Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.691
Filter
1.
Microbiome ; 12(1): 196, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39385282

ABSTRACT

BACKGROUND: Progression of chronic lung disease may lead to the requirement for lung transplant (LTx). Despite improvements in short-term survival after LTx, chronic lung allograft dysfunction (CLAD) remains a critical challenge for long-term survival. This study investigates the molecular and microbial relationships between underlying lung disease and the development of CLAD in bronchoalveolar lavage fluid (BALF) from subjects post-LTx, which is crucial for tailoring treatment strategies specific to allograft dysfunctions. METHODS: Paired 16S rRNA gene amplicon sequencing and untargeted LC-MS/MS metabolomics were performed on 856 BALF samples collected over 10 years from LTx recipients (n = 195) with alpha-1-antitrypsin disease (AATD, n = 23), cystic fibrosis (CF, n = 47), chronic obstructive pulmonary disease (COPD, n = 78), or pulmonary fibrosis (PF, n = 47). Data were analyzed using random forest (RF) machine learning and multivariate statistics for associations with underlying disease and CLAD development. RESULTS: The BALF microbiome and metabolome after LTx differed significantly according to the underlying disease state (PERMANOVA, p = 0.001), with CF and AATD demonstrating distinct microbiome and metabolome profiles, respectively. Uniqueness in CF was mainly driven by Pseudomonas abundance and its metabolites, whereas AATD had elevated levels of phenylalanine and a lack of shared metabolites with the other underlying diseases. BALF microbiome and metabolome composition were also distinct between those who did or did not develop CLAD during the sample collection period (PERMANOVA, p = 0.001). An increase in the average abundance of Veillonella (AATD, COPD) and Streptococcus (CF, PF) was associated with CLAD development, and decreases in the abundance of phenylalanine-derivative alkaloids (CF, COPD) and glycerophosphorylcholines (CF, COPD, PF) were signatures of the CLAD metabolome. Although the relative abundance of Pseudomonas was not associated with CLAD, the abundance of its virulence metabolites, including siderophores, quorum-sensing quinolones, and phenazines, were elevated in those with CF who developed CLAD. There was a positive correlation between the abundance of these molecules and the abundance of Pseudomonas in the microbiome, but there was no correlation between their abundance and the time in which BALF samples were collected post-LTx. CONCLUSIONS: The BALF microbiome and metabolome after LTx are particularly distinct in those with underlying CF and AATD. These data reflect those who developed CLAD, with increased virulence metabolite production from Pseudomonas, an aspect of CF CLAD cases. These findings shed light on disease-specific microbial and metabolic signatures in LTx recipients, offering valuable insights into the underlying causes of allograft rejection. Video Abstract.


Subject(s)
Bronchoalveolar Lavage Fluid , Lung Transplantation , Metabolome , Microbiota , Humans , Lung Transplantation/adverse effects , Bronchoalveolar Lavage Fluid/microbiology , Bronchoalveolar Lavage Fluid/chemistry , Male , Female , Middle Aged , Adult , RNA, Ribosomal, 16S/genetics , Allografts/microbiology , Aged , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Bacteria/genetics , Lung/microbiology , Lung/metabolism , Metabolomics , Lung Diseases/microbiology , Lung Diseases/surgery , Lung Diseases/metabolism , Cystic Fibrosis/microbiology , Cystic Fibrosis/surgery , Cystic Fibrosis/metabolism , Pulmonary Disease, Chronic Obstructive/microbiology , Pulmonary Disease, Chronic Obstructive/metabolism
2.
Appl Environ Microbiol ; : e0150824, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39382293

ABSTRACT

The Gram-negative marine bacterium Vibrio anguillarum is able to cause vibriosis with hemorrhagic septicemia in many fish species, and iron acquisition is a critical step for virulence. Despite the fact that genes specific to certain processes of iron transport have been studied, the iron-regulated circuits of the V. anguillarum strains remain poorly understood. In this study, we showed that in V. anguillarum strain 775, iron could affect the expression of a number of critical metabolic pathways and virulence factors. The global iron uptake regulator VaFur is the major actor to control these processes for the bacterium to respond to different iron conditions. A VaFur binding motif was identified to distinguish directly and indirectly regulated targets. The absence of VaFur resulted in the aberrant expression of most iron acquisition determinants under rich-iron conditions. A similar regulation pattern was also observed in the transcription of genes coding for the type VI secretion system. The expression of peroxidase genes is positively controlled by VaFur to prevent iron toxicity, and the deletion of Vafur caused impaired growth in the presence of iron and H2O2. VaFur also upregulates some virulence factors under limited-iron conditions, including metalloprotease EmpA and motility, which are likely critical for the high virulence of V. anguillarum 775. The deletion of VaFur led to reduced swimming motility and decreased extracellular protease activity under limited-iron conditions, thereby leading to attenuated pathogenicity. Our study provides more evidence to better understand the VaFur regulon and its role in the pathogenesis of V. anguillarum.IMPORTANCEVibriosis, the most common disease caused by marine bacteria belonging to the genus Vibrio, leads to massive mortality of economical aquatic organisms in Asia. Iron is one of the most important trace elements, and its acquisition is a critical battle occurring between the host and the pathogen. However, excess iron is harmful to cells, so iron utilization needs to be strictly controlled to adapt to different conditions. This process is mediated by the global iron uptake regulator Fur, which acts as a repressor when iron is replete. On the other hand, free iron in the host is limited, so the reduced virulence of the Δfur mutant should not be directly caused by abnormally regulated iron uptake. The significance of this work lies in uncovering the mechanism by which the deletion of Fur causes reduced virulence in Vibrio anguillarum and identifying the critical virulence factors that function under limited-iron conditions.

3.
Chemosphere ; 366: 143458, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39366491

ABSTRACT

Reuse of municipal-treated wastewater for agricultural irrigation is becoming increasingly prevalent due to growing demand and decline in freshwater supplies. However, the microbial contamination profile, including antibiotic resistance genes (ARGs), virulence factors (VFs), and human bacterial pathogens (HBPs) in agricultural soil irrigated with municipal-treated wastewater for paddy cultivation, was unknown. Here, metagenomic analysis was applied to provide a systematic insight into the resistome, VFs and HBPs in paddy soils irrigated with municipal-treated wastewater. The obtained results revealed that the residual antibiotics in municipal-treated wastewater has an impact on the antibiotic resistome by increasing both the total number and abundance of ARGs. Furthermore, it was found that sul1 could serve as a potential risk indicator for assessing ARG contamination. VFs, core HBP abundance, and dangerous pathogens remain unaffected by municipal-treated wastewater irrigation for paddy. The good coexistence patterns of ARGs-HBPs and ARGs-VFs demonstrated the presence of resistant pathogenic bacteria. The network analysis revealed that ARGs-bearing Legionella pneumophila, Mycobacterium marinum, Bordetella pertussis, Staphylococcus aureus, and Pseudomonas aeruginosa might be ranked as high-risk HBPs. Additionally, our investigation also demonstrated that reuse of municipal-treated wastewater for agricultural irrigation had no detrimental effects on rice plant growth and grain quality. This study was the first to investigate the response of VFs and HBPs in paddy soil under long-term municipal-treated wastewater irrigation. The obtained results provide a scientific basis for the safe application of municipal-treated wastewater.

4.
BMC Microbiol ; 24(1): 391, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375633

ABSTRACT

BACKGROUND: This study investigates the safety evaluation of enterocin-producing 11 E. mundtii and two E. faecium strains previously isolated from small livestock colostrums. Enterococcus species do not possess Generally Recognized as Safe (GRAS) status. Hence, it is critical to scrutinize enterococci's antibiotic resistance, virulence characteristics, and biogenic amine production capabilities in order to assess their safety before using them as starter or adjunct cultures. RESULTS: Enterococcus strains showed susceptibility to medically significant antibiotics. Multiple-drug resistance (MDR) was found in only E. faecium HC121.4, and its multiple antibiotic resistance (MAR) index was detected to be 0.22. The tetL and aph(3')-IIIa were the most commonly found antibiotic resistance genes in the strains. However, E. mundtii strains HC56.3, HC73.1, HC147.1, and E. faecium strain HC121.4 were detected to lack any of the antibiotic resistance genes examined in this study. Only E. mundtii HC166.3 showed hemolytic activity, while none of the strains engage in gelatinase activity. The strains were identified to have virulence factor genes with a low rate. None of the virulence factor genes could be detected in E. mundtii HC26.1, HC56.3, HC73.1, HC165.3, HC166.8, and E. faecium HC121.4. The E. mundtii HC73.2 strain displayed the highest presence of virulence factor genes, namely gelE, efaAfs, cpd, and ccf. Similarly, the E. mundtii HC112.1 strain showed a significant presence of genes efaAfm, ccf, and acm. There was no decarboxylation of histidine, ornithine, or lysine seen in any of the strains. Nevertheless, E. faecium HC121.4 and HC161.1 strains could decarboxylate tyrosine, but E. mundtii HC26.1, HC56.3, HC73.1, HC73.2, HC112.1, HC147.1, HC155.2, HC165.3, HC166.3, HC166.5, and HC166.8 strains only showed a limited capacity for tyrosine decarboxylation. None of the strains possessed the hdc, odc, or ldc genes, but all of them had the tdc gene. CONCLUSION: The E. mundtii HC56.3 and HC73.1 strains were deemed appropriate for utilization in food production. Using the remaining 11 strains as live cultures in food production activities could pose a possible risk to consumer health.


Subject(s)
Anti-Bacterial Agents , Colostrum , Enterococcus , Goats , Microbial Sensitivity Tests , Animals , Sheep , Enterococcus/genetics , Enterococcus/isolation & purification , Enterococcus/metabolism , Enterococcus/pathogenicity , Enterococcus/classification , Enterococcus/drug effects , Anti-Bacterial Agents/pharmacology , Colostrum/microbiology , Bridged-Ring Compounds/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Virulence Factors/genetics , Enterococcus faecium/genetics , Enterococcus faecium/isolation & purification , Enterococcus faecium/metabolism , Enterococcus faecium/pathogenicity , Enterococcus faecium/drug effects , Virulence/genetics
5.
Sci Rep ; 14(1): 23195, 2024 10 05.
Article in English | MEDLINE | ID: mdl-39369124

ABSTRACT

Colorectal cancer (CRC) is a severe gastrointestinal cancer and a leading cause of cancer-related deaths in Ghana. The potential role of gut Enterobacteriaceae in the increasing incidence of CRC in Ghana is yet to be thoroughly investigated. In this study, Enterobacteriaceae from CRC patients and healthy control participants were analyzed by whole genome sequencing to identify genomic features that are associated with CRC. Socio-demographic data showed a significant association between age and alcohol consumption and CRC. Escherichia coli was the most abundant Enterobacteriaceae isolated from the study participants and they were predominantly intestinal commensals. Escherichia coli isolates belonging to phylogroup D encoded the highest number of virulence genes. The agn43 and int genes were widespread in Escherichia coli isolates from the CRC patients. Multilocus sequence types of potentially pathogenic Escherichia coli from the CRC patients also encoded genes involved in aggregation, adherence and biofilm formation. The ampC2 and ampH antimicrobial resistance genes were also widespread in the genome of the Escherichia coli isolates. This study highlights the virulence tendencies of Escherichia coli from CRC patients and their ability to transfer virulence determinants to other Enterobacteriaceae residing in the gut.


Subject(s)
Colorectal Neoplasms , Enterobacteriaceae , Tertiary Care Centers , Humans , Ghana/epidemiology , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/genetics , Female , Male , Middle Aged , Case-Control Studies , Enterobacteriaceae/genetics , Enterobacteriaceae/pathogenicity , Enterobacteriaceae/isolation & purification , Aged , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli/pathogenicity , Whole Genome Sequencing , Genome, Bacterial , Adult , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/epidemiology , Virulence Factors/genetics , Genomics/methods
6.
Front Cell Infect Microbiol ; 14: 1465719, 2024.
Article in English | MEDLINE | ID: mdl-39372500

ABSTRACT

Within host environments, iron availability is limited, which instigates competition for this essential trace element. In response, bacteria produce siderophores, secondary metabolites that scavenge iron and deliver it to bacterial cells via specific receptors. This role in iron acquisition contributes significantly to bacterial pathogenesis, thereby designating siderophores as virulence factors. While prior research has primarily focused on unravelling the molecular mechanisms underlying siderophore biosynthesis, uptake, and iron sequestration, recent investigations have unveiled additional non-iron chelating functions of siderophores. These emerging roles are being consistently shown to support bacterial pathogenesis. In this review, we present the current understanding of siderophores in various roles: acquiring non-iron metal ions, supporting tolerance to metal-induced and reactive oxygen species (ROS)-induced stresses, mediating siderophore signalling, inducing ROS formation, and functioning in class IIb microcins. By integrating recent findings, this review aims to provide an overview of the diverse roles of siderophores in bacterial pathogenesis.


Subject(s)
Bacteria , Iron , Siderophores , Siderophores/metabolism , Bacteria/metabolism , Bacteria/pathogenicity , Iron/metabolism , Humans , Virulence Factors/metabolism , Reactive Oxygen Species/metabolism , Virulence , Signal Transduction
7.
J Clin Microbiol ; : e0037424, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377593

ABSTRACT

Streptococcus suis negatively impacts swine health, posing diagnostic and preventative challenges. S. suis can induce disease and also quietly reside on mucosal surfaces. The limited use of diagnostic tools to identify disease-associated strains and rule out differential diagnoses, alongside the complex ecology of S. suis, poses significant challenges in comprehending this important pathogen and defining pathotypes. This study evaluated 2,379 S. suis central nervous system (CNS) isolates from diagnostic submissions between 2015 and 2019. Isolates originating from submissions with histologic evidence of CNS infection (n = 1,032) were further characterized by standard and advanced diagnostic techniques. We identified 29 S. suis serotypes and 4 reclassified serotypes as putative causes of CNS disease. Among these, serotypes 1 and 7 emerged as the predominant putative causes of CNS infection (32% of submissions). Furthermore, 51 sequence types (STs), of which 15 were novel, were detected with ST1 predominating. Through whole-genome sequencing of 145 isolates, we observed that five commonly used virulence-associated genes (VAGs; epf, mrp, sly, ofs, and srtF) were not present in most disease-associated isolates, and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) yielded false-positive results in 7% of isolates. These data indicate that (i) clinical signs and site of isolation alone are insufficient for defining a pathotype, (ii) S. suis serotypes and STs associated with CNS infection are more diverse than previously reported, (iii) MALDI-TOF MS may need to be supplemented with additional diagnostic tools for precise S. suis identification, and (iv) VAGs remain an unreliable means for identifying isolates associated with CNS disease.IMPORTANCEStreptococcus suis is an important and complex systemic bacterial pathogen of swine. Characterization of S. suis strains originating from pigs with histologic confirmation of neurologic disease is limited. Review of swine diagnostic submissions revealed that fewer than half of cases from which S. suis was isolated from the brain had histologic evidence of neurologic disease. This finding demonstrates that clinical signs and site of isolation alone are not sufficient for identifying a neurologic disease-associated strain. Characterization of strains originating from cases with evidence of disease using classic and advanced diagnostic techniques revealed that neurologic disease-associated strains are diverse and commonly lack genes previously associated with virulence.

8.
mSphere ; : e0068624, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365057

ABSTRACT

Due to their frequent coexistence in many polymicrobial infections, including in patients with cystic fibrosis or burn/chronic wounds, many studies have investigated the mechanistic details of the interaction between the opportunistic pathogens Pseudomonas aeruginosa and Staphylococcus aureus. P. aeruginosa rapidly outcompetes S. aureus under in vitro cocultivation conditions, which is mediated by several of P. aeruginosa's virulence factors. Here, we report that polyphosphate (polyP), an efficient stress defense system and virulence factor in P. aeruginosa, plays a role in the pathogen's ability to inhibit and kill S. aureus in a contact-independent manner. We show that P. aeruginosa cells characterized by low polyP levels are less detrimental to S. aureus growth and survival while the Gram-positive pathogen is significantly more compromised by the presence of P. aeruginosa cells that produce high levels of polyP. The polyP-dependent phenotype of P. aeruginosa-mediated killing of S. aureus could at least in part be direct, as polyP was detected in the spent media and causes significant damage to the S. aureus cell envelope. However, more likely is that polyP's effects are indirect through modulating the production of one of P. aeruginosa's virulence factors, pyocyanin. We show that pyocyanin production in P. aeruginosa occurs polyP-dependently and harms S. aureus through membrane damage and potentially the generation of reactive oxygen species, resulting in the increased expression of antioxidant enzymes. In summary, our study adds a new component to the list of biomolecules that the Gram-negative pathogen P. aeruginosa generates to compete with S. aureus for resources.IMPORTANCEHow do interactions between microorganisms shape the course of polymicrobial infections? Previous studies have provided evidence that the two opportunistic pathogens Pseudomonas aeruginosa and Staphylococcus aureus generate molecules that modulate their interaction with potentially significant impact on disease outcomes. Our study identified the biopolymer polyphosphate (polyP) as a new effector molecule that impacts P. aeruginosa's interaction with S. aureus. We show that P. aeruginosa kills S. aureus in a polyP-dependent manner, which occurs primarily through the polyP-dependent production of the P. aeruginosa virulence factor pyocyanin. Our findings add a new role for polyP to an already extensive list of functions. A more in-depth understanding of how polyP influences interspecies interactions is critical, as targeting polyP synthesis in bacteria such as P. aeruginosa may have a significant impact on other microorganisms and potentially result in dynamic changes in the microbial composition.

9.
Microb Pathog ; 196: 106995, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39368563

ABSTRACT

Vibrio cholerae is an inherent inhabitant of aquatic ecosystems. The Indian state of West Bengal, especially the Gangetic delta region is the highest cholera affected region and is considered as the hub of Asiatic cholera. V. cholerae were isolated from publicly accessible wastewater of Midnapore, West Bengal, India. Serotyping determined all isolates to be of non-O1/non-O139 serogroups. Moderate biofilm-forming abilities were noticed in most of the isolates (74.7 %) while, high biofilm formation was recorded for only 6.3 % isolates and 19 % of isolates exhibited low/non-biofilm-forming abilities. PCR-based screening of crucial diguanylate cyclases (DGCs) involved in cyclic-di-GMP-mediated biofilm signaling was performed. cdgH and cdgM were the most abundant DGCs among 93.7 % and 91.5 % of isolates, respectively. Other important DGCs, i.e., cdgK, cdgA, cdgL, and vpvC were present in 84 %, 75.5 %, 72 % and 68 % of isolates, respectively. Besides, the non-O1/non-O139 isolates were screened for the occurrence of virulence factor encoding genes. Moreover, among these non-O1/non-O139 isolates, two strains (3.17 %) harbored both ctxA and ctxB genes, which encode the cholera toxin associated with epidemic cholera. ompU was the most prevalent virulence factor, present in 24.8 % of isolates. Other virulence factors like, zot and st were found in 4.7 % and 9.5 % of isolates. Genes encoding tcp and ace were found to be PCR-negative for the isolates. Additionally, crucial virulence factor regulators, toxT, toxR and hapR were found to be PCR-positive in all the isolates. Antibiotic resistance patterns displayed further vulnerabilities with decreased sensitivity towards commonly used antibiotics with multiple antibiotic resistance index ranging between 0.37 and 0.62. The presence of cholera toxin-encoding multi-drug resistant (MDR) V. cholerae strains in environmental settings is alarming. High occurrence of DGCs are considered to encourage further investigations to use them as alternative therapeutic targets against MDR cholera pathogen due to their unique presence in bacterial systems.

10.
Microbes Infect ; : 105429, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39368610

ABSTRACT

The increase of antibiotic resistance calls for alternatives to control Helicobacter pylori, a Gram-negative bacterium associated with various gastric diseases. Bacteriophages (phages) can be highly effective in the treatment of pathogenic bacteria. Here, we develop a method to identify prophages in H. pylori genomes aiming at a future use in therapy. A PCR-based technique tested five primer pairs on 74 clinical H. pylori strains. With the PCR screening, 14 strains most likely to carry prophages were fully sequenced. After that, a more holistic approach was taken by studying the complete genome of the strains. The work allowed us to identify 12 intact prophage sequences, which were then characterized concerning their morphology, virulence, and antibiotic-resistance genes. To understand the variability of prophages, a phylogenetic analysis using the sequences of all H. pylori phages reported to date was performed. Using a PCR-based technique we increased the efficiency of identifying complete prophages to 54.1 %. Genes with homology to potential virulence factors were identified in some new prophages. Phylogenetic analysis revealed a close relationship among H. pylori-phages, although there are phages with different geographical origins. This study provides a deeper understanding of H. pylori-phages, providing valuable insights into their potential use in therapy.

11.
BMC Microbiol ; 24(1): 386, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39358682

ABSTRACT

BACKGROUND: Stutzerimonas nitrititolerans (S. nitrititolerans) is a rare human pathogenic bacterium and has been inadequately explored at the genomic level. Here, we report the first case of carbapenem-resistant S. nitrititolerans isolated from the peritoneal dialysis fluid of a patient with chronic renal failure. This study analyzed the genomic features, antimicrobial resistance, and virulence factors of the isolated strain through whole genome sequencing (WGS). METHODS: The bacterial isolate from the peritoneal dialysis fluid was named PDI170223, and preliminary identification was conducted through Matrix-assisted laser desorption ionization/time of flight mass spectrometry (MALDI-TOF MS). WGS of the strain PDI170223 was performed using the Illumina platform, and a phylogenetic tree was constructed based on the 16S rRNA gene sequences. Antimicrobial susceptibility test (AST) was conducted using the TDR-200B2 automatic bacteria identification/drug sensitivity tester. RESULTS: S. nitrititolerans may emerge as a human pathogen due to its numerous virulence genes, including those encoding toxins, and those involved in flagellum and biofilm formation. The AST results revealed that the strain is multidrug- and carbapenem-resistant. The antimicrobial resistance genes of S. nitrititolerans are complex and diverse, including efflux pump genes and ß⁃lactam resistance genes. CONCLUSION: The analysis of virulence factors and antimicrobial resistance of S. nitrititolerans provides clinical insight into the pathogenicity and potential risks of this bacterium. It is crucial to explore the mechanisms through which S. nitrititolerans causes diseases and maintains its antimicrobial resistance, thereby contributing to development of effective treatment and prevention strategies.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Microbial Sensitivity Tests , Phylogeny , RNA, Ribosomal, 16S , Virulence Factors , Whole Genome Sequencing , Humans , Virulence Factors/genetics , Carbapenems/pharmacology , Anti-Bacterial Agents/pharmacology , RNA, Ribosomal, 16S/genetics , Genome, Bacterial , Drug Resistance, Bacterial/genetics , Genomics
12.
Biomed Pharmacother ; 180: 117498, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39353317

ABSTRACT

Staphylococcus aureus (S. aureus) infection is the most prevalent and resistant bacterial infection, posing a worldwide health risk. Compared with healthy people, diabetes patients with weak immune function and abnormal metabolism are more vulnerable to bacterial infection, which aggravates the intensity of infection and causes a series of common and dangerous complications, such as diabetes foot ulcer (DFU). Due to metabolic abnormalities of diabetic patients, S. aureus on the skin surface of DFU transitions from a commensal to an invasive infection. During this process, S. aureus resists a series of unfavorable conditions for bacterial growth by altering energy utilization and metabolic patterns, and secretes various virulence factors, causing persistent infection. With the emergence of multiple super-resistant bacteria, antibiotic treatment is no longer the only treatment option, and developing new drugs and therapies is urgent. Regulating the metabolic signaling pathway of S. aureus plays a decisive role in regulating its virulence factors and impacts adjuvant therapy for DFU. This article focuses on studying the impact of regulating metabolic signals on the virulence of S. aureus from a metabolism perspective. It provides an outlook on the future direction of the novel development of antimicrobial therapy.

14.
mLife ; 3(3): 445-458, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39359676

ABSTRACT

Quorum sensing (QS) inhibition has emerged as a promising target for directed drug design, providing an appealing strategy for developing antimicrobials, particularly against infections caused by drug-resistant pathogens. In this study, we designed and synthesized a total of 33 ß-nitrostyrene derivatives using 1-nitro-2-phenylethane (NPe) as the lead compound, to target the facultative anaerobic bacterial pathogen Serratia marcescens. The QS-inhibitory effects of these compounds were evaluated using S. marcescens NJ01 and the reporter strain Chromobacterium violaceum CV026. Among the 33 new ß-nitrostyrene derivatives, (E)-1-methyl-4-(2-nitrovinyl)benzene (m-NPe, compound 28) was proven to be a potent inhibitor that reduced biofilm formation of S. marcescens NJ01 by 79%. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) results revealed that treatment with m-NPe (50 µg/ml) not only enhanced the susceptibility of the formed biofilms but also disrupted the architecture of biofilms by 84%. m-NPe (50 µg/ml) decreased virulence factors in S. marcescens NJ01, reducing the activity of protease, prodigiosin, and extracellular polysaccharide (EPS) by 36%, 72%, and 52%, respectively. In S. marcescens 4547, the activities of hemolysin and EPS were reduced by 28% and 40%, respectively, outperforming the positive control, vanillic acid (VAN). The study also found that the expression levels of QS- and biofilm-related genes (flhD, fimA, fimC, sodB, bsmB, pigA, pigC, and shlA) were downregulated by 1.21- to 2.32-fold. Molecular dynamics analysis showed that m-NPe could bind stably to SmaR, RhlI, RhlR, LasR, and CviR proteins in a 0.1 M sodium chloride solution. Importantly, a microscale thermophoresis (MST) test revealed that SmaR could be a target protein for the screening of a quorum sensing inhibitor (QSI) against S. marcescens. Overall, this study highlights the efficacy of m-NPe in suppressing the virulence factors of S. marcescens, identifying it as a new potential QSI and antibiofilm agent capable of restoring or improving antimicrobial drug sensitivity.

15.
Antimicrob Agents Chemother ; : e0060224, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365038

ABSTRACT

Carbapenemase-producing Klebsiella pneumoniae (CP-Kp) isolates are a public health concern as they can cause severe hospital-acquired infections that are difficult to treat. It has recently been shown that CP-Kp can take up virulence factors from hypervirulent K. pneumoniae lineages. In this study, 109 clinical CP-Kp isolates from the University Hospital Cologne were examined for the presence of acquired virulence factors using whole-genome sequencing and phenotypic tests, and results were linked to clinical data. The virulence factor iuc was present in 18/109 of the CP-Kp isolates. Other acquired virulence factors, such as ybt, cbt, iro, rmpA/rmpA2, peg-344, and hypervirulence-associated capsule types were detected in various combinations among these isolates. The iuc-positive isolates produced OXA-232 (n = 7), OXA-48 (n = 6), OXA-48+NDM (n = 3), NDM, and KPC (each n = 1), and 7/18 isolates were resistant to ceftazidime-avibactam, colistin, and/or cefiderocol. Four isolates carried hybrid plasmids that harbored acquired virulence factors alongside the carbapenemase genes blaNDM-1/5 or blaOXA-48. In 15/18 patients, iuc-positive CP-Kp were isolated from a clinically manifest infection site. Among these, four patients had osteomyelitis, and four patients died from pneumonia with OXA-232-producing ST231 isolates, three of them as part of an outbreak. In conclusion, acquired virulence factors are frequently detected in various combinations in carbapenemase-producing K. pneumoniae isolates in Germany, warranting continuous monitoring of infections caused by these strains.

16.
Heliyon ; 10(18): e37205, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39309771

ABSTRACT

Vibrio cholerae is a major human pathogen that can cause life-threatening acute diarrhea. V. cholerae are classified according to O-antigen polysaccharide outer membrane properties, where the serotypes O1 and O139 are strains that cause pandemics and epidemics while non-O1/non-O139 usually cause mild disease. The dynamic evolution of V. cholerae involves acquisition of new virulence factors through horizontal gene transfer and formerly nontoxigenic serogroups are increasingly being reported to cause severe forms of human disease. In this study we have serotyped one isolate (ST588-CPH) of imported V. cholerae from Vietnam to Denmark and performed whole genome sequencing to identify known virulence genes and furthermore studied the pattern of virulence in closely related pathogenic strains of V. cholerae. ST558-CPH was found to be a non-O1/non-O139 strain. Initial analysis from the whole genome sequencing gave a 96,6 % match to the O139-specific wbfZ gene, but in a second analysis with a higher identification threshold, the wbfZ gene was absent. We suggest a "de novo" display of a database misannotation, which explains the conflicting results. The MLST analysis revealed that the isolate belongs to the nontoxigenic non-O1/non-O139 sequence type ST558. ST558 has recently been reported as a sequence type forming a cluster of ST's that should be monitored, as it has shown to have virulence causing moderate to severe illness. Our analysis of virulence genes identified MakA, a recently discovered toxin, which seems to be generally present in both toxigenic and nontoxigenic strains.

17.
J Hosp Infect ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39278267

ABSTRACT

BACKGROUND: Ventilator-associated pneumonia (VAP) is the main healthcare-associated infection in the intensive care units with Staphylococcus aureus as the first pathogen in early VAP. OBJECTIVES: Primary objective was to compare, using whole genome sequencing (WGS), consecutive S. aureus isolates from lower respiratory samples of mechanically ventilated patients for identification of potential cross-transmissions. Secondary objective was to determine a potential link between S. aureus WGS data and patients with S. aureus early VAP. STUDY DESIGN: and Methods: All MV patients with a documentation of respiratory S. aureus isolates were included over a two-years period. WGS allowed typing, comparative genomic and phylogenic analyses, as well as analyses of antibiotic resistance genes and virulence genes. Virulence genes were compared between patients who developed respiratory infectious event and those who did not. RESULTS: A total of 172 S. aureus isolates from 167 patients were sequenced. WGS revealed that the S. aureus population was polyclonal with only two potential healthcare cross-transmissions, each involving two isolates (2.3%). A very low resistance rate was observed with a strong genotypic/phenotypic association, and with a virulence profile highly dependent on the sequence type. No significant correlation was observed between VAP and virulence profile. CONCLUSION: This study on consecutive respiratory S. aureus isolates of MV patients revealed a very low level of cross-transmission. No association was observed between S. aureus WGS data and VAP occurrence.

18.
J Appl Microbiol ; 135(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39277782

ABSTRACT

AIMS: Aeromonas hydrophila, a Gram-negative bacterium, is ubiquitously found in many aquatic habitats, causing septicemia in humans and fishes. Attributed to abuse or misuse of conventional antimicrobial drug usage, antimicrobial resistance is at an alarming rise. There is an available alternative strategy to bacterial resistance to antimicrobials, which is inhibition of virulence and pathogenicity employing quorum sensing inhibitors (QSIs). Hence, actinomycin D's effectiveness against A. hydrophila SHAe 115 as a QSI was investigated in decreasing virulence factors and preventing biofilm formation. METHODS AND RESULTS: Actinomycin D, belongs to the QSI combating Pseudomonas aeruginosa PAO1 originally isolated from an entophytic actinomycete (Streptomyces cyaneochromogenes RC1) in Areca catechu L. In the present work, further investigations were carried out to assess the effect of actinomycin D at subminimal inhibitory concentrations (sub-MICs), QS-regulated virulence factors, and biofilm inhibition strategies. Intrinsic properties encompassing inhibition of the production of protease and hemolysin and subsequent activities on biofilm formation and eradication of mature biofilm were established along with weakened swimming and swarming motilities in A. hydrophila SHAe 115. In the Tenebrio molitor survival assay, actinomycin D effectively reduced the virulence and pathogenicity of A. hydrophila, resulting in elimination of mortality. However, the hydrolysate of actinomycin D, 2-hydroxy-4,6-dimethyl-3-oxo-3H-phenoxazine-1,9-dicarboxylic acid (HDPD), had lost the QSI activity in A. hydrophila. CONCLUSIONS: Actinomycin D was proved as a viable QSI in lessening A. hydrophila's the virulence and pathogenicity, as evident from our research findings.


Subject(s)
Aeromonas hydrophila , Biofilms , Dactinomycin , Quorum Sensing , Virulence Factors , Biofilms/drug effects , Biofilms/growth & development , Aeromonas hydrophila/drug effects , Aeromonas hydrophila/pathogenicity , Aeromonas hydrophila/physiology , Virulence Factors/metabolism , Dactinomycin/pharmacology , Quorum Sensing/drug effects , Virulence/drug effects , Anti-Bacterial Agents/pharmacology , Animals , Microbial Sensitivity Tests
19.
J Invest Dermatol ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39218143

ABSTRACT

Increasing resistance of dermatophytes against antifungals creates global public health problems, rendering essential a better understanding of virulence mechanisms and factors determining host specificity of dermatophytes. Because dermatophytes switch from a saprophytic to a parasitic lifestyle by reprogramming gene expression, reliable experimental models are needed to investigate the pathogenesis of dermatophytosis. In this study, a relevant mouse model of Trichophyton benhamiae dermatophytosis was assessed, together with a model based on reconstructed human epidermis, allowing their respective validation regarding fungal gene expressed during infection. The use of a standardized inoculum induced a natural-like superficial infection in mice. The severity and persistence of lesions enabled the assessment of infection markers, including mouse-specific proinflammatory molecules and fungal genes previously reported as potential virulence factors. Upregulated expression of fungal genes, including those encoding subtilisins, in infected reconstructed human epidermis revealed that dermatophytes deploy similar processes as those observed during in vivo infection. The reconstructed human epidermis model was then used to compare infections by anthropophilic Trubrum and zoophilic Tbenhamiae. Therefore, these 2 models represent complementary analytical tools to study the pathogenesis of acute dermatophytoses. In addition, we have identified certain fungal markers of infection and highlighted the existence of different mechanisms deployed by zoophilic versus anthropophilic dermatophytes.

20.
Appl Environ Microbiol ; : e0136024, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254330

ABSTRACT

This study aimed to investigate the diversity of conjugative and chromosomally integrated mobile genetic elements (cciMGEs) within six oral streptococci species. cciMGEs, including integrative and conjugative elements (ICEs) and integrative and mobilizable elements (IMEs), are stably maintained on the host cell chromosome; however, under certain conditions, they are able to excise, form extrachromosomal circles, and transfer via a conjugation apparatus. Many cciMGEs encode "cargo" functions that aid survival in new niches and evolve new antimicrobial resistance or virulence properties, whereas others have been shown to influence host bacterial physiology. Here, using a workflow employing preexisting bioinformatics tools, we analyzed 551 genomes for the presence of cciMGEs across six common health- and disease-associated oral streptococci. We identified 486 cciMGEs, 173 of which were ICEs and 233 of which were IMEs. The cciMGEs were diverse in size, cargo genes, and relaxase types. We identified several novel relaxase proteins and a widespread IME carrying a small multidrug resistance transporter. Additionally, we provide evidence that several of the bioinformatically predicted cciMGEs encoded within various Streptococcus mutans strains are capable of excision and circularization, a critical step for cciMGE conjugative transfer. These findings highlight the significance and potential impact of MGEs in shaping the genetic landscape, pathogenicity, and antimicrobial resistance profiles of the oral microbiota.IMPORTANCEOral streptococci are important players in the oral microbiome, influencing both health and disease states within dental bacterial communities. Evolutionary adaptation, shaped in a major part by the horizontal transfer of genes, is essential for their survival in the oral cavity and within new environments. Conjugation is a significant driver of horizontal gene transfer; however, there is limited information regarding this process in oral bacteria. This study utilizes publicly available genome sequences to identify conjugative and chromosomally integrated mobile genetic elements (cciMGEs) across several species of oral streptococci and presents the preliminary characterization of these elements. Our findings significantly enhance our understanding of the mobile genomic landscape of oral streptococci critical for human health, with valuable insights into how cciMGEs might influence the survival and pathogenesis of these bacteria in the oral microbiome.

SELECTION OF CITATIONS
SEARCH DETAIL