF-induced insulin resistance, lipogenesis and lipotoxicity-related renal oxidative stress, inflammation, fibrosis and apoptosis leading to kidney dysfunction recovery. Liver injury-associated inflammation was also improved by these two regimens. Notably, the reduced lipid accumulation in liver and kidney that linked to an improvement of lipid oxidation was prominent in the combination treatment. Therefore, dapagliflozin combined with atorvastatin treatment exert the beneficial effects on lipid metabolism and lipotoxicity in liver and kidney injury via the attenuation of oxidative stress, fibrosis and apoptosis in insulin resistant model.


Subject(s)
Acute Kidney Injury/drug therapy , Atorvastatin/therapeutic use , Benzhydryl Compounds/therapeutic use , Dietary Carbohydrates/adverse effects , Dietary Fats/adverse effects , Fatty Liver/drug therapy , Fructose/adverse effects , Glucosides/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Insulin Resistance , Animals , Atorvastatin/administration & dosage , Benzhydryl Compounds/administration & dosage , Blotting, Western , Dietary Carbohydrates/pharmacology , Drug Therapy, Combination , Fructose/pharmacology , Glucosides/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Male , Rats , Rats, Wistar
10.
Am J Med Sci ; 359(2): 84-99, 2020 02.
Article in English | MEDLINE | ID: mdl-32039770

ABSTRACT

The pathogenesis of diabetic kidney disease is a complex process caused by both glucotoxicity and lipotoxicity due to lipid accumulation. In cases of diabetic animals, lipid deposition is found in both tubular and glomerular portions of the kidneys, which are the major sites of diabetic nephropathy lesions. The aim of this review was to provide insights into the mechanisms that lead to the development of renal lipid accumulation and the effects of renal lipotoxicity in the diabetic condition. An increased number of lipogenic genes and a decreased number of lipid oxidation genes are also detected in diabetic kidneys, both of which lead to lipid accumulation. The induction of oxidative stress, inflammation, fibrosis and apoptosis caused by lipid accumulation and lipid metabolites is called lipotoxicity. Renal lipotoxicity due to derangement in lipid metabolism may be a pathogenic mechanism leading to diabetic nephropathy and renal dysfunction.


Subject(s)
Apoptosis , Diabetic Nephropathies/metabolism , Kidney Glomerulus/metabolism , Lipid Metabolism , Oxidative Stress , Animals , Diabetic Nephropathies/pathology , Fibrosis , Humans , Inflammation/metabolism , Inflammation/pathology , Kidney Glomerulus/pathology
11.
Int J Mol Sci ; 20(7)2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30934807

ABSTRACT

Lipid accumulation in renal cells has been implicated in the pathogenesis of obesity-related kidney disease, and lipotoxicity in the kidney can be a surrogate marker for renal failure or renal fibrosis. Fatty acid oxidation provides energy to renal tubular cells. Ca2+ is required for mitochondrial ATP production and to decrease reactive oxygen species (ROS). However, how nifedipine (a calcium channel blocker) affects lipogenesis is unknown. We utilized rat NRK52E cells pre-treated with varying concentrations of nifedipine to examine the activity of lipogenesis enzymes and lipotoxicity. A positive control exposed to oleic acid was used for comparison. Nifedipine was found to activate acetyl Coenzyme A (CoA) synthetase, acetyl CoA carboxylase, long chain fatty acyl CoA elongase, ATP-citrate lyase, and 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG CoA) reductase, suggesting elevated production of cholesterol and phospholipids. Nifedipine exposure induced a vast accumulation of cytosolic free fatty acids (FFA) and stimulated the production of reactive oxygen species, upregulated CD36 and KIM-1 (kidney injury molecule-1) expression, inhibited p-AMPK activity, and triggered the expression of SREBP-1/2 and lipin-1, underscoring the potential of nifedipine to induce lipotoxicity with renal damage. To our knowledge, this is the first report demonstrating nifedipine-induced lipid accumulation in the kidney.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Kidney/metabolism , Lipogenesis/drug effects , Nifedipine/pharmacology , Sterol Regulatory Element Binding Protein 1/metabolism , Transcription, Genetic/drug effects , Animals , Biosynthetic Pathways/drug effects , CD36 Antigens/metabolism , Cell Line , Cell Survival/drug effects , Cholesterol/metabolism , Down-Regulation/drug effects , Intracellular Space/metabolism , Kidney/drug effects , Kidney/enzymology , Kidney/injuries , Models, Biological , PPAR alpha/metabolism , Phosphorylation/drug effects , Rats , Reactive Oxygen Species/metabolism , Up-Regulation/drug effects
12.
Ren Fail ; 40(1): 43-50, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29304720

ABSTRACT

INTRODUCTION: Dyslipidemia is one of the onset and risk factors of chronic kidney disease and renal function drop is seen in lipoprotein abnormal animal models. However, the detailed molecular mechanism of renal lipotoxicity has not been clarified. Therefore, the present study aimed to investigate the influence of cholesterol overload using mouse kidney tissue and kidney-derived cultured cells. METHODS: C57BL/6 mice were fed normal diet (ND) or 1.25% cholesterol-containing high-cholesterol diet (HCD) for 11 weeks, and we used megalin as a proximal tubule marker for immunohistology. We added beta-very low density lipoprotein (ßVLDL) to kidney-derived cells and examined the effect of cholesterol overload on megalin protein and mRNA expression level, cell proliferation and cholesterol content in cells. RESULTS: In the kidney of HCD mice, the gap between glomerulus and the surrounding Bowman's capsule decreased and the expression level of megalin decreased. After ßVLDL treatment to the cells, the protein expression and mRNA expression level of megalin decreased and cell proliferation was restrained. We also observed an increase in cholesterol accumulation in the cell and free cholesterol/phospholipid ratios increased. CONCLUSIONS: These findings suggest that the increased cholesterol load on kidney contribute to the decrease of megalin and the overloaded cholesterol is taken into the renal tubule epithelial cells, causing suppression on cell proliferation, which may be the cause of kidney damage.


Subject(s)
Cholesterol, Dietary/adverse effects , Dyslipidemias/pathology , Epithelial Cells/pathology , Kidney Diseases/pathology , Kidney Tubules, Proximal/pathology , Animals , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Dyslipidemias/etiology , Humans , Kidney Diseases/etiology , Kidney Tubules, Proximal/cytology , Lipoproteins, VLDL/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Male , Mice , Mice, Inbred C57BL , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL