Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.126
Filter
1.
J Environ Sci (China) ; 149: 394-405, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181652

ABSTRACT

Heterogeneous crystallization is a common occurrence during the formation of solid wastes. It leads to the encapsulation of valuable/hazardous metals within the primary phase, presenting significant challenges for waste treatment and metal recovery. Herein, we proposed a novel method involving the in-situ formation of a competitive substrate during the precipitation of jarosite waste, which is an essential process for removing iron in zinc hydrometallurgy. We observed that the in-situ-formed competitive substrate effectively inhibits the heterogeneous crystallization of jarosite on the surface of anglesite, a lead-rich phase present in the jarosite waste. As a result, the iron content on the anglesite surface decreases from 34.8% to 1.65%. The competitive substrate was identified as schwertmannite, characterized by its loose structure and large surface area. Furthermore, we have elucidated a novel mechanism underlying this inhibition of heterogeneous crystallization, which involves the local supersaturation of jarosite caused by the release of ferric and sulfate ions from the competitive substrate. The local supersaturation promotes the preferential heterogeneous crystallization of jarosite on the competitive substrate. Interestingly, during the formation of jarosite, the competitive substrate gradually vanished through a dissolution-recrystallization process following the Ostwald rule, where a metastable phase slowly transitions to a stable phase. This effectively precluded the introduction of impurities and reduced waste volume. The goal of this study is to provide fresh insights into the mechanism of heterogeneous crystallization control, and to offer practical crystallization strategies conducive to metal separation and recovery from solid waste in industries.


Subject(s)
Crystallization , Ferric Compounds , Ferric Compounds/chemistry , Sulfates/chemistry , Iron Compounds/chemistry , Iron/chemistry , Refuse Disposal/methods
2.
Planta ; 260(4): 85, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39227398

ABSTRACT

MAIN CONCLUSION: Biofortification of legumes using diverse techniques such as plant breeding, agronomic practices, genetic modification, and nano-technological approaches presents a sustainable strategy to address micronutrient deficiencies of underprivileged populations. The widespread issue of chronic malnutrition, commonly referred to as "hidden hunger," arises from the consumption of poor-quality food, leading to various health and cognitive impairments. Biofortified food crops have been a sustainable solution to address micronutrient deficiencies. This review highlights multiple biofortification techniques, such as plant breeding, agronomic practices, genetic modification, and nano-technological approaches, aimed at enhancing the nutrient content of commonly consumed crops. Emphasizing the biofortification of legumes, this review employs bibliometric analysis to examine research trends from 2000 to 2023. It identifies key authors, influential journals, contributing countries, publication trends, and prevalent keywords in this field. The review highlights the progress in developing biofortified crops and their potential to improve global nutrition and help underprivileged populations.


Subject(s)
Bibliometrics , Biofortification , Crops, Agricultural , Fabaceae , Malnutrition , Biofortification/methods , Fabaceae/metabolism , Crops, Agricultural/metabolism , Plant Breeding/methods , Humans , Food, Fortified , Micronutrients/analysis
3.
Angew Chem Int Ed Engl ; : e202412025, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39228013

ABSTRACT

Here Fe2O(SeO3)2/Fe3C@NC catalysts with high performance were fabricated for zinc-air batteries (ZABs). The experimental results confirmed that the existence of Fe-O-Se bonds in Fe2O(SeO3)2 crystal phase, and the Fe-O-Se bonds could obviously enhance ORR and OER catalytic performance of Fe2O(SeO3)2/Fe3C@NC. Density functional theoretical calculations (DFT) confirmed that the Fe2O(SeO3)2 in Fe2O(SeO3)2/Fe3C@NC had a higher d-band center of Fe atom and a lower p-orbital coupling degree with its own lattice O atom than Fe2O3, which leads to Fe site of Fe2O(SeO3)2 being more likely to adsorb external oxygen intermediates. The Fe-O-Se bonds in Fe2O(SeO3)2 results in the modification of coordination environment of Fe atoms and optimizes the adsorption energy of Fe site for oxygen intermediates. Compared with Fe2O3/Fe3C@NC, the Fe2O(SeO3)2/Fe3C@NC showed obvious enhancements of ORR/OER catalytic activities with a half-wave potential of 0.91 V for ORR in 0.1 M KOH electrolyte and a low overpotential of 345 mV for OER at 10 mA cm-2 in a 1.0 M KOH electrolyte. The peak power density and specific capacity of Fe2O(SeO3)2/Fe3C@NC-based ZABs are higher than those of Pt/C+RuO2-ZABs. The above results demonstrate that the asymmetrical Fe-O-Se bonds in Fe2O(SeO3)2 plays a key role in improving the bifunctional catalytic activities of ORR/OER for ZABs.

4.
EJNMMI Rep ; 8(1): 27, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39218826

ABSTRACT

PURPOSE: To investigate the performance of dynamic 3D diuretic renal scintigraphy using a hybrid whole body CZT SPECT/CT for the evaluation of acute ureteric obstruction in patients with urinary stone disease. METHODS: 20 patients who presented to the Emergency Department with acute renal colic due to urinary stone disease confirmed by means of CT were prospectively included. Three observers evaluated and graded hydronephrosis, hydroureter, perirenal stranding, and thickening of the renal fascia from the CT as well as the renal scintigraphy curves from the dynamic SPECT study. The normalized residual activity from dynamic SPECT was analysed at 16 min in all patients and at 20 min in suspected obstruction. RESULTS: Renal scintigraphy curves showed a sensitivity of 100%, specificity of 93%, PPV 83% and a NPV 100% for obstruction, while normalized residual activity showed a sensitivity of 100%, specificity of 73%, PPV 56% and a NPV 100%. All patients presented at least 2 secondary signs of obstruction on the CT, showing a PPV of only 25% for obstruction. CONCLUSION: Dynamic 3D diuretic renal scintigraphy CZT SPECT/CT provides valuable functional and anatomical information from one single examination. The combination of pathological renogram curves and high normalized residual activity values provide the most valuable imaging information to determine the presence of acute ureteric obstruction. The secondary signs of obstruction observed on CT are not specific and should not be used to confirm or discard obstruction in patients with urinary stone disease. TRIAL REGISTRATION: ISRCTN15338358. Registration date 03/01/2024. Retrospectively registered. https://www.isrctn.com/ISRCTN15338358?q=miguel%20ochoa%20figueroa&filters=&sort=&offset=1&totalResults=2&page=1&pageSize=10.

5.
Small ; : e2406484, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39233534

ABSTRACT

Zinc air battery (ZAB) provides a low-cost and high-energy density power source, particularly in wearable and portable devices. Despite the extensive research on air cathode catalysts, their practical application is hindered by low zinc utilization rate and severe corrosion and passivation in liquid-based alkaline electrolytes. Herein, a double-layer gel (DLKgel) is developed by leveraging the distinct kosmotropic properties of ZnCl2 and ZnSO4. Through phase separation induced by the kosmotropic differentiation (instead of membrane in decoupled systems), this DLKgel electrolyte serves a dual purpose of shielding cathode from irreversible reaction products and protecting Zn anode from passivation. Neutral ZABs with DLKgel demonstrate high zinc utilization rate of 89.3% and stable cycling over 800 h under a current density of 0.1 mA cm-2. The integration of DLKgel-based ZABs into a flexible GPS tracking device is demonstrated, highlighting the potential for broad adoption of flexible ZABs in wearable and logistics applications.

6.
Lancet Reg Health West Pac ; 50: 101164, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39219625

ABSTRACT

Background: Vietnam is facing a double burden of malnutrition, with increasing prevalence of overweight coexisting with undernutrition (stunting and/or thinness) and micronutrient deficiencies (MNDs). Although malnutrition during female adolescence leads to poor health outcomes with potential intergenerational effects on offspring, no studies have comprehensively investigated MNDs and nutritional status among contemporary Vietnamese female adolescents. Methods: Data from 10- to 18-year-old female participants (n = 1471) in the nationally-representative Vietnam General Nutrition Survey 2020 were analysed. Blood nutritional biomarkers, anthropometric measurements, and sociodemographic data were collected, and associations between nutrition status and MNDs were analysed; with anaemia, iron deficiency (ID), iron deficiency anaemia, low serum zinc, low serum retinol, and any MNDs as specified outcomes. Findings: Prevalence of overweight, stunting, and thinness was 27.2%, 14.3%, and 6.9%, respectively. Low serum zinc was common (39.8%), as was ID (13.4%). Bivariate analyses showed that older age (16-18 years old), ethnic minority status, lower wealth index, and inflammation were associated with MNDs. In adjusted logistic regressions, stunting was associated with increased odds ratio and [95% confidence intervals] of low serum retinol (8.92 [2.26, 35.15], p < 0.01), as was thinness (12.25 [3.47, 43.33], p < 0.01). Stunting was also associated with increased odds of having any MND (2.06 [1.31, 3.25], p < 0.01). Interpretation: More female adolescents were overweight than undernourished in Vietnam in 2020. However, undernutrition, low serum zinc, and ID remain prevalent. Food systems approaches should be considered to stem the stark increase in the double burden of malnutrition in young people living in Vietnam. Funding: UK BBSRCBB/T008989/1.

7.
World J Hepatol ; 16(8): 1111-1119, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39221095

ABSTRACT

BACKGROUND: Acute liver failure (ALF) may be the first and most dramatic presentation of Wilson's disease (WD). ALF due to WD (WD-ALF) is difficult to distinguish from other causes of liver disease and is a clear indication for liver transplantation. There is no firm recommendation on specific and supportive medical treatment for this condition. AIM: To critically evaluate the diagnostic and therapeutic management of WD-ALF patients in order to improve their survival with native liver. METHODS: A retrospective analysis of patients with WD-ALF was conducted in two pediatric liver units from 2018 to 2023. RESULTS: During the study period, 16 children (9 males) received a diagnosis of WD and 2 of them presented with ALF. The first was successfully treated with an unconventional combination of low doses of D-penicillamine and zinc plus steroids, and survived without liver transplant. The second, exclusively treated with supportive therapy, needed a hepatotransplant to overcome ALF. CONCLUSION: Successful treatment of 1 WD-ALF patient with low-dose D-penicillamine and zinc plus steroids may provide new perspectives for management of this condition, which is currently only treated with liver transplantation.

8.
PeerJ ; 12: e17994, 2024.
Article in English | MEDLINE | ID: mdl-39221266

ABSTRACT

Background: Zinc (Zn) content is of great importance in healthy human diet, crop productivity and stress tolerance in soils with zinc deficiency. The genes used to increase yield per unit area such as semi-dwarf 1 (sdw1) is commonly considered to reduce mineral content of grain. Methods: In the present study, influence of sdw1.d, a widely used allele for short plant height in barley breeding, on zinc accumulation and tolerance to zinc deficiency were investigated. A near isogenic line of sdw1.d allele, its recurrent parent Tokak 157/37 and donor parent Triumph were grown in zinc-deficient and-sufficient hydroponic cultures. Two experiments were conducted until heading stage and physiological maturity. Results: In zinc-deficient conditions, sdw1.d allele increased shoot dry weight by 112.4 mg plant-1, shoot Zn concentration by 0.9 ppm, but decreased root Zn concentration by 6.6 ppm. It did not affect grain characteristics, but increased grain Zn content. In zinc-sufficient conditions, sdw1.d allele increased shoot Zn content, and decreased root Zn content. sdw1.d did not affect grain weight but increased grain Zn concentration by about 30% under zinc-sufficient conditions. The results showed that sdw1.d allele has no negative effect on tolerance to zinc deficiency, and even promotes tolerance to zinc deficiency by more Zn translocation. It was revealed that sdw1.d allele improves Zn accumulation under both zinc-deficient and zinc-sufficient condition. The sdw1.d allele could contribute to solving the problems in plant growth and development caused by zinc-deficiency via improving tolerance to zinc-deficiency. It could also provide a better Zn biofortification.


Subject(s)
Alleles , Hordeum , Zinc , Zinc/deficiency , Zinc/metabolism , Hordeum/genetics , Hordeum/metabolism , Plant Roots/metabolism , Plant Roots/genetics , Plant Breeding
9.
Cureus ; 16(8): e66034, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39221327

ABSTRACT

Despite its prevalence, zinc deficiency often goes undiagnosed due to nonspecific symptoms. This study examined the case of an 18-year-old woman who presented with urinary tract infection, anemia, and insulin dysfunction and was ultimately diagnosed with zinc deficiency. Oral zinc supplementation significantly improved the patient's condition. Zinc is essential for the activity of numerous enzymes and affects immune function, protein structure, and endocrine regulation, but the cause is often unknown because symptoms and data abnormalities are nonspecific. The patient's diet was high in foods that inhibited zinc absorption, likely exacerbating the deficiency. This case illustrates the importance of considering zinc deficiency in patients with diverse and unexplained symptoms. Prompt recognition and treatment with zinc supplementation can lead to rapid and complete recovery. We hope that this case will contribute to the future diagnosis of zinc deficiency for clinicians.

10.
J Colloid Interface Sci ; 678(Pt A): 886-895, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39222608

ABSTRACT

Aqueous zinc-ion batteries (AZIBs) are highly regarded for their affordability, stability, safety, and eco-friendliness. Nevertheless, their practical application is hindered by severe side reactions and the formation of zinc (Zn) dendrites on the Zn metal anode surface. In this study, we employ tetrahydrofuran alcohol (THFA), an efficient and cost-effective alcohol ether electrolyte, to mitigate these issues and achieve ultralong-life AZIBs. Theoretical calculations and experimental findings demonstrate that THFA acts as both a hydrogen bonding donor and acceptor, effectively anchoring H2O molecules through dual-site hydrogen bonding. This mechanism restricts the activity of free water molecules. Moreover, the two oxygen (O) atoms in THFA serve as dual solvation sites, enhancing the desolvation kinetics of [Zn(H2O)6]2+ and improving the deposition dynamics of Zn2+ ions. As a result, even trace amounts of THFA significantly suppress adverse reactions and the formation of Zn dendrites, enabling highly reversible Zn metal anodes for ultralong-life AZIBs. Specifically, a Zn-based symmetric cell containing 2 % THFA achieves an ultralong cycle life of 8,800 h at 0.5 mA cm-2/0.5 mAh cm-2, while a Zn//VO2 full cell containing 2 % THFA maintains a remarkable 80.03 % capacity retention rate at 5 A g-1 over 2,000 cycles. This study presents a practical strategy to develop dendrite-free, cost-effective, and highly efficient aqueous energy storage systems by leveraging alcohol ether compounds with dual-site hydrogen bonding capabilities.

11.
J Biol Chem ; : 107741, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39222686

ABSTRACT

Transition metal (TM) distribution through the phloem is an essential part of plant metabolism and is required for systemic signaling and balancing source-to-sink relationships. Due to their reactivity, TMs are expected to occur in complexes within the phloem sap; however, metal speciation in the phloem sap remains largely unexplored. Here, we isolated phloem sap from Brassica napus and analyzed it via size exclusion chromatography (SEC) coupled online to sector-field ICP-MS. Our data identified known TM binding proteins and molecules including metallothioneins (MT), glutathione, and nicotianamine. While the main peak of all metals was low MW (∼1.5 kD), additional peaks ∼10-15 kD containing Cu, Fe, S and Zn were also found. Further physicochemical analyses of MTs with and without affinity tags corroborated that MTs can form complexes of diverse molecular weights. We also identified and characterized potential artifacts in the TM-biding ability of B. napus MTs between tagged and non-tagged MTs. That is, the native BnMT2 binds Zn, Cu and Fe, while MT3a and MT3b only bind Cu and Zn. In contrast, his-tagged MTs bind less Cu and were found to bind Co and Mn and aggregated to oligomeric forms to a greater extent compared to the phloem sap. Our data indicates that TM chemistry in the phloem sap is more complex than previously anticipated and that more systematic analyses are needed to establish the precise speciation of TM and TM-ligand complexes within the phloem sap.

12.
Enzymes ; 55: 65-91, 2024.
Article in English | MEDLINE | ID: mdl-39222999

ABSTRACT

ß-Carbonic anhydrases (ß-CA; EC 4.2.1.1) are widespread zinc metalloenzymes which catalyze the interconversion of carbon dioxide and bicarbonate. They have been isolated in many pathogenic and non-pathogenic bacteria where they are involved in multiple roles, often related to their growth and survival. ß-CAs are structurally distant from the CAs of other classes. In the active site, located at the interface of a fundamental dimer, the zinc ion is coordinated to two cysteines and one histidine. ß-CAs have been divided in two subgroups depending on the nature of the fourth ligand on the zinc ion: class I have a zinc open configuration with a hydroxide ion completing the metal coordination, which is the catalytically active species in the mechanism proposed for the ß-CAs similar to the well-known of α-CAs, while in class II an Asp residue substitute the hydroxide. This latter active site configuration has been showed to be typical of an inactive form at pH below 8. An Asp-Arg dyad is thought to play a key role in the pH-induced catalytic switch regulating the opening and closing of the active site in class II ß-CAs, by displacing the zinc-bound solvent molecule. An allosteric site well-suited for bicarbonate stabilizes the inactive form. This bicarbonate binding site is composed by a triad of well conserved residues, strictly connected to the coordination state of the zinc ion. Moreover, the escort site is a promiscuous site for a variety of ligands, including bicarbonate, at the dimer interface, which may be the route for bicarbonate to the allosteric site.


Subject(s)
Carbonic Anhydrases , Carbonic Anhydrases/metabolism , Carbonic Anhydrases/chemistry , Catalytic Domain , Bacteria/enzymology , Zinc/chemistry , Zinc/metabolism , Bicarbonates/metabolism , Bicarbonates/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Models, Molecular
13.
Article in English | MEDLINE | ID: mdl-39223356

ABSTRACT

As a result of the changes occurring globally in recent years, millions of people are facing challenging and even life-threatening diseases such as cancer and the COVID-19 pandemic, among others. This phenomenon has spurred researchers towards developing and implementing innovative and environmentally friendly scientific methods, merging disciplines with significant technological potential, such as nanotechnology with medicinal plants. Therefore, the focus of this research is to synthesize zinc nanoparticles (ZnO-NPs) and microflowers (ZnO-MFs) using extracts of the medicinal plant I. oculus christi prepared in n-hexane and methanol as new bioreduction and capping agents through a simple and environmentally friendly chemical approach. Optical, thermal, and morphological structural analyses of ZnO-NPs and ZnO-MFs were conducted using Ultraviolet-Visible (UV-Vis) spectroscopy, Fourier Transform Infrared (FT-IR) spectroscopy, Thermogravimetric Analysis (TGA), and Field Emission Scanning Electron Microscopy (FE-SEM). Metabolic profiles of extracts from different plant parts were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS) and supported by visualization of contents through Principal Component Analysis (PCA), hierarchical cluster analysis heatmaps, and Pearson correlation graphs. Interestingly, ZnO-NPs and ZnO-MFs exhibited strong antioxidant properties and demonstrated particularly potent antimicrobial activity against Micrococcus luteus NRRL B-4375, Escherichia coli ATCC 25922, and Candida albicans ATCC 10231 strains compared to standard antibiotics. Furthermore, ZnO-NPs and ZnO-MFs showed excellent plasmid DNA-cleavage activity of pBR322 with increasing doses. The photocatalytic performance of the synthesized ZnO-NPs and ZnO-MFs was evaluated for methylene blue (MB), congo red (CR), and safranin-O (SO) dyes, demonstrating remarkable color removal efficiency. Overall, the results provide a promising avenue for the green synthesis of ZnO-NPs and ZnO-MFs using I. oculus-christi L. inflorescence and pappus extracts, potentially revolutionizing biopharmaceutical and catalytic applications in these fields.

14.
Article in English | MEDLINE | ID: mdl-39223694

ABSTRACT

Prussian blue analogues (PBAs) have attracted increasing attention in aqueous zinc-based batteries (AZBs) with the advantages of an open framework, adjustable redox potential, and easy synthesis. However, they exhibited a low specific capacity and a poor cycle performance. In this work, crystalline potassium iron hexacyanoferrate (FeHCF) with dislocation was designed and prepared by a poly(vinylpyrrolidone) (PVP) additive. The metastable state provided by PVP would cause an electrostatic interaction between cyanogen and water molecules. The reduced force increases the steric resistance of the water molecules entering the crystal. The low content of crystal water in FeHCF is associated with the formation of dislocation. The dislocation effect effectively improves the electrochemical reactivity and reaction kinetics of FeHCF. Thus, it presents a high reversible capacity of 131 mAh g-1 with a superior capacity retention of 85% after 550 cycles at 0.5 A g-1. When used as a cathode, the AZBs display a high voltage of 2.6 V, a fast charging capability (<5 min), and a satisfactory cycle stability with a capacity retention of 82% after 400 cycles at 0.2 A g-1 in decoupling electrolytes. This work provides an effective strategy for the design of high-performance PBA-based cathodes for 2.6 V AZBs.

15.
Angew Chem Int Ed Engl ; : e202410342, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223696

ABSTRACT

P-type organic cathode materials typically exhibit high redox potentials and fast redox kinetics, presenting broad application prospects in aqueous zinc batteries (AZBs). However, most of the reported P-type organic cathode materials exhibit limited capacity (< 100 mAh g-1), which is attributable to the low mass content ratio of oxidation-reduction active functional groups in these materials. Herein, we report a high-capacity p-type organic material, 5,12-dihydro-5,6,11,12-tetraazatetracene (DHTAT), for aqueous zinc batteries. Both experiments and calculation indicate the charge storage of DHTAT involves the adsorption/ desorption of ClO4- on the -NH- group. Benefitting from the high mass content ratio of the -NH- group in DHATA molecule, the DHATA electrode demonstrates a remarkable capacity of 224 mAh g-1 at a current density of 50 mA g-1 with a stable voltage of 1.2 V. Notably, after 5000 cycles at a high current density of 5 A g-1, DHTAT retains 73% of its initial capacity, showing a promising cycling stability. In addition, DHTAT also has good low-temperature performance and can stably cycle at -40 °C for 4000 cycles at 1 A g-1, making it a competitive candidates cathode material for low-temperature batteries.

16.
Surg Today ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39222257

ABSTRACT

PURPOSE: To clarify the prevalence, risk factors, and clinical implications associated with zinc deficiency in patients undergoing pancreatic surgery. METHODS: The serum zinc levels were measured in 329 patients post-pancreatic surgery between January and April 2021. The postoperative serum zinc levels and clinicopathological variables were retrospectively analyzed. RESULTS: The median serum zinc level was 73 µg/dL (33-218). Zinc deficiency (zinc level < 60 µg/dL) was observed in 52 patients (16%). A total of 329 patients were classified into zinc-deficient (n = 52) and non-deficient (zinc ≥ 60 µg/dL, n = 277) groups. A univariate analysis revealed significant differences in sex, postoperative body mass index, serum albumin, total cholesterol, creatinine, aspartate aminotransferase (AST), HbA1c levels, diabetes, surgical procedures, and operative blood loss. According to a multivariate analysis, male sex [odds ratio (OR) 3.70; 95% confidence interval (CI) 1.67-8.20; p = 0.001], postoperative serum albumin levels < 3.9 g/dL (OR 6.39; 95% CI 3.30-12.37; p < 0.001), postoperative serum AST ≥ 51 U/L (OR, 4.6; 95% CI 0.07-0.29; p < 0.001), and total pancreatectomy (OR 3.68; 95% CI 1.37-9.85; p = 0.009) were found to be independent predictors of zinc deficiency after pancreatic surgery. CONCLUSIONS: Zinc deficiency frequently occurs in patients undergoing pancreatic surgery. Lower postoperative zinc levels could be linked to sex, the serum albumin and AST levels, and surgery type.

17.
Vet Res Commun ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225973

ABSTRACT

Skin infections are common complications in both humans and animals. Because of the increased incidence of multi-drug resistant (MDR) skin infections, essential oils have been suggested as potential alternatives to the classic antimicrobials. The goal of this study was to evaluate the minimum inhibitory and bactericidal/fungicidal concentrations (MIC and MBC/MFC) of commercially available products containing essential oils, zinc gluconate, or 4% chlorhexidine. Microbroth dilution technique was performed on clinical isolates of MDR Staphylococcus pseudintermedius (MDR-SP; n = 10), Pseudomonas aeruginosa (PA; n = 10), and Malassezia pachydermatis (MP; n = 10). For MDR-SP, essential oil-containing products showed median MICs of 1:240 and 1:320. The chlorhexidine shampoo had a MIC of 1:128,000 (0.312 µg/mL), whereas zinc gluconate products had median MICs of 1:320 and 1:160. Three essential oil-containing shampoos (MBC 1:40), the zinc gluconate (MBC 1:40), and the chlorhexidine (MBC 1:64,000 [0.625 µg/mL]) reached an MBC. For PA, essential oil-containing products showed median MICs of 1:30 and 1:80. The zinc-gluconate products had a median MIC of 1:160, whereas the chlorhexidine shampoo had a median MIC of 1:4,000 (10 µg/mL). Only the zinc-gluconate products (MBC 1:80) and the chlorhexidine shampoo (MBC 1:2,000 [20 µg/mL]) reached an MBC. For MP, essential oil-containing and zinc-gluconate products showed lower median MICs (1:4,800 and 7,200) for shampoos compared with other formulations (1:160 and 1:320), whereas the chlorhexidine shampoo had a median MIC of 1:80,000 (0.5 µg/mL). These results suggest that natural topical compounds can be an effective alternative to treat skin infections in companion animals. Further in vivo studies are needed to clinically confirm this study's results.

18.
Sci Total Environ ; : 175991, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39236814

ABSTRACT

BACKGROUND: People are exposed to metals in various ways during their daily lives. However, the association between metal exposure and gallstones remains unclear. OBJECTIVES: To investigate the relationship between serum elemental concentrations and the risk of gallstones. METHODS: Participants (n = 4204) were drawn from the Henan Rural Cohort. Gallstone diagnosis was based on abdominal ultrasound reports during follow-up. Baseline serum elemental concentrations were measured using inductively coupled plasma mass spectrometry. The relationship between serum elemental levels and gallstones was evaluated using robust Poisson regression, restricted cubic spline (RCS), quantile g-computation (Qgcomp), grouped weighted quantile sum (GWQS) and Bayesian kernel machine regression (BKMR). RESULTS: 121 individuals were diagnosed with gallstone (incidence rate of 2.88 %). In robust Poisson regression, after adjusting for confounding factors, the highest quartile of arsenic concentration compared to the lowest quartile had a 1.90 times higher relative risk (RR) [95 % confidence interval (CI): 1.05, 3.44]. Conversely, the highest quartile of zinc concentration compared to the lowest quartile had a 0.50 times lower RR (95 % CI: 0.28, 0.89). RCS showed an approximately "S"-shaped nonlinear relationship between serum arsenic levels and gallstones, with increasing arsenic concentration leading to a higher risk of gallstones; however, the risk plateaued when arsenic concentration exceeded 0.62 µg/L. Both the Qgcomp and GWQS indicated that arsenic plays a significant role in increasing the risk of gallstones, whereas zinc plays a significant role in reducing the risk of gallstones. BKMR showed that raising arsenic exposure from the 25th to the 75th percentile increased the risk of gallstones, while raising serum zinc concentration reduced it. CONCLUSIONS: Higher serum arsenic concentration increases the risk of gallstones, whereas higher zinc concentration may reduce the risk. Effective prevention of gallstones may require further reduction of arsenic exposure and appropriate increases in zinc intake.

19.
Sci Rep ; 14(1): 20721, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237610

ABSTRACT

Improving the thermal and dielectric properties of insulation oil (INO) with nanoadditives is an important challenge, and achieving dispersion stability in these nanofluids is quite challenging, necessitating further investigation. The main goal of this study is the synthesis and use of the hydrophobicity of zinc ferrite (ZnFe2O4) nanoparticles, which can improve both the thermal and dielectric properties of the INO. This oil is made from distillate (petroleum), including severely hydrotreated light naphthenic oil (75-85%) and severely hydrotreated light paraffinic oil (15-25%). A comprehensive investigation was carried out, involving the creation of nanofluids with ZnFe2O4 nanoparticles at various concentrations, and employing various characterization methods such as X-ray diffraction (XRD), Fourier-transform infrared (FTIR), scanning electron microscopy, energy dispersive X-ray (EDX), zeta potential analysis, and dynamic light scattering (DLS). The KD2 Pro thermal analyzer was used to investigate the thermal characteristics, including the thermal conductivity coefficient (TCC) and volumetric heat capacity (VHC). Under free convection conditions, the free convection heat transfer coefficient (FCHTC) and Nusselt numbers (Nu) were evaluated, revealing enhancements ranging from 14.15 to 11.7%. Furthermore, the most significant improvement observed in the AC Breakdown voltage (BDV) for nanofluids containing 0.1 wt% of ZnFe2O4 amounted to 17.3%. The most significant finding of this study is the improvement in the heat transfer performance, AC BDV, and stability of the nanofluids.

20.
BMC Musculoskelet Disord ; 25(1): 710, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237949

ABSTRACT

BACKGROUND: Diet has been shown to be associated with rheumatoid arthritis (RA), of which osteoporosis is the most common and important complication, and zinc has been shown to inhibit the inflammatory response, but studies on the relationship between dietary zinc and osteoporosis in patients with RA are limited and inconclusive. In this study, we aimed to explore the relationship between dietary zinc intake and osteoporosis or osteopenia in patients with RA. METHODS: Data on RA patients were derived from the National Health and Nutrition Examination Survey (NHANES) 2007 to 2010, 2013 to 2014, and 2017 to 2020. Weighted univariate and multivariate logistic regression models were performed to explore the association between dietary zinc intake and osteoporosis or osteopenia in RA patients. The relationship was further investigated in different age, body mass index (BMI), nonsteroidal use, dyslipidemia, diabetes, and hypertension population. All results were presented as odds ratios (ORs) and confidence intervals (CIs). RESULTS: In total, 905 RA patients aged ≥ 40 years were included. After adjusting all covariates, higher dietary zinc intake was associated with lower odds of osteopenia or osteoporosis (OR = 0.39, 95%CI: 0.18-0.86) in RA patients. The relationship between dietary zinc intake ≥ 19.52 mg and lower odds of osteopenia or osteoporosis were also found in those aged ≥ 60 years (OR = 0.38, 95%CI: 0.16-0.91), BMI normal or underweight (OR = 0.16, 95%CI: 0.03-0.84), nonsteroidal use (OR = 0.14, 95%CI: 0.02-0.82), dyslipidemia (OR = 0.40, 95%CI: 0.17-0.92), diabetes (OR = 0.37, 95%CI: 0.14-0.95), and hypertension (OR = 0.37, 95%CI: 0.16-0.86). CONCLUSION: Higher dietary zinc intake was associated with reduced incidence of osteopenia or osteoporosis in patients with RA. Further longitudinal and randomized trials are necessary to validate our findings and explore the underling mechanisms. Adequate dietary zinc intake may beneficial to the bone health in RA patients.


Subject(s)
Arthritis, Rheumatoid , Bone Diseases, Metabolic , Diet , Nutrition Surveys , Osteoporosis , Zinc , Humans , Arthritis, Rheumatoid/epidemiology , Arthritis, Rheumatoid/complications , Female , Male , Middle Aged , Osteoporosis/epidemiology , Osteoporosis/prevention & control , Zinc/administration & dosage , Bone Diseases, Metabolic/epidemiology , Bone Diseases, Metabolic/prevention & control , Bone Diseases, Metabolic/etiology , Aged , Adult , Diet/adverse effects , Cross-Sectional Studies
SELECTION OF CITATIONS
SEARCH DETAIL