Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.183
Filter
1.
J Environ Sci (China) ; 149: 651-662, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181675

ABSTRACT

Fischer-Tropsch synthesis (FTS) wastewater retaining low-carbon alcohols and acids are organic pollutants as a limiting factor for FTS industrialization. In this work, the structure-capacity relationships between alcohol-acid adsorption and surface species on graphene were reported, shedding light into their intricate interactions. The graphene oxide (GO) and reduced graphene oxide (rGO) were synthesized via improved Hummers method with flake graphite (G). The physicochemical properties of samples were characterized via SEM, XRD, XPS, FT-IR, and Raman. The alcohol-acid adsorption behaviors and adsorption quantities on G, GO, and rGO were measured via theoretical and experimental method. It was revealed that the presence of COOH, C=O and CO species on graphene occupy the adsorption sites and increase the interactions of water with graphene, which are unfavorable for alcohol-acid adsorption. The equilibrium adsorption quantities of alcohols and acids grow in pace with carbon number. The monolayer adsorption occurs on graphene was verified via model fitting. rGO has the highest FTS modeling wastewater adsorption quantity (110 mg/g) due to the reduction of oxygen species. These novel findings provide a foundation for the alcohol-acid wastewater treatment, as well as the design and development of high-performance carbon-based adsorbent materials.


Subject(s)
Alcohols , Graphite , Wastewater , Water Pollutants, Chemical , Graphite/chemistry , Adsorption , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Alcohols/chemistry , Waste Disposal, Fluid/methods , Models, Chemical , Acids/chemistry
2.
Sci Rep ; 14(1): 23521, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39384794

ABSTRACT

A novel synthetic pathway for synthesizing isocyanate-free polyurethanes is reported here. ß-Amino alcohols were efficiently synthesized from the aminolysis of the epoxide ring of (R)-(+)-limonene oxide with different primary amines as nucleophiles and hot water as catalysts. The regio- and diastereoselectivities of the reactions were investigated and supported by computational studies. DFT calculations were performed to understand the experimental results more deeply. It confirmed the crucial roles of water molecules and the nature of the nucleophile in forming the products. The formation of the product is entirely driven by the free energy of activation that affects the reaction rate. Cyclic carbamates were prepared from ß-amino alcohols using the dialkyl carbonate (DAC) chemistry. An oligourethane was obtained from Anionic Ring-Opening Polymerization (AROP) of a cyclic carbamate derived from (R)-(+)-limonene-oxide. All the products were characterized by employing 1H and 13C NMR spectroscopies. The assignments of the signals in 1H and 13C NMR spectra were also supported by 2D NMR spectroscopy.

3.
Curr Comput Aided Drug Des ; 20(7): 1130-1146, 2024.
Article in English | MEDLINE | ID: mdl-39354859

ABSTRACT

BACKGROUND: People of all nationalities and social classes are now affected by the growing issue of hypertension. Over time, there has been a consistent rise in the fatality rate. A range of therapeutic compounds, on the other hand, are often used to handle hypertension. OBJECTIVES: The objectives of this study are first to design potential antihypertensive drugs based on the DHP scaffold, secondly, to analyse drug-likeness properties of the ligands and investigate their molecular mechanisms of binding to the model protein Cav1.2 and finally to synthesise the best ligand. MATERIALS AND METHODS: Due to the lack of 3D structures for human Cav1.2, the protein structure was modelled using a homology modelling approach. A protein-ligand complex's strength and binding interaction were investigated using molecular docking and molecular dynamics techniques. DFT-based electronic properties of the ligand were calculated using the M06-2X/ def2- TZVP level of theory. The SwissADME website was used to study the ADMET properties. RESULTS: In this study, a series of DHP compounds (19 compounds) were properly designed to act as calcium channel blockers. Among these compounds, compound 16 showed excellent binding scores (-11.6 kcal/mol). This compound was synthesised with good yield and characterised. To assess the structural features of the synthesised molecule quantum chemical calculations were performed. CONCLUSION: Based on molecular docking, molecular dynamics simulations, and drug-likeness properties of compound 16 can be used as a potential calcium channel blocker.


Subject(s)
Calcium Channel Blockers , Calcium Channels, L-Type , Dihydropyridines , Drug Design , Molecular Docking Simulation , Molecular Dynamics Simulation , Calcium Channel Blockers/pharmacology , Calcium Channel Blockers/chemical synthesis , Calcium Channel Blockers/chemistry , Dihydropyridines/pharmacology , Dihydropyridines/chemistry , Dihydropyridines/chemical synthesis , Humans , Calcium Channels, L-Type/metabolism , Density Functional Theory , Ligands , Antihypertensive Agents/pharmacology , Antihypertensive Agents/chemical synthesis , Antihypertensive Agents/chemistry , Computer Simulation
4.
Article in English | MEDLINE | ID: mdl-39356248

ABSTRACT

Electrocatalytic carbon dioxide reduction (CO2RR) technology enables the conversion of excessive CO2 into high-value fuels and chemicals, thereby mitigating atmospheric CO2 concentrations and addressing energy scarcity. Single-atom alloys (SAAs) possess the potential to enhance the CO2RR performance by full utilization of atoms and breaking linear scaling relationships. However, quickly screening high-performance metal portfolios of SAAs remains a formidable challenge. In this study, we proposed an active learning (AL) framework to screen high-performance catalysts for CO2RR to yield fuels such as CH4 and CH3OH. After four rounds of AL iterations, the ML model attained optimal prediction performance with the test set R2 of approximately 0.94 and successful prediction was achieved for the binding free energy of *CHO, *COH, *CO, and *H on 380 catalyst surfaces with an accuracy within 0.20 eV. Subsequent analysis of the SAA catalysts' activity, selectivity, and stability led to the discovery of eight previously unexplored SAA catalysts for CO2RR. Notably, the surface activity of Ti@Cu(100), Au@Pt(100), and Ag@Pt(100) shines prominently. Utilizing DFT calculations, we elucidated the complete reaction pathway of the CO2RR on the surfaces of these catalysts, confirming their high catalytic activity with limiting potentials of -0.11, -0.34, and -0.46 eV, respectively, which are significantly lower than those of pure Cu catalysts. The results showcase the exceptional predictive prowess of AL, providing a valuable reference for the design of CO2RR catalysts.

5.
Phytomedicine ; 135: 156108, 2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39383634

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease that leads to development of cognition and memory dysfunctions. Currently, there is no known cure for AD, although limited medications are approved for the management of disease condition. Various plant-based leads give new hope for considering phytoconstituents as anti-AD drugs. The Piper nigrum L. fruit extract was reported to have anti-Alzheimer's activity. It creates an interest in the finding of active moieties that may be accountable for anti-AD activity. HYPOTHESIS/PURPOSE: Identification of multitarget directed ligands isolated from Piper nigrum fruits through AI based studies. STUDY DESIGN: The phytochemical analysis of alkaloid fraction was carried out by LCMS, followed by the evaluation of constituents through in silico studies. METHODS: The fruits methanolic extract was prepared by cold maceration technique. The chemical profiling of the alkaloidal fraction was carried out using LCMS/MS analysis. The obtained compound's target hit genes were identified through network pharmacology studies using String, Metascape, and Cytoscape tools. Further, docking studies and MD simulations were carried out using AutoDock4 and Desmond-Maestro software. Then, electrochemical properties of hit compound P4 were determined using Gaussview6 software. RESULTS: From LCMS/MS analysis data, 29 compounds were considered based on compound intensity and accuracy (>95 %). Then, 41 common gene targets were identified from AD genes and compound-targeted genes. The 41 common genes in the PPI network suggested that AChE and BACE1 were the most abundant proteins. Further, docking studies revealed the hit compound P4 binding interaction and energies when compared to other 28 ligands. The molecular dynamics studies showed that P4-AChE and P4-BACE1 complexes were stable, and there were no RMSD and RMSF fluctuations were observed up to 100 ns. Further, PCA and MM-GBSA analysis data supported that complexes (P4-AChE and P4-BACE1) were stable. The DFT and surface properties indicated that compound P4 was ideal candidate for AD treatment and must be considered for further biological activity studies. CONCLUSION: The study identified compound P4 (dehydropipernonaline) from alkaloidal fraction of Piper nigrum fruits, suggesting it may be hit candidate for AD treatment.

6.
Chemphyschem ; : e202400517, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39384534

ABSTRACT

Advancing grid-scale energy storage technologies is crucial for realizing a fully renewable energy landscape, with non-aqueous redox flow batteries (NRFBs) presenting a promising solution. One of the current challenges in NRFBs stems from the low energy density of redox active materials, primarily due to their limited solubility in non-aqueous solvents. Herein, this study explores the solubility of vanadium(IV/V) bis-hydroxyiminodiacetate (VBH) crystals in acetonitrile, aiming to use them as anionic catholytes in NRFBs. We focused on enhancing VBH solubility by modifying the structure of the alkylammonium cation. Employing periodic density functional theory and a solvation model, we calculated the dissolution free energy ([[EQUATION]]), which includes sublimation ([[EQUATION]]) and solvation ([[EQUATION]]) energies. Our results indicate that neither elongating straight-chain alkyl groups beyond a tetrabutylammonium baseline nor introducing bulky substituents at the nitrogen center significantly enhances solubility. However, the introduction of carbon spacers combined with terminal bulky substituents markedly improves solubility by favorably altering both [[EQUATION]] and [[EQUATION]]. These findings underline the nuanced impact of cation structure on solubility and suggest a viable approach to optimize VBH-based anionic catholytes. This advancement promises to enhance NRFB efficiency and sustainability, marking a significant step forward in energy storage technology.

7.
J Colloid Interface Sci ; 679(Pt A): 90-99, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357229

ABSTRACT

The integration of methanol oxidation reaction (MOR) with hydrogen evolution reaction (HER) represents an advanced approach to hydrogen production technology. Nonetheless, the rational design and synthesis of bifunctional catalysts for both MOR and HER with exceptional activity, stability and selectivity present formidable challenges. In this work, firstly, density functional theory (DFT) was utilized to design and evaluate material models with high performance for both MOR and HER. Secondly, guided by DFT, Co30Ni60/CC (CC, carbon cloth) composites with a leaf-like nanosheet structure were successfully fabricated via electrodeposition. In the MOR process, Ni acts as the predominant active center, while Co amplifies the electrochemically active surface area (ECSA) and enhances the selectivity of methanol oxidation. Conversely, in the HER process, Co serves as the primary active center, with Ni augmenting the charge transfer rate. The electrochemical results demonstrate that Co30Ni60/CC exhibits exceptional performance in both MOR and HER at a current density (j) of 10 mA cm-2, with peak potentials of 1.323 V and -95 mV, respectively. Additionally, it shows remarkable selectivity for the oxidiation of methanol to high value-added formic acid. Thirdly, following a 100 h chronopotentiometry (CP) test, the required potential demonstrates an increase of 4.9 % (MOR) and 8.1 % (HER), signifying the superior stability of Co30Ni60/CC compared to those reported in the literature. The exceptional performance of Co30Ni60/CC can be primarily attributed to that the leaf-like nanosheets structure not only exposes a plethora of active sites but also facilitates electrolyte diffusion, the monolithic structure prepared by electrodeposition enhances its stability, and the transfer of electrons from Co to Ni regulates its electronic structure, as corroborated by X-ray photoelectron spectroscopy (XPS) and density of states (DOS) analyses. Finally, at the same j, the voltage required by the Co30Ni60/CC||Co30Ni60/CC electrolytic cell, powered by an electrochemical workstation, is 198 mV lower than that required for alkaline water-splitting. Meanwhile, at higher j (100 mA cm-2), the electrolytic cell exhibits sustained and stable operation for 150 h, enabling high-efficiency hydrogen production and the synthesis of high value-added formic acid.

8.
J Mol Model ; 30(11): 362, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39361052

ABSTRACT

CONTEXT: In a proof-of-concept study, we explore how a combined approach using the topology of the electron localization function (ELF) and the condensed dual descriptor (DD) function can guide the optimal orientation between reactants and mimic the potential energy surfaces of molecular systems at the beginning of the chemical pathway. The DD has been chosen for its ability to evaluate the regioselectivity of neutral and soft species and to potentially mimic the interaction energy obtained from the mutual interactions between nucleophilic and electrophilic regions of the building blocks under perturbative theory. METHOD: Our method has been illustrated with examples in which the optimal orientation of several systems can be successfully identified. The limitations of the presented model in predicting chemical reactivity are outlined in particular the influence of the selected condensation scheme.

9.
J Mol Model ; 30(11): 361, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39361186

ABSTRACT

CONTEXT: We rationalize the excellent performance of information-theoretic descriptors for predicting atomic and molecular polarizabilities. It seems that descriptors which capture information about the change in valence-shell structure, especially the relative Fisher information measures, are particularly useful. Using this, we can rationalize why the G3 form of the relative Fisher information, which measures the deviation of effective nuclear charge between an atom-in-a-molecule and the reference pro-atom, is especially effective as a predictor of molecular polarizability. METHODS: There are no methods used in this paper, which relies on mathematical derivation and analysis.

10.
Adv Mater ; : e2410508, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39363814

ABSTRACT

The development of functional thermoelectric materials requires direct evidence of dopants' locations to rationally design the electronic and phononic structure of the host matrix. In this study, Cs-corrected scanning transmission electron microscopy and energy dispersive X-ray spectroscopy is employed at the atomic scale to identify Cu atoms' locations in a Cu-doped SnTe thermoelectric alloy. It is revealed that Cu atoms in the rocksalt SnTe form solid solutions at both Sn and Te sites, contrary to their electronegativity order and the intentional Cu doping at Sn sites. Cu atoms are also located at the tetrahedral and crowdion sites of the face-centred cubic structure, with varying degrees of correlations. Such high flexibility of Cu atoms in the rocksalt SnTe offers diverse phonon-scattering mechanisms conducive to the ultra-low lattice thermal conductivity of singly Cu-doped SnTe. This study offers atomic-scale insights for achieving more precise dopant engineering, leading to the accelerated development of functional thermoelectric materials.

11.
J Mol Model ; 30(11): 366, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365465

ABSTRACT

CONTEXT: Photodetectors utilizing donor/acceptor (D/A) molecules have the capacity to detect light through molecular interactions between a donor and an acceptor molecule. These devices leverage electronic or optical changes within molecules when exposed to light, resulting in observable modifications. The unique properties of photodetectors with D/A molecules make them valuable tools in various fields, including molecular electronics. This paper presents the modeling and simulation of a single-molecule photodetector based on a D/A molecule configuration. The acceptor molecule used is N-doped C60 fullerene, while the donor molecule is B-doped C60 fullerene. Initially, simulations were conducted at zero bias voltage to determine the energy and states of the bipartite molecule. Subsequently, the system's Hamiltonian was computed based on these results. The self-consistent field method (SCF) and optical self-energy coefficients were employed for modeling. Finally, the current-voltage curve of the device was derived for various input light frequencies. The simulation and modeling results demonstrated that the device exhibited negative differential resistances at bias voltages of 0.33 V, 1.58 V, and - 0.93 V, depending on the input light frequency. Furthermore, the designed device demonstrated the ability to detect and absorb waves with different frequencies. The number of current peaks in the current-voltage curve varied with by altering the number of optical modes. METHODS: The computational work was conducted using the software package of Atomistix ToolKit (ATK-2018.06) and MATLAB code. The calculations were based on the density functional theory (DFT) approach and the self-consistent field method, specifically the non-equilibrium Green function (NEGF). The exchange correlation function was investigated using the generalized gradient approximation (GGA) proposed by Perdew, Burke, and Ernzerhof (PBE). For the calculations, we employed the double-ζ plus polarization (DZP) basis set. Initially, the structures of N doped-C60-σ-B-doped-C60 molecule underwent optimization using the DFT approach implemented in the ATK package. This optimization process allowed us to extract the parameters of the molecule. Subsequently, we utilized the NEGF formalism in MATLAB software to model and simulate photodetector based on the optimized molecule. We calculated important features of the photodetector, such as photocurrent, and compared the performance of the photodetector using photons with energies of 2 and 3 eV.

12.
Arh Hig Rada Toksikol ; 75(3): 159-171, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39369326

ABSTRACT

Neutral bis(amino acidato)copper(II) [Cu(aa)2] coordination compounds are the physiological species of copper(II) amino acid compounds in blood plasma taking the form of bis(l-histidinato)copper(II) and mixed ternary copper(II)-l-histidine complexes, preferably with l-glutamine, l-threonine, l-asparagine, and l-cysteine. These amino acids have three functional groups that can bind metal ions: the common α-amino and carboxylate groups and a side-chain polar group. In Cu(aa)2, two coordinating groups per amino acid bind to copper(II) in-plane, while the third group can bind apically, which yields many possibilities for axial and planar bonds, that is, for bidentate and tridentate binding. So far, the experimental studies of physiological Cu(aa)2 compounds in solutions have not specified their complete geometries. This paper provides a brief review of my group's research on structural properties of physiological Cu(aa)2 calculated using the density functional theory (DFT) to locate low-energy conformers that can coexist in aqueous solutions. These DFT investigations have revealed high conformational flexibility of ternary Cu(aa)2 compounds for tridentate or bidentate chelation, which may explain copper(II) exchange reactions in the plasma and inform the development of small multifunctional copper(II)-binding drugs with several possible copper(II)-binding groups. Furthermore, our prediction of metal ion affinities for Cu2+ binding with amino-acid ligands in low-energy conformers with different coordination modes of five physiological Cu(aa)2 in aqueous solution supports the findings of their abundance in human plasma obtained with chemical speciation modelling.


Subject(s)
Amino Acids , Copper , Copper/chemistry , Copper/blood , Amino Acids/chemistry , Amino Acids/blood , Humans , Coordination Complexes/chemistry , Coordination Complexes/blood
13.
Sci Rep ; 14(1): 23409, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39379441

ABSTRACT

The fascinating electronic applications attracted researchers to explore the field of nonlinear optical (NLO) materials. The slow evaporation of solvent technique (SEST) was employed to grow the 2-cyanopyridinium perchlorate (2-CPPC) NLO single crystals. The cell parameters of the grown 2-CPPC crystal are confirmed by the single crystal X-ray diffraction (SCXRD) study. The powder X-ray diffraction studies confirm the crystallinity of 2-CPPC crystals, and the peaks were indexed. The computation for the geometry optimization, HOMO-LUMO energy gap, global reactivity parameters, natural bond orbital (NBO) analysis, polarizability, and hyperpolarizability of the 2-CPPC molecule was done using B3LYP (6-311G basis set) functional of DFT method. The experimental FTIR and UV-Vis results of the 2-CPPC compound were compared with the simulated results. The second harmonic generation (SHG) study for the 2-CPPC crystal was employed using Kurtz-Perry powder technique. Single beam Z-scan technique using He-Ne laser is used to study the third-order NLO properties.

14.
Small Methods ; : e2401278, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377765

ABSTRACT

Efficient, stable, and low-cost oxygen reduction catalysts are the key to the large-scale application of metal-air batteries. Herein, high-dispersive Fe2O3 nanoparticles (NPs) with abundant oxygen vacancies uniformly are anchored on lignin-derived metal-nitrogen-carbon (M-N-C) hierarchical porous nanosheets as efficient oxygen reduction reaction (ORR) catalysts (Fe2O3/M-N-C, M═Cu, Mn, W, Mo) based on a general and economical KCl molten salt-assisted method. The combination of Fe with the highly electronegative O induces charge redistribution through the Fe-O-M structure, thereby reducing the adsorption energy of oxygen-containing substances. The coupling effect of Fe2O3 NPs with M-N-C expedites the catalytic activity toward ORR by promoting proton generation on Fe2O3 and transfer to M-N-C. Experimental and theoretical calculation further revealed the remarkable electronic structure evolution of the metal site during the ORR process, where the emission density and local magnetic moment of the metal atoms change continuously throughout their reaction. The unique layered porous structure and highly active M-N4 sites resulted in the excellent ORR activity of Fe2O3/Cu-N-C with the onset potential of 0.977 V, which is superior to Pt/C. This study offers a feasible strategy for the preparation of non-noble metal catalysts and provides a new comprehension of the catalytic mechanism of M-N-C catalysts.

15.
Article in English | MEDLINE | ID: mdl-39378910

ABSTRACT

In the past few decades, two-dimensional (2-D) materials gained huge deliberation due to their outstanding electronic and heat transport properties. These materials have effective applications in many areas such as photodetectors, battery electrodes, thermoelectrics, etc. In this work, we have calculated structural, electronic, optical, and thermoelectric properties of KCuX (X = S, Se, Te) monolayers (MLs) with the help of first-principles-based calculations and semi-classical Boltz- mann transport equation (BTE). The phonon dispersion calculations demonstrate the dynamical stability of the KCuX (X = S, Se, Te) MLs. Our results show that the monolayers of KCuX (X = S, Se, Te) are semiconductors with band gaps of 0.193 eV, 0.26 eV, and 1.001 eV respectively, and therefore they are suitable for photovoltaic applications. The optical analysis illustrates that the maximum absorption peaks of the KCuX (X = S, Se, Te) MLs are located in visible and ultraviolet (UV) regions, which may serve as a promising candidate for designing advanced optoelectronic devices. Furthermore, thermoelectric properties of the KCuS and KCuSe MLs, including See- beck coefficient, electrical conductivity, electronic thermal conductivity, power factor, and figure of merit, are calculated at different temperatures 300 K, 600 K, and 800 K. Additionally, we also focus on the analysis of Gru ̈neisen parameter and various scattering rates to further explain their ultra-low thermal conductivity. Our results show that KCuS and KCuSe possess ultra-low lattice thermal conductivity value of 0.15 Wm-1K-1 and 0.06 Wm-1K-1 respectively, which is lower than those of recently reported KAgSe (0.26 Wm-1K-1 at 300 K) and TlCuSe (0.44 Wm-1K-1 at 300 K), indicating towards the large value of ZT. These materials are found to possess desirable thermoelectric and optical properties, making them suitable candidates for efficient thermoelectric and optoelectronic device applications.

16.
Sci Rep ; 14(1): 23254, 2024 Oct 06.
Article in English | MEDLINE | ID: mdl-39370464

ABSTRACT

Two-dimensional materials with chemical formula MA2Z4 are a promising class of materials for optoelectronic applications. To exploit their potential, their stability with respect to air pollution has to be analyzed under different conditions. In a first-principle study based on density functional theory, we investigate the adsorption of three common environmental gas molecules (O2, H2O, and CO2) on monolayer WSi2N4, an established representative of the MA2Z4 family. The computed adsorption energies, charge transfer, and projected density of states of the polluted monolayer indicate a relatively weak interaction between substrate and molecules resulting in an ultrashort recovery time of the order of nanoseconds. O2 and water introduce localized states in the upper valence region but do not alter the semiconducting nature of WSi2N4 nor its band-gap size apart from a minor variation of a few tens of meV. Exploring the same scenario in the presence of photogenerated electrons and holes, we do not notice any substantial difference except for O2 chemisorption when negative charge carriers are in the system. In this case, monolayer WSi2N4 exhibits signs of irreversible oxidation, testified by an adsorption energy of -5.5 eV leading to an infinitely long recovery time, a rearrangement of the outermost atomic layer bonding with the pollutant, and n-doping of the system. Our results indicate stability of WSi2N4 against H2O and CO2 in both dark and bright conditions, suggesting the potential of this material in nanodevice applications.

17.
Article in English | MEDLINE | ID: mdl-39365845

ABSTRACT

This work is focused on the synthesis of several transition metal complexes [ML(MA)], where M = Copper (II), Zinc (II), Cobalt (II) and Nickel (II), MA = maleic acid and L = Schiff base generated from benzene-1,2-diamine [o-phenylenediamine] and 4-chlorobenzaldehyde. The characterization using Fourier-Transform Infrared, Nuclear Magnetic Resonance spectroscopy, Ultraviolet-Visible spectra, Mass, Electro Paramagnetic Resonance and elemental analysis confirm the square planar geometry of the complexes. The in vitro antimicrobial potential of the complexes has been tested by the broth dilution method and the antioxidant method has been done by free radical scavenging analysis. The in vitro methods reveal the outstanding biological characteristics of the copper complexes. The molecular structure of the ligand and its metal (II) complexes has been optimized using Density Functional Theory studies performed by the Gaussian-09 software and their parameters have been discussed. Natural Bond Orbital and Frontier Molecular Orbital analyses have assessed the presence of a metal-ligand bond in complexes. In addition, molecular docking studies have also been performed on antiviral activity of all the complexes using a viral protein and their interacting amino acids.


All the metal complexes have the strong tendency to undergo intercalation mode of binding with CT DNA.The optimized geometry and the quantum mechanical examinations are carried out using Gaussian 09W software.The docking of synthesized compounds with SARS-CoV-2 receptor 7ACS protease 7AEH represents the docking of metal complexes.In silico and in vitro analyses of the synthesized compounds.

18.
Small ; : e2406589, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39367551

ABSTRACT

The growing interest in low-temperature direct ammonia fuel cells (DAFCs) arises from the utilization of a carbon-neutral ammonia source; however, DAFCs encounter significant electrode overpotentials due to the substantial energy barrier of the *NH2 to *NH dehydrogenation, compounded by the facile deactivation by *N on the Pt surface. In this work, a unique catalyst, Pt4Ir@AlOOH/NGr i.e., Pt4Ir/ANGr, is introduced composed of PtIr alloy nanoparticles controllably decorated on the pseudo-boehmite phase of AlOOH-supported nitrogen-doped reduced graphene (AlOOH/NGr) composite, synthesized via the polyol reduction method. The detailed studies on the structural and electronic properties of the catalyst by XAS and VB-XPS reveal the possible electronic modulations. The optimized Pt4Ir/ANGr composition exhibits a significantly improved onset potential and mass activity for AOR. The DFT study confirms the OHad species spillover by AlOOH and Pt4Ir (100) facilitates the conversion of the *NH2 to *NH with minimal energy barriers. Finally, testing of DAFC at the system level using a membrane electrode assembly (MEA) with Pt4Ir/ANGr as the anode catalyst, demonstrating the suitability of the catalyst for its practical applications. This study thus uncovers the potential of the Pt4Ir catalyst in synergy with ANGr, largely addressing the challenges in hydrogen transportation, storage, and safety within DAFCs.

19.
Small ; : e2405817, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377313

ABSTRACT

2D MXene nanomaterials have excellent potential for application in novel electrochemical energy storage technologies such as supercapacitors and batteries, but the existing pure MXene is difficult to meet the practical needs. Although the electrochemical properties of modified MXene have been improved, the unclear ion storage mechanism still hinders the development of MXene-based electrode materials. Herein, the study develops flexible self-supported nitrogen-doped Ti3C2 (Py-Ti3C2) films by the highly mobile, high nitrogen content, oxygen-free pyridine-assisted solvothermal method, and then deeply investigates the energy storage mechanism of hybrid supercapacitors in four aqueous electrolytes (H2SO4, Li2SO4, Na2SO4, and MgSO4). The experimental results suggest that the Py-Ti3C2 film electrode exhibits a pseudocapacitance-dominated energy storage mechanism. Particularly, the specific capacity of the Py-Ti3C2 in 1 M H2SO4 (506 F g-1 at 0.1 A g-1) is 4-5 times higher than other electrolytes (≈110 F g-1), which could be attributed to the substantially higher ionic diffusion coefficient of H+ than those of Li+, Na+, Mg2+ with small ionic size, high ionic conductivity, and fast pseudocapacitance response. Theoretical analysis further confirms that Py-Ti3C2 has strengthened conductivity and electrical double-layer capacitance performance. Meanwhile, it has lower free energy for protonation and deprotonation of functional groups, which gives excellent pseudocapacitance performance.

20.
J Mol Model ; 30(11): 369, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377846

ABSTRACT

CONTEXT: Exploring potential energy surfaces (PES) is fundamental in computational chemistry, as it provides insights into the relationship between molecular energy, geometry, and chemical reactivity. We introduce Kick-MEP, a hybrid method for exploring the PES of atomic and molecular clusters, particularly those dominated by non-covalent interactions. Kick-MEP computes the Coulomb integral between the maximum and minimum electrostatic potential values on a 0.001 a.u. electron density isosurface for two interacting fragments. This approach efficiently estimates interaction energies and selects low-energy configurations at reduced computational cost. Kick-MEP was evaluated on silicon-lithium clusters, water clusters, and thymol encapsulated within Cucurbit[7]uril, consistently identifying the lowest energy structures, including global minima and relevant local minima. METHODS: Kick-MEP generates an initial population of molecular structures using the stochastic Kick algorithm, which combines two molecular fragments (A and B). The molecular electrostatic potential (MEP) values on a 0.001 a.u. electron density isosurface for each fragment are used to compute the Coulomb integral between them. Structures with the lowest Coulomb integral are selected and refined through gradient-based optimization and DFT calculations at the PBE0-D3/Def2-TZVP level. Molecular docking simulations for the thymol-Cucurbit[7]uril complex using AutoDock Vina were performed for benchmarking. Kick-MEP was validated across different molecular systems, demonstrating its effectiveness in identifying the lowest energy structures, including global minima and relevant local minima, while maintaining a low computational cost.

SELECTION OF CITATIONS
SEARCH DETAIL