Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Cancers (Basel) ; 16(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39001552

ABSTRACT

Lung adenocarcinoma is the most prevalent form of lung cancer, and drug resistance poses a significant obstacle in its treatment. This study aimed to investigate the overexpression of long non-coding RNAs (lncRNAs) as a mechanism that promotes intrinsic resistance in tumor cells from the onset of treatment. Drug-tolerant persister (DTP) cells are a subset of cancer cells that survive and proliferate after exposure to therapeutic drugs, making them an essential object of study in cancer treatment. The molecular mechanisms underlying DTP cell survival are not fully understood; however, long non-coding RNAs (lncRNAs) have been proposed to play a crucial role. DTP cells from lung adenocarcinoma cell lines were obtained after single exposure to tyrosine kinase inhibitors (TKIs; erlotinib or osimertinib). After establishing DTP cells, RNA sequencing was performed to investigate the differential expression of the lncRNAs. Some lncRNAs and one mRNA were overexpressed in DTP cells. The clinical relevance of lncRNAs was evaluated in a cohort of patients with lung adenocarcinoma from The Cancer Genome Atlas (TCGA). RT-qPCR validated the overexpression of lncRNAs and mRNA in the residual DTP cells and LUAD biopsies. Knockdown of these lncRNAs increases the sensitivity of DTP cells to therapeutic drugs. This study provides an opportunity to investigate the involvement of lncRNAs in the genetic and epigenetic mechanisms that underlie intrinsic resistance. The identified lncRNAs and CD74 mRNA may serve as potential prognostic markers or therapeutic targets to improve the overall survival (OS) of patients with lung cancer.

2.
Bioresour Bioprocess ; 11(1): 77, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073555

ABSTRACT

The ß-glucosidase gene from Aspergillus nidulans FGSC A4 was cloned and overexpressed in the A. nidulans A773. The resulting purified ß-glucosidase, named AnGH3, is a monomeric enzyme with a molecular weight of approximately 80 kDa, as confirmed by SDS-PAGE. Circular dichroism further validated its unique canonical barrel fold (ß/α), a feature also observed in the 3D homology model of AnGH3. The most striking aspect of this recombinant enzyme is its robustness, as it retained 100% activity after 24 h of incubation at 45 and 50 ºC and pH 6.0. Even at 55 °C, it maintained 72% of its enzymatic activity after 6 h of incubation at the same pH. The kinetic parameters Vmax, KM, and Kcat/KM for ρ-nitrophenyl-ß-D-glucopyranoside (ρNPG) and cellobiose were also determined. Using ρNPG, the enzyme demonstrated a Vmax of 212 U mg - 1, KM of 0.0607 mmol L - 1, and Kcat/KM of 4521 mmol L - 1 s - 1 when incubated at pH 6.0 and 65 °C. The KM, Vmax, and Kcat/KM using cellobiose were 2.7 mmol L - 1, 57 U mg - 1, and 27 mmol -1 s - 1, respectively. AnGH3 activity was significantly enhanced by xylose and ethanol at concentrations up to 1.5 mol L - 1 and 25%, respectively. Even in challenging conditions, at 65 °C and pH 6.0, the enzyme maintained its activity, retaining 100% and 70% of its initial activity in the presence of 200 mmol L - 1 furfural and 5-hydroxymethylfurfural (HMF), respectively. The potential of this enzyme was further demonstrated by its application in the saccharification of the forage grass Panicum maximum, where it led to a 48% increase in glucose release after 24 h. These unique characteristics, including high catalytic performance, good thermal stability in hydrolysis temperature, and tolerance to elevated concentrations of ethanol, D-xylose, furfural, and HMF, position this recombinant enzyme as a promising tool in the hydrolysis of lignocellulosic biomass as part of an efficient multi-enzyme cocktail, thereby opening new avenues in the field of biotechnology and enzymology.

3.
Food Res Int ; 190: 114637, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945626

ABSTRACT

Although the industrial production of butanol has been carried out for decades by bacteria of the Clostridium species, recent studies have shown the use of the yeast Saccharomyces cerevisiae as a promising alternative. While the production of n-butanol by this yeast is still very far from its tolerability (up to 2% butanol), the improvement in the tolerance can lead to an increase in butanol production. The aim of the present work was to evaluate the adaptive capacity of the laboratory strain X2180-1B and the Brazilian ethanol-producing strain CAT-1 when submitted to two strategies of adaptive laboratory Evolution (ALE) in butanol. The strains were submitted, in parallel, to ALE with successive passages or with UV irradiation, using 1% butanol as selection pressure. Despite initially showing greater tolerance to butanol, the CAT-1 strain did not show great improvements after being submitted to ALE. Already the laboratory strain X2180-1B showed an incredible increase in butanol tolerance, starting from a condition of inability to grow in 1% butanol, to the capacity to grow in this same condition. With emphasis on the X2180_n100#28 isolated colony that presented the highest maximum specific growth rate among all isolated colonies, we believe that this colony has good potential to be used as a model yeast for understanding the mechanisms that involve tolerance to alcohols and other inhibitory compounds.


Subject(s)
Butanols , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Butanols/metabolism , Fermentation , Ethanol/metabolism , Ethanol/pharmacology , 1-Butanol/metabolism , Ultraviolet Rays , Adaptation, Physiological
4.
Antonie Van Leeuwenhoek ; 117(1): 76, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705910

ABSTRACT

Despite being one of the most abundant elements in soil, phosphorus (P) often becomes a limiting macronutrient for plants due to its low bioavailability, primarily locked away in insoluble organic and inorganic forms. Phosphate solubilizing and mineralizing bacteria, also called phosphobacteria, isolated from P-deficient soils have emerged as a promising biofertilizer alternative, capable of converting these recalcitrant P forms into plant-available phosphates. Three such phosphobacteria strains-Serratia sp. RJAL6, Klebsiella sp. RCJ4, and Enterobacter sp. 198-previously demonstrated their particular strength as plant growth promoters for wheat, ryegrass, or avocado under abiotic stresses and P deficiency. Comparative genomic analysis of their draft genomes revealed several genes encoding key functionalities, including alkaline phosphatases, isonitrile secondary metabolites, enterobactin biosynthesis and genes associated to the production of indole-3-acetic acid (IAA) and gluconic acid. Moreover, overall genome relatedness indexes (OGRIs) revealed substantial divergence between Serratia sp. RJAL6 and its closest phylogenetic neighbours, Serratia nematodiphila and Serratia bockelmanii. This compelling evidence suggests that RJAL6 merits classification as a novel species. This in silico genomic analysis provides vital insights into the plant growth-promoting capabilities and provenance of these promising PSRB strains. Notably, it paves the way for further characterization and potential application of the newly identified Serratia species as a powerful bioinoculant in future agricultural settings.


Subject(s)
Enterobacter , Genome, Bacterial , Genomics , Indoleacetic Acids , Phylogeny , Serratia , Soil Microbiology , Indoleacetic Acids/metabolism , Serratia/genetics , Serratia/isolation & purification , Serratia/metabolism , Serratia/classification , Enterobacter/genetics , Enterobacter/isolation & purification , Enterobacter/classification , Enterobacter/metabolism , Klebsiella/genetics , Klebsiella/metabolism , Klebsiella/isolation & purification , Klebsiella/classification , Plant Development , Soil/chemistry , Plant Growth Regulators/metabolism
5.
Int J Phytoremediation ; 26(5): 784-792, 2024.
Article in English | MEDLINE | ID: mdl-37846073

ABSTRACT

In semi-arid regions, is necessary to explore strategies to mitigate abiotic stresses such as water deficit and salinity. This study aimed to evaluate the stress tolerance capacity of three species subjected to different water regimes and salinity levels, based on dry matter production and water use efficiency (WUE). The species Handroanthus impetiginosus, Vachellia farnesiana, and Amburana cearensis were evaluated in combination with different water regimes (50%, 75%, and 100% of reference evapotranspiration - ET0) and salinity levels (0.18, 1.50, and 1.90 dS m-1). The results show that biomass accumulation increased at 50% and 75% ET0, while the WUE decreased at 100% ET0. The salinity level (1.90 dS m-1) caused reductions in leaf dry biomass (LDB), total dry biomass (TDB), LDB/TDB ratio, and WUE. The negative effects of high salinity on plant height were greater with the application of 75% ET0. The highest WUE was obtained at 50% ET0 for A. cearensis and H. impetiginosus, while V. farnesiana obtained the highest WUE at 75% ET0. A. cearensis exhibited the highest biomass accumulation (2.58 g) and WUE (0.21 g L-1). Overall, the species can tolerate drought and salinity conditions, being sensitive to high salinity concentrations during their initial growth.


The Caatinga is characterized by low water availability and soil salinization. Therefore, assessing the ability of native species to cope with these conditions allows for their utilization in reforestation programs in drought and salinity-exposed environments. Studies on the combined effects of these factors are scarce. The results indicated that native species show tolerance to drought and salinity conditions, albeit with some reductions in biomass production and water use efficiency at high NaCl concentrations. Among the species, A. cearensis performed the best under water and salinity stress conditions.


Subject(s)
Fabaceae , Tabebuia , Salinity , Water , Salt Tolerance , Biodegradation, Environmental , Stress, Physiological
6.
Braz J Microbiol ; 55(1): 169-177, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38019411

ABSTRACT

Amphiphilic protein has lipophilic and hydrophilic domains, displaying the potential for development as a biosurfactant. The polyhydroxyalkanoate (PHA) surface binding protein derived from Bacillus is a type of protein that has not been studied for its emulsifying properties. In this study, PHA granule-associated protein (PhaP), PHA regulatory protein (PhaQ), and PHA synthase subunit (PhaR) derived from an alkali-tolerant PHA-producing Bacillus cereus HBL-AI were found and heterologously expressed in E. coli and purified to investigate their application as biosurfactants. It showed that the emulsification ability and stability of three amphiphilic proteins were higher than those of widely used chemical surfactants in diesel oil, vegetable oil, and lubricating oil. In particular, the PhaQ protein studied for the first time can form a stable emulsion layer in vegetable oil at a lower concentration (50 µg/mL), which greatly reduced the amount of protein used in emulsification. This clearly demonstrated that the PHA-binding protein of HBL-AI can be well applied as an environmentally friendly biosurfactants.


Subject(s)
Bacillus , Polyhydroxyalkanoates , Polyhydroxyalkanoates/metabolism , Bacillus/genetics , Bacillus/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Membrane Proteins , Surface-Active Agents/metabolism , Escherichia coli/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
7.
Front Oncol ; 13: 1208403, 2023.
Article in English | MEDLINE | ID: mdl-37916165

ABSTRACT

Resistance to cisplatin is the main cause of treatment failure in lung adenocarcinoma. Drug-tolerant-persister (DTP) cells are responsible for intrinsic resistance, since they survive the initial cycles of treatment, representing a reservoir for the emergence of clones that display acquired resistance. Although the molecular mechanisms of DTP cells have been described, few studies have investigated the earliest molecular alterations of DTP cells in intrinsic resistance to cisplatin. In this work, we report a gene expression signature associated with the emergence of cisplatin-DTP cells in lung adenocarcinoma cell lines. After a single exposure to cisplatin, we sequenced the transcriptome of cisplatin-DTPs to identify differentially expressed genes. Bioinformatic analysis revealed that early cisplatin-DTP cells deregulate metabolic and proliferative pathways to survive the drug insult. Interaction network analysis identified three highly connected submodules in which SOCS1 had a significant participation in controlling the proliferation of cisplatin-DTP cells. Expression of the candidate genes and their corresponding protein was validated in lung adenocarcinoma cell lines. Importantly, the expression level of SOCS1 was different between CDDP-susceptible and CDDP-resistant lung adenocarcinoma cell lines. Moreover, knockdown of SOCS1 in the CDDP-resistant cell line partially promoted its susceptibility to CDDP. Finally, the clinical relevance of the candidate genes was analyzed in silico, according to the overall survival of cisplatin-treated patients from The Cancer Genome Atlas. Survival analysis showed that downregulation or upregulation of the selected genes was associated with overall survival. The results obtained indicate that these genes could be employed as predictive biomarkers or potential targets to improve the effectiveness of CDDP treatment in lung cancer patients.

8.
Microorganisms ; 11(10)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37894025

ABSTRACT

The fungicide iprodione (IPR) (3-(3,5-dichlorophenyl) N-isopropyl-2,4-dioxoimidazolidine-1-carboxamide) is a highly toxic compound. Although IPR has been restricted, it is still being applied in many places around the world, constituting an environmental risk. The biodegradation of IPR is an attractive option for reducing its residues. In this study, we isolated thirteen IPR-tolerant bacteria from a biopurification system designed to treat pesticides. A study of biodegradation using different strains was comparatively evaluated, and the best degradation rate of IPR was presented by Achromobacter sp. C1 with a half-life (T1/2) of 9 days. Based on a nano-LC-MS/MS analysis for the strains, proteins solely expressed in the IPR treatment were identified by highlighting the strain Achromobacter sp. C1, with 445 proteins primarily involved in the biosynthesis of secondary metabolites and microbial metabolism in diverse environments. Differentially expressed protein amidases were involved in six metabolic pathways. Interestingly, formamidase was inhibited while other cyclases, i.e., amidase and mandelamide hydrolase, were overexpressed, thereby minimizing the effect of IPR on the metabolism of strain C1. The dynamic changes in the protein profiles of bacteria that degrade IPR have been poorly studied; therefore, our results offer new insight into the metabolism of IPR-degrading microorganisms, with special attention paid to amidases.

9.
Microbiol Resour Announc ; 12(9): e0036123, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37638742

ABSTRACT

We present the genome of a highly copper-tolerant pink-pigmented facultative methylotroph isolated from the rhizosphere of grasses growing close to mine tailings. Based on whole-genome taxonomic analyses, this isolate was named Methylobacterium radiotolerans MLP1. Studies are in progress to infer its genome-based copper resistome.

10.
Plants (Basel) ; 12(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37299097

ABSTRACT

Herbicide-resistant weeds have been identified and recorded on every continent where croplands are available. Despite the diversity of weed communities, it is of interest how selection has led to the same consequences in distant regions. Brassica rapa is a widespread naturalized weed that is found throughout temperate North and South America, and it is a frequent weed among winter cereal crops in Argentina and in Mexico. Broadleaf weed control is based on glyphosate that is used prior to sowing and sulfonylureas or mimic auxin herbicides that are used once the weeds have already emerged. This study was aimed at determining whether a convergent phenotypic adaptation to multiple herbicides had occurred in B. rapa populations from Mexico and Argentina by comparing the herbicide sensitivity to inhibitors of the acetolactate synthase (ALS), 5-enolpyruvylshikimate-3-phosphate (EPSPS), and auxin mimics. Five B. rapa populations were analyzed from seeds collected in wheat fields in Argentina (Ar1 and Ar2) and barley fields in Mexico (Mx1, Mx2 and MxS). Mx1, Mx2, and Ar1 populations presented multiple resistance to ALS- and EPSPS-inhibitors and to auxin mimics (2,4-D, MCPA, and fluroxypyr), while the Ar2 population showed resistance only to ALS-inhibitors and glyphosate. Resistance factors ranged from 947 to 4069 for tribenuron-methyl, from 1.5 to 9.4 for 2,4-D, and from 2.7 to 42 for glyphosate. These were consistent with ALS activity, ethylene production, and shikimate accumulation analyses in response to tribenuron-methyl, 2,4-D, and glyphosate, respectively. These results fully support the evolution of the multiple- and cross-herbicide resistance to glyphosate, ALS-inhibitors, and auxinic herbicides in B. rapa populations from Mexico and Argentina.

11.
J Fungi (Basel) ; 9(6)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37367588

ABSTRACT

Biotechnologist interest in extremophile microorganisms has increased in recent years. Alkaliphilic and alkali-tolerant fungi that resist alkaline pH are among these. Alkaline environments, both terrestrial and aquatic, can be created by nature or by human activities. Aspergillus nidulans and Saccharomyces cerevisiae are the two eukaryotic organisms whose pH-dependent gene regulation has received the most study. In both biological models, the PacC transcription factor activates the Pal/Rim pathway through two successive proteolytic mechanisms. PacC is a repressor of acid-expressed genes and an activator of alkaline-expressed genes when it is in an active state. It appears, however, that these are not the only mechanisms associated with pH adaptations in alkali-tolerant fungi. These fungi produce enzymes that are resistant to harsh conditions, i.e., alkaline pH, and can be used in technological processes, such as in the textile, paper, detergent, food, pharmaceutical, and leather tanning industries, as well as in bioremediation of pollutants. Consequently, it is essential to understand how these fungi maintain intracellular homeostasis and the signaling pathways that activate the physiological mechanisms of alkali resistance in fungi.

12.
Enzyme Microb Technol ; 163: 110155, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36399934

ABSTRACT

ß-glucosidases (E.C. 3.2.1.21) are enzymes that hydrolyze ß-1,4-glycosidic bonds from non-reducing terminal residues in ß-D-glucosides, with the release of glucose. ß-glucosidases currently used for the saccharification of lignocellulosic biomass have low efficiency in hydrolyzing cellobiose and are inhibited by glucose, contrary to what would be desirable. In this work, we engineered Pichia pastoris strains to produce the ß-glucosidase Glu1B from the termite Coptotermes formosanus, and biochemically characterized the recombinant enzyme. After 36 h of methanol induction in shake flasks, the P. pastoris KM71BGlu strain produced and secreted 4.1 U/mL (approx. 26 mg/L) of N-glycosylated ß-glucosidase Glu1B. The recombinant product had an optimum pH of 5.0, optimum temperature of 50 °C, residual activity at 40 °C higher than 80 %, specific activity toward cellobiose of 431-597 U/mg protein, and a Ki for glucose of 166 mM. The protein structure was stabilized by Mn2+ and glycerol. The high specific activity of the recombinant ß-glucosidase Glu1B was correlated with the presence of specific residues in the glycone (Gln455) and aglycone (Thr193 and Hys252) binding sites, along with linker residues (Leu192, Ile251, and Phe333) between residues of these two sites. Moreover, the resistance to inhibition by glucose was correlated with the presence of specific gatekeeper residues in the active site (Met204, Gln360, Ala368, Ser369, Ser370, Leu450, and Arg451). Based on its biochemical properties and the possibility of its production in the P. pastoris expression system, the ß-glucosidase produced and described in this work could be suitable as a supplement in the enzymatic hydrolysis of cellulose for saccharification of lignocellulosic biomass.


Subject(s)
Isoptera , beta-Glucosidase , Animals , beta-Glucosidase/chemistry , Cellobiose/metabolism , Isoptera/metabolism , Pichia/metabolism , Substrate Specificity , Kinetics , Glucose/metabolism
13.
Sci Total Environ ; 865: 161091, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36566866

ABSTRACT

Unsustainable agriculture is producing a great socio-ecological transformation in Latin America because it has expanded into areas occupied by native forests. Glyphosate is the most widely used herbicide, with severe ecotoxicological effects on non-target organisms. The aim of this study was to determine the effects of glyphosate on seedlings of 24 non-target herbaceous and non-herbaceous plant species present in forest relicts of Argentine Chaco. The effects of a gradient of glyphosate doses (525, 1050, 2100, 4200, and 8400 g ai/ha) were measured in seedlings of each species under greenhouse conditions. Seedlings were grown from seeds collected from native forest fragments of different sizes (assuming three different degrees of historical exposure to glyphosate in the landscape). Doses were applied at different stages of seedling development (five- and ten-weeks after emergence), and phytotoxicity, growth reduction, and sensitivity were measured. Glyphosate produced lethal or sublethal effects in all 24 species, some of which were very sensitive (>60 % of the species presented strong to severe growth reduction with » of the dose used on crops). The greatest toxicological effects were related to early stage of development, herbaceous species, and low historical exposure to glyphosate. According to the species sensitivity distribution, the drift-dose to protect 95 % of the plant species that occur in larger forest fragments should not exceed 5 % of the dose commonly used on crops. These results suggest that the current weed management linked to glyphosate-resistant crops could lead to a gradual loss of biodiversity in the landscape. Concurrently, selection of glyphosate-tolerant biotypes in some non-target species could represent a very problematic cycle for the current model of industrial agriculture. Some alternatives for weed control are proposed.


Subject(s)
Herbicides , Herbicides/toxicity , Glycine/toxicity , Weed Control , Seedlings , Crops, Agricultural , Glyphosate
14.
Braz. J. Biol. ; 83: 1-7, 2023. ilus, graf, tab
Article in English | VETINDEX | ID: vti-765421

ABSTRACT

As an important enzyme, xylanase is widely used in the food, pulp, and textile industry. Different applications of xylanase warrant specific conditions including temperature and pH. This study aimed to carry out sodium alginate beads as carrier to immobilize previous reported mutated xylanase from Neocallimastix patriciarum which expressed in E. coli, the activity of immobilization of mutated xylanase was elevated about 4% at pH 6 and 13% at 62 °C. Moreover, the immobilized mutated xylanase retained a greater proportion of its activity than the wide type in thermostability. These properties suggested that the immobilization of mutated xylanase has potential to apply in biobleaching industry.(AU)


Como importante enzima, a xilanase é amplamente utilizada na indústria alimentícia, de celulose e têxtil. Diferentes aplicações de xilanase garantem condições específicas, incluindo temperatura e pH. Este estudo teve como objetivo realizar grânulos de alginato de sódio como carreador para imobilizar xilanase mutada relatada anteriormente de Neocallimastix patriciarum que expressa em E. coli, a atividade de imobilização da xilanase mutada foi elevada em cerca de 4% em pH 6 e 13% a 62 °C. Além disso, a xilanase mutada imobilizada reteve uma proporção maior de sua atividade do que o tipo amplo em termoestabilidade. Essas propriedades sugerem que a imobilização da xilanase mutada tem potencial para aplicação na indústria de biobranqueamento.(AU)


Subject(s)
Neocallimastix , Alginates/pharmacokinetics , Xylans/analysis
15.
Braz. j. biol ; 832023.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469060

ABSTRACT

Abstract As an important enzyme, xylanase is widely used in the food, pulp, and textile industry. Different applications of xylanase warrant specific conditions including temperature and pH. This study aimed to carry out sodium alginate beads as carrier to immobilize previous reported mutated xylanase from Neocallimastix patriciarum which expressed in E. coli, the activity of immobilization of mutated xylanase was elevated about 4% at pH 6 and 13% at 62 °C. Moreover, the immobilized mutated xylanase retained a greater proportion of its activity than the wide type in thermostability. These properties suggested that the immobilization of mutated xylanase has potential to apply in biobleaching industry.


Resumo Como importante enzima, a xilanase é amplamente utilizada na indústria alimentícia, de celulose e têxtil. Diferentes aplicações de xilanase garantem condições específicas, incluindo temperatura e pH. Este estudo teve como objetivo realizar grânulos de alginato de sódio como carreador para imobilizar xilanase mutada relatada anteriormente de Neocallimastix patriciarum que expressa em E. coli, a atividade de imobilização da xilanase mutada foi elevada em cerca de 4% em pH 6 e 13% a 62 °C. Além disso, a xilanase mutada imobilizada reteve uma proporção maior de sua atividade do que o tipo amplo em termoestabilidade. Essas propriedades sugerem que a imobilização da xilanase mutada tem potencial para aplicação na indústria de biobranqueamento.

16.
Braz. j. biol ; 83: e243629, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1285611

ABSTRACT

Abstract As an important enzyme, xylanase is widely used in the food, pulp, and textile industry. Different applications of xylanase warrant specific conditions including temperature and pH. This study aimed to carry out sodium alginate beads as carrier to immobilize previous reported mutated xylanase from Neocallimastix patriciarum which expressed in E. coli, the activity of immobilization of mutated xylanase was elevated about 4% at pH 6 and 13% at 62 °C. Moreover, the immobilized mutated xylanase retained a greater proportion of its activity than the wide type in thermostability. These properties suggested that the immobilization of mutated xylanase has potential to apply in biobleaching industry.


Resumo Como importante enzima, a xilanase é amplamente utilizada na indústria alimentícia, de celulose e têxtil. Diferentes aplicações de xilanase garantem condições específicas, incluindo temperatura e pH. Este estudo teve como objetivo realizar grânulos de alginato de sódio como carreador para imobilizar xilanase mutada relatada anteriormente de Neocallimastix patriciarum que expressa em E. coli, a atividade de imobilização da xilanase mutada foi elevada em cerca de 4% em pH 6 e 13% a 62 °C. Além disso, a xilanase mutada imobilizada reteve uma proporção maior de sua atividade do que o tipo amplo em termoestabilidade. Essas propriedades sugerem que a imobilização da xilanase mutada tem potencial para aplicação na indústria de biobranqueamento.


Subject(s)
Neocallimastix , Temperature , Escherichia coli/genetics
17.
Braz. j. biol ; 83: 1-7, 2023. ilus, graf, tab
Article in English | LILACS, VETINDEX | ID: biblio-1468844

ABSTRACT

As an important enzyme, xylanase is widely used in the food, pulp, and textile industry. Different applications of xylanase warrant specific conditions including temperature and pH. This study aimed to carry out sodium alginate beads as carrier to immobilize previous reported mutated xylanase from Neocallimastix patriciarum which expressed in E. coli, the activity of immobilization of mutated xylanase was elevated about 4% at pH 6 and 13% at 62 °C. Moreover, the immobilized mutated xylanase retained a greater proportion of its activity than the wide type in thermostability. These properties suggested that the immobilization of mutated xylanase has potential to apply in biobleaching industry.


Como importante enzima, a xilanase é amplamente utilizada na indústria alimentícia, de celulose e têxtil. Diferentes aplicações de xilanase garantem condições específicas, incluindo temperatura e pH. Este estudo teve como objetivo realizar grânulos de alginato de sódio como carreador para imobilizar xilanase mutada relatada anteriormente de Neocallimastix patriciarum que expressa em E. coli, a atividade de imobilização da xilanase mutada foi elevada em cerca de 4% em pH 6 e 13% a 62 °C. Além disso, a xilanase mutada imobilizada reteve uma proporção maior de sua atividade do que o tipo amplo em termoestabilidade. Essas propriedades sugerem que a imobilização da xilanase mutada tem potencial para aplicação na indústria de biobranqueamento.


Subject(s)
Alginates/pharmacokinetics , Neocallimastix , Xylans/analysis
18.
GM Crops Food ; 13(1): 119-125, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-35656970

ABSTRACT

Expression of the HAHB4 sunflower transcription factor confers drought tolerance to wheat event IND-ØØ412-7 (HB4® wheat). After confirming the compositional equivalence of event IND-ØØ412-7 with conventional wheat, its nutritional similarity to its non-genetically modified (GM) counterpart was analyzed by performing a 42-day broiler feeding study. Isoenergetic diets containing 40% flour from wheat event IND-ØØ412-7, its non-GM counterpart Cadenza, and a commercial variety were included in the study. Broilers' performance was analyzed by measuring feed intake, weight gain, feed conversion, and time to reach 2.8 kgs. The yield was evaluated by carcass weight, breast meat, and abdominal fat. No differences were found between wheat event IND-ØØ412-7 and the non-GM counterpart. A few significant differences were found with the commercial variety which were associated with the genetic background, different from the other two materials. These results support the nutritional equivalence of event IND-ØØ412-7 with conventional wheat.


Subject(s)
Droughts , Nutritive Value , Triticum , Animals , Chickens , Flour , Plants, Genetically Modified , Triticum/genetics
19.
Front Plant Sci ; 13: 1034788, 2022.
Article in English | MEDLINE | ID: mdl-36865946

ABSTRACT

"Memory imprint" refers to the process when prior exposure to stress prepares the plant for subsequent stress episodes. Seed priming is a strategy to change the performance of seedlings to cope with stress; however, mechanisms associated with the metabolic response are fragmentary. Salinity is one of the major abiotic stresses that affect crop production in arid and semiarid areas. Chenopodium quinoa Willd. (Amaranthaceae) is a promising crop to sustain food security and possesses a wide genetic diversity of salinity tolerance. To elucidate if the metabolic memory induced by seed halo-priming (HP) differs among contrasting saline tolerance plants, seeds of two ecotypes of Quinoa (Socaire from Atacama Salar, and BO78 from Chilean Coastal/lowlands) were treated with a saline solution and then germinated and grown under different saline conditions. The seed HP showed a more positive impact on the sensitive ecotype during germination and promoted changes in the metabolomic profile in both ecotypes, including a reduction in carbohydrates (starch) and organic acids (citric and succinic acid), and an increase in antioxidants (ascorbic acid and α-tocopherol) and related metabolites. These changes were linked to a further reduced level of oxidative markers (methionine sulfoxide and malondialdehyde), allowing improvements in the energy use in photosystem II under saline conditions in the salt-sensitive ecotype. In view of these results, we conclude that seed HP prompts a "metabolic imprint" related to ROS scavenger at the thylakoid level, improving further the physiological performance of the most sensitive ecotype.

20.
Braz. j. biol ; 82: e268350, 2022. tab, ilus
Article in English | VETINDEX | ID: biblio-1403844

ABSTRACT

Biochemical and physiological parameters, growth, and yield of field crops especially salt sensitive crops like chickpea are affected adversely by salinity in arid to semi-arid regions. To investigate the effect of different salinity levels on growth, biochemical and physiological parameters of chickpea genotypes, a pot experiment following CRD, two factor factorial design, was conducted in the glasshouse at the Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan. Ten (10) kg of soil was filled in each pot and salinity levels were maintained @ S0= 0 mM NaCl, S1= 50 mM NaCl, S2= 100 mM NaCl and S3= 150 mM by applying NaCl and 5 genotypes of chickpea (KK-2, Bhakkar-2011, Bittle-98, Punjab-2008, and CM-98) were used. At crop maturity, growth parameters, physiological, biochemical, and ionic parameters were measured using standard analysis procedures. Salinity reduced the growth and yield of all genotypes, but the rate of decrease was different among the genotypes tested. From the results, a decrease in K concentration, K/Na ratio, transpiration rate, stomatal conductance, N, and P was observed in all genotypes with the increase in salinity. An increase in salinity level increased the proline content (35.45%), crude protein (42%), H2O2 (19%), lipid peroxidation (62%), carbohydrates (23.22%), and Na+ concentration (137%). The highest level of salinity, 150 mM NaCl has exhibited the highest salinity stress in all parameters. Genotype KK-2 and Bhakkar-11 showed a lower rate of relative decrease in yield (4.5 and 12%), K+/Na+ ratio (23.34 and 11.47%), and K+ concentration (7.9 and 11%), respectively, and the lowest relative increase in Na+ accumulation (20.3 and 0.48%), @ 50 mM salinity compared to control. Genotype KK-2 and Bhakkar-11 proved better @ 50mM salinity. The findings suggest that the critical level of the salinity must be kept in mind and the salt-tolerant genotypes should be cultivated in salt affected soils.


Parâmetros bioquímicos e fisiológicos, crescimento e rendimento de culturas de campo, especialmente culturas sensíveis ao sal, como grão-de-bico, são afetados negativamente pela salinidade em regiões áridas e semiáridas. Para investigar o efeito de diferentes níveis de salinidade no crescimento, parâmetros bioquímicos e fisiológicos de genótipos de grão-de-bico, um experimento em pote seguindo CRD, delineamento fatorial de dois fatores, foi conduzido na estufa do Instituto de Biotecnologia e Engenharia Genética, Universidade de Agricultura, Peshawar, Paquistão. Dez kg de solo foram preenchidos em cada vaso e os níveis de salinidade foram mantidos @ S0 = 0 mM NaCl, S1 = 50 mM NaCl, S2 = 100 mM NaCl e S3 = 150 mM aplicando NaCl e 5 genótipos de grão-de-bico (KK-2, Bhakkar-2011, Bittle-98, Punjab-2008 e CM-98). Na maturidade da cultura, parâmetros de crescimento, parâmetros fisiológicos, bioquímicos e iônicos foram medidos usando procedimentos de análise padrão. A salinidade reduziu o crescimento e a produtividade de todos os genótipos, mas a taxa de decréscimo foi diferente entre os genótipos testados. A partir dos resultados, observou-se diminuição da concentração de K, razão K/Na, taxa de transpiração, condutância estomática, N e P em todos os genótipos com o aumento da salinidade. Um aumento no nível de salinidade aumentou o teor de prolina (35,45%), proteína bruta (42%), H2O2 (19%), peroxidação lipídica (62%), carboi- dratos (23,22%) e concentração de Na+ (137%). O nível mais alto de salinidade, 150 mM NaCl, exibiu o maior estresse de salinidade em todos os parâmetros. Os genótipos KK-2 e Bhakkar-11 apresentaram menor taxa de diminuição relativa no rendimento (4,5 e 12%), razão K+/Na+ (23,34 e 11,47%) e concentração de K+ (7,9 e 11%), respectivamente, e menor aumento relativo no acúmulo de Na+ (20,3 e 0,48%), @ 50 mM de salinidade comparado ao controle. Os genótipos KK-2 e Bhakkar-11 se mostraram melhores @ 50mM de salinidade. Os resultados sugerem que o nível crítico de salinidade deve ser mantido em mente e os genótipos tolerantes ao sal devem ser cultivados em solos afetados pelo sal.


Subject(s)
Climate Change , Cicer/growth & development , Salt Stress
SELECTION OF CITATIONS
SEARCH DETAIL