Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
1.
Ecol Appl ; : e3046, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373309

ABSTRACT

Understanding the factors that limit the abundance of threatened species is critical for the development of effective conservation strategies. However, gaining such knowledge from monitoring programs and using it to inform decision-making for rare species can be difficult due to methodological issues posed by the problems of distinguishing true absences from false absences and the analysis of datasets dominated by zero counts. The plains-wanderer (Pedionomus torquatus) is a critically endangered ground-nesting bird that occurs in grasslands of southeastern Australia. Decline of the plains-wanderer has been attributed to habitat modification but little emphasis has been placed on the role of introduced predators, such as the red fox (Vulpes vulpes), which have had a devastating effect on small ground-dwelling vertebrates in dryland regions of Australia. Here, we use a 9-year time series of spotlight counts to investigate the impact of vegetation structure and fox presence on plains-wanderer occupancy and abundance. We used distance sampling to determine the effective strip width for sighting plains-wanderers during spotlight surveys. We then used a hurdle model approach whereby binomial generalized additive models were fitted to presence/absence data within the effective strip-width across all sites and negative-binomial models were fitted to an index of abundance at sites where plains-wanderers were observed. Plains-wanderer occupancy and abundance fluctuated markedly through time. Where foxes were absent, occupancy (but not abundance) of plains-wanderers showed a humped relationship with grass height with an optimal height between 50 and 150 mm. Where foxes were present however, this relationship broke down and plains-wanderers were rarely recorded. Our results suggest that plains-wanderers should benefit from management strategies that maintain grass height at optimal levels and exclude foxes or effectively suppress their populations. A key message from this study is that if statistical analyses of data generated by monitoring programs for rare species are intended to inform management decisions by identifying relationships between threatened species and drivers of their abundance, there should be consideration of analytic approaches that account for true and false zeroes, high prevalence of zeroes, and the possibility of nonlinear responses.

2.
Vet Parasitol Reg Stud Reports ; 54: 101086, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39237230

ABSTRACT

Trichinella infections have been eliminated from pork where pigs are raised in biosecure facilities, but wildlife infections persist. Trichinella murrelli is the primary zoonotic species in wild carnivores in the United States, having been identified in several species of omnivores and carnivores. Here, we document its occurrence in seven of 21 (33.3%) red foxes (Vulpes vulpes) from six counties in Pennsylvania. Encysted Trichinella larvae were detected in muscle squashes (<5 g samples) of all seven foxes, and in histological sections of the tongue and limb muscle of three. Larvae from muscle squashes were pooled and tested in a multiplex PCR capable of differentiating all Trichinella species native to the USA; all samples contained only T. murrelli. This is the first identification of T. murrelli in red foxes from Pennsylvania, and the first such survey performed in the last three decades. Results indicate that Trichinella remains endemic in Pennsylvania wildlife and a threat to the health of those who consume wild game.


Subject(s)
Foxes , Trichinella , Trichinellosis , Animals , Foxes/parasitology , Trichinellosis/veterinary , Trichinellosis/parasitology , Trichinellosis/epidemiology , Pennsylvania/epidemiology , Trichinella/isolation & purification , Trichinella/classification , Female , Animals, Wild/parasitology , Male , Larva/classification
3.
Int J Parasitol Parasites Wildl ; 25: 100988, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39345330

ABSTRACT

Domestic dogs (Canis familiaris) and wild canids, including coyotes (Canis latrans) and red foxes (Vulpes vulpes), serve as definitive hosts for Dirofilaria immitis, a parasitic nematode causing the heartworm disease. Understanding infection risks in wildlife reservoirs in relation to environmental factors is crucial for assessing exposure risk in domestic dogs. The regional prevalence of D. immitis infection was estimated in trapped wild coyotes and red foxes across Québec, Canada. Spatial clusters of infection were detected using Kulldorff's spatial scan statistics. A series of logistic regression models predicting the D. immitis status in coyotes were built from heartworm development unit (HDU) estimates and cumulative precipitation variables over various time periods. Between October 2020 and March 2021, 421 coyotes and 284 red foxes were examined for the presence of D. immitis. The parasite was found in 43 coyotes and 1 red fox. A high-risk infection cluster was detected in coyotes in southwestern Québec. The best model included as sole predictor the average cumulative HDU contributing to risk of D. immitis in the three years preceding coyote capture. This model significantly predicted infection status with an area under the curve of 76.1%. The cumulative precipitation had no notable effect in any model. This study highlights a high prevalence of D. immitis in coyotes in Québec with regional differences correlated to temperature-derived predictors. The spatial risk of infection in this population likely represents the environmental risk of exposure to the parasite given that coyotes do not receive preventive treatment compared to domestic dogs. Our findings are important for veterinarians in the application of prevention strategies for heartworm disease in domestic dogs.

4.
Ecol Evol ; 14(8): e70211, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39206457

ABSTRACT

Scavenging on carrion is critical and often fiercely competitive for a range of vertebrate species, from native apex predators to invasive species and even reptiles. Within Australia, a notable reptilian scavenger is the lace monitor (Varanus varius). In this study, we quantified lace monitor activity at carcasses and compared their use of the resource to common co-occurring predators that also scavenge; the invasive red fox (Vulpes vulpes) and a native apex predator, the dingo (Canis dingo). To do so, we deployed 80 macropod carcasses equally across seasons (summer and winter) and habitats (open and closed canopy) in a temperate bioregion and monitored vertebrate scavenging with camera traps. Lace monitor activity (visitation at carcass sites inclusive of both non-scavenging and scavenging events) was 1.67 times higher in summer than in winter, but it did not differ across closed and open habitats. Monitor activity occurred earlier after carcass deployment at sites deployed in summer than winter (1.47-fold earlier), and at carcasses in open than closed habitats (0.22-fold earlier). Lace monitors initially discovered carcass sites faster in summer than winter and before both red foxes and dingoes in summer. The species was active diurnally in both summer and winter, differing from the red fox, which was strictly a nocturnal scavenger and the dingo, which was significantly more active at night across both seasons. Finally, we found that lace monitor activity at carcass sites decreased slightly with higher rates of activity for dingoes (0.04-fold decrease as dingo activity increased), but not with red fox activity. Our results have implications for understanding lace monitor foraging and scavenging and highlight the value of monitoring carcasses to provide important insights into the behaviour of varanid lizards that scavenge.

5.
One Health ; 19: 100845, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39071484

ABSTRACT

BACKGROUND: Biomonitoring is an essential activity for identifying possible vectors and reservoirs of pathogens and predicting potential outbreaks. Wild red foxes are present in both sylvatic and synanthropic environments, making them potential carriers of zoonotic pathogens. Experimental studies have shown that both coyotes and red foxes can transmit SARS-CoV-2. This study aimed to assess the prevalence and seroprevalence of SARS-CoV-2 in wild red foxes hunted in northern Poland. METHODS: Oral swabs, blood clots or heat tissue samples were collected from 292 red foxes hunted in northern Poland. We used both molecular (RT-PCR) and serological (IFA) approaches to detect SARS-CoV-2 infections in the sampled animals. RESULTS: We did not find any evidence of SARS-CoV-2 infection in the collected samples, using both molecular and serological methods. CONCLUSIONS: Despite foxes having frequent contact with humans, human waste, and other animals, they do not appear to participate in the circulation of the SARS-CoV-2 virus in our geographical region. Nevertheless, we believe that continuous biomonitoring should be performed to assess the SARS-CoV-2 epidemiological situation in the wild.

6.
Curr Zool ; 70(3): 394-405, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39035755

ABSTRACT

Human presence and activities have profoundly altered animals' habitats, exposing them to greater risks but also providing new opportunities and resources. The animals' capacity to effectively navigate and strike a balance between risks and benefits is crucial for their survival in the Anthropocene era. Red foxes (Vulpes vulpes), adept urban dwellers, exhibit behavioral plasticity in human-altered environments. We investigated variations in detection frequency on trail cameras and the behavioral responses (explorative, bold, and fearful) of wild red foxes living along an urbanization gradient when exposed to a metal bin initially presented clean and then filled with anthropogenic food. All fox populations displayed an increased interest and similar explorative behavioral responses toward the anthropogenic food source, irrespective of the urbanization gradient. Despite no impact on explorative behaviors, foxes in more urbanized areas initially showed heightened fear toward the empty bin, indicating increased apprehension toward novel objects. However, this fear diminished over time, and in the presence of food, urban foxes displayed slightly reduced fear compared with their less urban counterparts. Our results highlight foxes' potential for adaptability to human landscapes, additionally underscoring the nuanced interplay of fear and explorative behavioral response of populations living along the urbanization gradient.

7.
Pathogens ; 13(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38921788

ABSTRACT

The aim of the study was to determine the species composition of the intestinal parasite fauna of foxes from the Pomerania region, with a particular emphasis on helminth species considered dangerous to humans, and to determine their prevalence and intensity of infection. In total, 165 digestive systems from foxes inhabiting the Pomeranian region were examined. The prevalence of intestinal parasites among the studied foxes was 61.8%. Our findings confirm that foxes in Pomerania carry various parasites, some of which pose a direct threat to human health. As such, constant monitoring of their infestation is essential. Particular attention should be paid to parasite species with potential for transmission to humans, such as Echinococcus multilocularis, Alaria alata and Toxocara canis, whose respective prevalence was found to be 10.9%, 17.6% and 28.5%.

8.
Euro Surveill ; 29(25)2024 Jun.
Article in English | MEDLINE | ID: mdl-38904114

ABSTRACT

BackgroundTo be better prepared for emerging wildlife-borne zoonoses, we need to strengthen wildlife disease surveillance.AimThe aim of this study was to create a topical overview of zoonotic pathogens in wildlife species to identify knowledge gaps and opportunities for improvement of wildlife disease surveillance.MethodsWe created a database, which is based on a systematic literature review in Embase focused on zoonotic pathogens in 10 common urban wildlife mammals in Europe, namely brown rats, house mice, wood mice, common voles, red squirrels, European rabbits, European hedgehogs, European moles, stone martens and red foxes. In total, we retrieved 6,305 unique articles of which 882 were included.ResultsIn total, 186 zoonotic pathogen species were described, including 90 bacteria, 42 helminths, 19 protozoa, 22 viruses and 15 fungi. Most of these pathogens were only studied in one single animal species. Even considering that some pathogens are relatively species-specific, many European countries have no (accessible) data on zoonotic pathogens in these relevant animal species. We used the Netherlands as an example to show how this database can be used by other countries to identify wildlife disease surveillance gaps on a national level. Only 4% of all potential host-pathogen combinations have been studied in the Netherlands.ConclusionsThis database comprises a comprehensive overview that can guide future research on wildlife-borne zoonotic diseases both on a European and national scale. Sharing and expanding this database provides a solid starting point for future European-wide collaborations to improve wildlife disease surveillance.


Subject(s)
Animals, Wild , Zoonoses , Animals , Animals, Wild/microbiology , Europe/epidemiology , Zoonoses/epidemiology , Databases, Factual , Humans , Rats , Sciuridae/microbiology , Hedgehogs/microbiology , Rabbits , Mice , Population Surveillance , Foxes/microbiology , Foxes/parasitology
9.
Mol Ecol ; 33(13): e17418, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38847182

ABSTRACT

Human-facilitated introductions of nonnative populations can lead to secondary contact between allopatric lineages, resulting in lineage homogenisation or the formation of stable hybrid zones maintained by reproductive barriers. We investigated patterns of gene flow between the native Sacramento Valley red fox (Vulpes vulpes patwin) and introduced conspecifics of captive-bred origin in California's Central Valley. Considering their recent divergence (20-70 kya), we hypothesised that any observed barriers to gene flow were primarily driven by pre-zygotic (e.g. behavioural differences) rather than post-zygotic (e.g. reduced hybrid fitness) barriers. We also explored whether nonnative genes could confer higher fitness in the human-dominated landscape resulting in selective introgression into the native population. Genetic analysis of red foxes (n = 682) at both mitochondrial (cytochrome b + D-loop) and nuclear (19,051 SNPs) loci revealed narrower cline widths than expected under a simulated model of unrestricted gene flow, consistent with the existence of reproductive barriers. We identified several loci with reduced introgression that were previously linked to behavioural divergence in captive-bred and domestic canids, supporting pre-zygotic, yet possibly hereditary, barriers as a mechanism driving the narrowness and stability of the hybrid zone. Several loci with elevated gene flow from the nonnative into the native population were linked to genes associated with domestication and adaptation to human-dominated landscapes. This study contributes to our understanding of hybridisation dynamics in vertebrates, particularly in the context of species introductions and landscape changes, underscoring the importance of considering how multiple mechanisms may be maintaining lineages at the species and subspecies level.


Subject(s)
Foxes , Gene Flow , Genetics, Population , Hybridization, Genetic , Introduced Species , Animals , Foxes/genetics , DNA, Mitochondrial/genetics , California , Polymorphism, Single Nucleotide/genetics , Genetic Introgression , Animal Distribution
10.
Animals (Basel) ; 14(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38891719

ABSTRACT

Control methods are applied worldwide to reduce predation on livestock by European red foxes (Vulpes vulpes). Lethal methods can inflict suffering; however, moral debate about their use is lacking. Non-lethal methods can also inflict suffering and can unintentionally lead to death, and yet both the welfare consequences and ethical perspectives regarding their use are rarely discussed. The aim of this study was to investigate the animal welfare consequences, the level of humaneness, the ethical considerations and the moral implications of the global use of fox control methods according to Tom Regan's animal rights view and Peter Singer's utilitarian view. According to Regan, foxes ought not to be controlled by either lethal or potentially harmful non-lethal methods because this violates the right of foxes not to be harmed or killed. According to Singer, if an action maximises happiness or the satisfaction of preferences over unhappiness or suffering, then the action is justified. Therefore, if and only if the use of fox control methods can prevent suffering and death in livestock in a manner that outweighs comparable suffering and death in foxes is one morally obligated to use them. It is clear that lethal fox control methods and some non-lethal methods are inhumane.

11.
Parasit Vectors ; 17(1): 248, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844973

ABSTRACT

BACKGROUND: Sarcoptic mange is a skin disease caused by the contagious ectoparasite Sarcoptes scabiei, capable of suppressing and extirpating wild canid populations. Starting in 2015, we observed a multi-year epizootic of sarcoptic mange affecting a red fox (Vulpes vulpes) population on Fire Island, NY, USA. We explored the ecological factors that contributed to the spread of sarcoptic mange and characterized the epizootic in a landscape where red foxes are geographically constrained. METHODS: We tested for the presence of S. scabiei DNA in skin samples collected from deceased red foxes with lesions visibly consistent with sarcoptic mange disease. We deployed 96-100 remote trail camera stations each year to capture red fox occurrences and used generalized linear mixed-effects models to assess the affects of red fox ecology, human and other wildlife activity, and island geography on the frequency of detecting diseased red foxes. We rated the extent of visual lesions in diseased individuals and mapped the severity and variability of the sarcoptic mange disease. RESULTS: Skin samples that we analyzed demonstrated 99.8% similarity to S. scabiei sequences in GenBank. Our top-ranked model (weight = 0.94) showed that diseased red foxes were detected more frequently close to roadways, close to territories of other diseased red foxes, away from human shelters, and in areas with more mammal activity. There was no evidence that detection rates in humans and their dogs or distance to the nearest red fox den explained the detection rates of diseased red foxes. Although detected infrequently, we observed the most severe signs of sarcoptic mange at the periphery of residential villages. The spread of visual signs of the disease was approximately 7.3 ha/week in 2015 and 12.1 ha/week in 2017. CONCLUSIONS: We quantified two separate outbreaks of sarcoptic mange disease that occurred > 40 km apart and were separated by a year. Sarcoptic mange revealed an unfettered spread across the red fox population. The transmission of S. scabiei mites in this system was likely driven by red fox behaviors and contact between individuals, in line with previous studies. Sarcoptic mange is likely an important contributor to red fox population dynamics within barrier island systems.


Subject(s)
Foxes , Sarcoptes scabiei , Scabies , Animals , Foxes/parasitology , Scabies/veterinary , Scabies/epidemiology , Scabies/parasitology , Sarcoptes scabiei/genetics , Skin/parasitology , Skin/pathology , New York/epidemiology , Animals, Wild/parasitology , Geography , Humans
12.
Ecol Evol ; 14(5): e11450, 2024 May.
Article in English | MEDLINE | ID: mdl-38783847

ABSTRACT

Fire shapes animal communities by altering resource availability and species interactions, including between predators and prey. In Australia, there is particular concern that two highly damaging invasive predators, the feral cat (Felis catus) and European red fox (Vulpes vulpes), increase their activity in recently burnt areas and exert greater predation pressure on the native prey due to their increased exposure. We tested how prescribed fire occurrence and extent, along with fire history, vegetation, topography, and distance to anthropogenic features (towns and farms), affected the activity (detection frequency) of cats, foxes, and the native mammal community in south-eastern Australia. We used camera traps to quantify mammal activity before and after a prescribed burn and statistically tested how the fire interacted with these habitat variables to affect mammal activity. We found little evidence that the prescribed fire influenced the activity of cats and foxes and no evidence of an effect on kangaroo or small mammal (<800 g) activity. Medium-sized mammals (800-2000 g) were negatively associated with prescribed fire extent, suggesting that prescribed fire has a negative impact on these species in the short term. The lack of a clear activity increase from cats and foxes is likely a positive outcome from a fire management perspective. However, we highlight that their response is likely dependent upon factors like fire size, severity, and prey availability. Future experiments should incorporate GPS-trackers to record fine-scale movements of cats and foxes in temperate ecosystems immediately before and after prescribed fire to best inform management within protected areas.

13.
Sci Total Environ ; 936: 173355, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38796016

ABSTRACT

Pathogens often occur at different prevalence along environmental gradients. This is of particular importance for gradients of anthropogenic impact such as rural-urban transitions presenting a changing interface between humans and wildlife. The assembly of parasite communities is affected by both the external environmental conditions and individual host characteristics. Hosts with low body weight (smaller individuals or animals with poor body condition) might be more susceptible to infection. Furthermore, parasites' mode of transmission might affect their occurrence: rural environments with better availability of intermediate hosts might favour trophic transmission, while urban environments, typically with dense definitive host populations, might favour direct transmission. We here study helminth communities (141 intestinal samples) within the red fox (Vulpes vulpes), a synanthropic host, using DNA metabarcoding of multiple marker genes. We analysed the effect of urbanisation, seasonality and host-intrinsic (weight, sex) variables on helminth communities. Helminth species richness increased in foxes with lower body weight and in winter and spring. Season and urbanisation, however, had strong effects on the community composition, i.e., on the identity of the detected species. Surprisingly, transmission in two-host life cycles (trophic transmission) was more pronounced in urban Berlin than in rural Brandenburg. This disagrees with the prevailing hypothesis that trophically transmitted helminths are less prevalent in urban areas than in rural areas. Generally, co-infestations with multiple helminths and high infection intensity are associated with lighter (younger, smaller or low body condition) animals. Both host-intrinsic traits and environmental drivers together shape parasite community composition and turnover along urban-rural gradients.


Subject(s)
Foxes , Seasons , Animals , Body Weight , Urbanization , Helminths , Helminthiasis, Animal/epidemiology , Host-Parasite Interactions
14.
J Vet Diagn Invest ; 36(4): 510-514, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38566312

ABSTRACT

The expanding presence of red foxes (Vulpes vulpes) in urban and suburban regions could potentially lead to increased instances of human aggression towards this species. We studied 10 deceased red foxes that were submitted by law enforcement agencies in the metropolitan area of Madrid in 2014-2022 because of suspected abuse. Forensic autopsies were performed to establish the cause and manner of death. In 4 of the 10 cases, the cause of death was deemed unnatural, involving blunt-force trauma (n = 2), asphyxia resulting from hanging (n = 1), and firearm injury (n = 1). Among the remaining cases, most had succumbed to natural causes (n = 4), often marked by severe emaciation and a high burden of parasites, primarily Sarcoptes scabiei. In 2 cases, death was undetermined given the poor preservation of the carcass. The growing prevalence of wildlife species in urban areas, particularly red foxes, may require forensic veterinary investigation of deaths potentially related to abuse.


Subject(s)
Foxes , Animals , Spain/epidemiology , Male , Female , Cities , Cause of Death , Autopsy/veterinary
15.
Article in English | MEDLINE | ID: mdl-38584459

ABSTRACT

The Rüppell's fox (Vulpes rueppellii) inhabits desert regions across North Africa, the Arabian Peninsula and southwestern Asia. Its phylogenetic relationship with other fox species, especially within the phylogeographic context of its sister species, V. vulpes, remain unclear. We here report the sequencing and de-novo assembly of the first annotated mitogenome of V. rueppellii, analysed with data from other foxes (tribe Vulpini, subfamily Caninae). We used four bioinformatic approaches to reconstruct the V. rueppellii mitogenome, obtaining identical sequences except for the incompletely assembled tandem-repeat region within the D-loop. The mitogenome displayed an identical organization, number and length of genes as V. vulpes. We found high support for clustering of both known subclades of V. rueppellii within the Palearctic clade of V. vulpes, rendering the latter species paraphyletic, consistent with previous analyses of shorter mtDNA fragments. More work is needed for a full understanding of the evolutionary drivers and consequences of hybridization in foxes.

16.
Ecol Evol ; 14(4): e11150, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38571799

ABSTRACT

In the Arctic tundra, predators face recurrent periods of food scarcity and often turn to ungulate carcasses as an alternative food source. As important and localized resource patches, carrion promotes co-occurrence of different individuals, and its use by predators is likely to be affected by interspecific competition. We studied how interspecific competition and resource availability impact winter use of carrion by Arctic and red foxes in low Arctic Fennoscandia. We predicted that the presence of red foxes limits Arctic foxes' use of carrion, and that competition depends on the availability of other resources. We monitored Arctic and red fox presence at supp lied carrion using camera traps. From 2006 to 2021, between 16 and 20 cameras were active for 2 months in late winter (288 camera-winters). Using a multi-species dynamic occupancy model at a week-to-week scale, we evaluated the use of carrion by foxes while accounting for the presence of competitors, rodent availability, and supplemental feeding provided to Arctic foxes. Competition affected carrion use by increasing both species' probability to leave occupied carcasses between consecutive weeks. This increase was similar for the two species, suggesting symmetrical avoidance. Increased rodent abundance was associated with a higher probability of colonizing carrion sites for both species. For Arctic foxes, however, this increase was only observed at carcasses unoccupied by red foxes, showing greater avoidance when alternative preys are available. Supplementary feeding increased Arctic foxes' carrion use, regardless of red fox presence. Contrary to expectations, we did not find strong signs of asymmetric competition for carrion in winter, which suggests that interactions for resources at a short time scale are not necessarily aligned with interactions at the scale of the population. In addition, we found that competition for carcasses depends on the availability of other resources, suggesting that interactions between predators depend on the ecological context.

17.
Turkiye Parazitol Derg ; 48(1): 66-71, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38449371

ABSTRACT

Acanthocephaliasis is a zoonotic parasitic infection of vertebrates. The phylum Acanthocephala contains nearly 1500 acanthocephalan species. The Archiacanthocephala class is observed in terrestrial habitats and usually has a large, spineless trunk. Acanthocephalans are parasitic worms that use insects as intermediate hosts in their two-host life cycles. Insects, millipedes, and crustaceans in terrestrial areas serve as intermediate hosts and birds and mammals as definitive hosts. Acanthocephalans collected from the red fox (Vulpes vulpes) found dead on the road to Sarikamis-Kars in 1995 and stored in formaldehyde were kept in Ondokuz Mays University Faculty of Veterinary Medicine, Veterinary Parasitology Laboratory Museum until 2023 after our parasitological study found an infected red fox with Pachysentis sp. This study provides the anatomy of the acanthocephalans and the laboratory practice necessary for a good and reliable diagnosis. This study reports a new species, Pachysentis sp., of acanthocephalan (thorny-headed worm) found in red foxes for Türkiye. On the basis of relevant articles, we have created a key to Acanthocephala species occurring in mammals.


Subject(s)
Acanthocephala , Arthropods , Humans , Animals , Foxes , Turkey , Zoonoses
18.
Animals (Basel) ; 14(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396526

ABSTRACT

The red fox, found on all continents except Antarctica, occupies diverse habitats. In Croatia, it is an indigenous wild species with a population density of 0.7 animals per square kilometer. While tumors in wild animals from the Canidae family are scarce, the true prevalence and diversity of tumors are likely underestimated due to limited research. So far, a limited number of tumors have been observed among the red fox population, either in their natural habitat or in captivity. As part of the National Rabies Control Program, we examined 1890 red fox carcasses over a four-year period. Our focus was on identifying abnormalities on the skin and internal organs that suggest potential neoplastic proliferation. Five red foxes, three males and two females, were found to have growths resembling potential tumors. Their age distribution spanned from 2 to 7 years. Microscopic investigation revealed two collagenous hamartomas, two Meibomian gland adenomas, and one intra-abdominal teratoma within a cryptorchid testis. This retrospective study aims to provide a comprehensive description of tumor and tumor-like lesions observed in free-range red foxes from Croatia, marking the first research of its kind in Croatia.

19.
Animals (Basel) ; 14(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38338078

ABSTRACT

Canine distemper virus (CDV) is recognised worldwide as an important pathogen in both domestic and wild carnivores. Few data are available on its impact and spread on the wildlife/wildlife-domestic animal-environment interface. This study, aimed at developing a conservation-oriented control strategy, analysed 89 sick or deceased animals from 2019 to 2023 at the Wildlife Rehabilitation Centre in Torreferrussa. RT-PCR and sequencing of the partial H gene were used to detect and analyse CDV in tissues. The total positive percentage was 20.22% (18/89), comprising 13 red foxes (44.8%), 4 European badgers (28.6%), and 1 American mink (4.5%), while 24 Eurasian otters tested negative. Phylogenetic analysis indicated that all of the CDV strains belong to the European lineage. Geographically distant individuals and different species shared the same viral strain, suggesting a strong capacity of CDV for interspecies and long-distance transmission. This calls for further research, particularly focusing on potential impacts of CDV on endangered carnivores.

20.
Res Vet Sci ; 166: 105098, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38029489

ABSTRACT

The mite Sarcoptes scabiei affects numerous mammal species causing the sarcoptic mange, a widespread disease with relevance for wildlife conservation, welfare, and management. The red fox (Vulpes vulpes) could become infested by direct and indirect routes leading to external skin lesions potentially recognizable by devices such as camera traps (CTs). In the present study, 86 randomly placed CTs were used to investigate the apparent prevalence and severity of S. scabiei in a red fox population from northern Spain. Their potential environmental and population-related drivers were also assessed. A total of 341 independent encounters were examined to visually identify mange-compatible lesions. The apparent prevalence was 19.16% (confidence interval (CI) 95%: 15.08-23.80) of which 82.81% (CI95%: 71.33-91.10) were severe. Our results revealed that habitat attributes such as lower altitudes, higher coverage of water-linked habitats and woodland predominance, were significant predictors of the apparent risk of mange. The models also suggested that the apparent prevalence of mange was associated with poor body condition and elevated frequencies of spatial coincidence among fox encounters, which facilitates indirect transmission. Interestingly, we did not observe mange-compatible lesions in other sympatric wild species (>15,000 encounters examined). This could be explained by the mite's host specificity and the low probability that these other potential hosts use sites where transmission among foxes usually occurs, such as dens. This study illustrates how camera trapping can be used as an interesting tool for the surveillance of wildlife diseases, thus overcoming the logistic constraints derived from direct sampling and allowing the early detection and better management of pathogens in the riskiest areas.


Subject(s)
Scabies , Animals , Scabies/epidemiology , Scabies/veterinary , Foxes , Prevalence , Spain/epidemiology , Sarcoptes scabiei , Animals, Wild
SELECTION OF CITATIONS
SEARCH DETAIL