Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 211
Filter
1.
J Med Virol ; 96(10): e29947, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39370858

ABSTRACT

To clarify the epidemiology of enterovirus D68 (EV-D68), an enterovirus rarely identified in the 20th century, we performed seroepidemiological analysis against EV-D68 using sera collected in 1976, 1985, 1990, 1999, 2009, and 2019, as well as Yamagata isolate (EVD68/Yamagata.JPN/2023-89), in Yamagata, Japan. The neutralizing antibody (Ab)-positive rates for those under 20 years old were 61.0%, 82.5%, 84.3%, 46.7%, 50.5%, and 67.9%, in each year, whereas the rates for those above 20 years old were between 93.4% and 99.1%. Generally, geometric mean titers (GMTs)increased with age among children and the total GMT in each year was 25.4, 49.2, 37.2, 30.8, 29.5, and 33.9, from 1976 to 2019, respectively. The findings in this Yamagata-based study showed that the seroprevalence of EV-D68 over the last four decades has increased with age among children, as a susceptible group, and then reaches a plateau of over approximately 80% among adults. This study clearly revealed that EV-D68 was stably transmitted among children in the 20th century, when EV-D68 detection was quite rare.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Enterovirus D, Human , Enterovirus Infections , Humans , Seroepidemiologic Studies , Japan/epidemiology , Enterovirus Infections/epidemiology , Enterovirus Infections/virology , Child , Enterovirus D, Human/immunology , Child, Preschool , Adolescent , Antibodies, Viral/blood , Young Adult , Adult , Antibodies, Neutralizing/blood , Infant , Female , Male , Middle Aged , Aged , Aged, 80 and over
2.
Euro Surveill ; 29(41)2024 Oct.
Article in English | MEDLINE | ID: mdl-39392006

ABSTRACT

We report a considerable increase in enterovirus D68 (EV-D68) cases since July 2024, culminating in an ongoing outbreak of acute respiratory infections in northern Italy, accounting for nearly 90% of all enterovirus infections. The outbreak was identified by community- and hospital-based surveillance systems, detecting EV-D68 in individuals with mild-to-severe respiratory infections. These strains belonged to B3 and a divergent A2 lineage. An increase in adult cases was observed. Enhanced surveillance and molecular characterisation of EV-D68 across Europe are needed.


Subject(s)
Disease Outbreaks , Enterovirus D, Human , Enterovirus Infections , Respiratory Tract Infections , Humans , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Respiratory Tract Infections/diagnosis , Enterovirus Infections/epidemiology , Enterovirus Infections/diagnosis , Enterovirus Infections/virology , Italy/epidemiology , Enterovirus D, Human/isolation & purification , Enterovirus D, Human/genetics , Adult , Adolescent , Child , Male , Child, Preschool , Female , Middle Aged , Infant , Aged , Young Adult , Population Surveillance , Phylogeny
3.
Pediatr Pulmonol ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39315747

ABSTRACT

BACKGROUND: Human enterovirus D68 (EV-D68) has been associated with an increase in mild-to-severe pediatric respiratory diseases in western countries. However, the prevalence and clinical characteristics of EV-D68-associated pneumonia in China remain understudied. METHODS: Between January 2022 and January 2024, 28 patients with EV-D68-associated pneumonia were enrolled. We described the prevalence, demographic, and clinical characteristics of patients with EV-D68-associated pneumonia. RESULTS: Among the 28 enrolled patients, the male-to-female ratio was 1.5:1, and the average age at onset was 4.6 ± 2.7 years. Four (14.3%) required intensive care support. Monoinfection occurred in 11 cases (39.3%), while coinfections were seen in 17 cases (60.7%). 82.1% of patients had a history of one or more atopic diseases. The primary symptoms of EV-D68-associated pneumonia included cough (100%), wheezing (53.6%), and fever (53.6%). Radiologically, patchy opacity was the predominant feature, observed in 72.7% of cases. No statistically significant differences were found in symptoms, laboratory tests, or imaging findings between the monoinfection and coinfection groups. Except for one case who developed quadriplegia sequelae, all patients had a favorable prognosis. CONCLUSION: EV-D68 is not a common pathogen for community-acquired pneumonia in China. It mainly affects young children, particularly those with atopic constitution. The overall prognosis is favorable, although neurological complications are rare and may lead to severe sequelae. This study is the first investigation into the prevalence and clinical characteristics of EV-D68-associated pneumonia in China.

4.
J Virol Methods ; 330: 115030, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39236986

ABSTRACT

A method that has rapidly evolved for detection of viral pathogens are loop-mediated isothermal amplification (LAMP) assays. The available LAMP assays usually target the most common viral strains, including enteroviruses, but for the atypical enterovirus D68 strain VR-1197 this method has not yet been developed. Enterovirus D68 are known for severe respiratory distress in children, and atypical strains are less likely to be detected by traditional methods. This study targets the atypical EVD68 strain VR-1197 and have developed a rapid detection method saving time when differentiating enterovirus strains. This study present method development and review the sensitivity and specificity compared to traditional RT-qPCR, and wet lab cross reactivity with other airway pathogens. The EVD68 VR-1197 assay can be a rapid POC (Point of care) test for atypical EVD68 VR-1197 and have the potential as reliable detection method with minimal technological requirements.

5.
J Infect Dis ; 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39215587

ABSTRACT

Gullain-Barré syndrome (GBS) is an acute peripheral neuropathy often preceded by respiratory or gastrointestinal infections, though molecular testing of cerebrospinal fluid (CSF) is often inconclusive. In a recent case of severe pediatric GBS in British Columbia, Canada, we detected CSF antibodies against enterovirus D (EV-D) to link GBS with prior EV-D68 respiratory infection.

6.
Emerg Infect Dis ; 30(8): 1687-1691, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39043450

ABSTRACT

In December 2023, we observed through hospital-based surveillance a severe outbreak of enterovirus D68 infection in pediatric inpatients in Dakar, Senegal. Molecular characterization revealed that subclade B3, the dominant lineage in outbreaks worldwide, was responsible for the outbreak. Enhanced surveillance in inpatient settings, including among patients with neurologic illnesses, is needed.


Subject(s)
Disease Outbreaks , Enterovirus D, Human , Enterovirus Infections , Respiratory Tract Infections , Humans , Senegal/epidemiology , Enterovirus D, Human/genetics , Enterovirus D, Human/classification , Enterovirus D, Human/isolation & purification , Enterovirus Infections/epidemiology , Enterovirus Infections/virology , Enterovirus Infections/diagnosis , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Child, Preschool , Infant , Child , Phylogeny , Male , Female , Acute Disease/epidemiology , Adolescent , Hospitals , History, 21st Century
7.
JMIR Public Health Surveill ; 10: e57349, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38805611

ABSTRACT

BACKGROUND:  The early identification of outbreaks of both known and novel influenza-like illnesses (ILIs) is an important public health problem. OBJECTIVE:  This study aimed to describe the design and testing of a tool that detects and tracks outbreaks of both known and novel ILIs, such as the SARS-CoV-2 worldwide pandemic, accurately and early. METHODS:  This paper describes the ILI Tracker algorithm that first models the daily occurrence of a set of known ILIs in hospital emergency departments in a monitored region using findings extracted from patient care reports using natural language processing. We then show how the algorithm can be extended to detect and track the presence of an unmodeled disease that may represent a novel disease outbreak. RESULTS:  We include results based on modeling diseases like influenza, respiratory syncytial virus, human metapneumovirus, and parainfluenza for 5 emergency departments in Allegheny County, Pennsylvania, from June 1, 2014, to May 31, 2015. We also include the results of detecting the outbreak of an unmodeled disease, which in retrospect was very likely an outbreak of the enterovirus D68 (EV-D68). CONCLUSIONS:  The results reported in this paper provide support that ILI Tracker was able to track well the incidence of 4 modeled influenza-like diseases over a 1-year period, relative to laboratory-confirmed cases, and it was computationally efficient in doing so. The system was also able to detect a likely novel outbreak of EV-D68 early in an outbreak that occurred in Allegheny County in 2014 as well as clinically characterize that outbreak disease accurately.


Subject(s)
Algorithms , Bayes Theorem , Disease Outbreaks , Influenza, Human , Humans , Influenza, Human/epidemiology , Pennsylvania/epidemiology , COVID-19/epidemiology , Emergency Service, Hospital/statistics & numerical data
8.
J Virol ; 98(6): e0043424, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38690875

ABSTRACT

The globally reemerging respiratory pathogen enterovirus D68 (EV-D68) is implicated in outbreaks of severe respiratory illness and associated with acute flaccid myelitis. However, there remains a lack of effective treatments for EV-D68 infection. In this work, we found that the host Toll-like receptor 7 (TLR7) proteins, which function as powerful innate immune sensors, were selectively elevated in expression in response to EV-D68 infection. Subsequently, we investigated the impact of Vesatolimod (GS-9620), a Toll-like receptor 7 agonist, on EV-D68 replication. Our findings revealed that EV-D68 infection resulted in increased mRNA levels of TLR7. Treatment with Vesatolimod significantly inhibited EV-D68 replication [half maximal effective concentration (EC50) = 0.1427 µM] without inducing significant cytotoxicity at virucidal concentrations. Although Vesatolimod exhibited limited impact on EV-D68 attachment, it suppressed RNA replication and viral protein synthesis after virus entry. Vesatolimod broadly inhibited the replication of circulating isolated strains of EV-D68. Furthermore, our findings demonstrated that treatment with Vesatolimod conferred resistance to both respiratory and neural cells against EV-D68 infection. Overall, these results present a promising strategy for drug development by pharmacologically activating TLR7 to initiate an antiviral state in EV-D68-infected cells selectively.IMPORTANCEConventional strategies for antiviral drug development primarily focus on directly targeting viral proteases or key components, as well as host proteins involved in viral replication. In this study, based on our intriguing discovery that enterovirus D68 (EV-D68) infection specifically upregulates the expression of immune sensor Toll-like receptor 7 (TLR7) protein, which is either absent or expressed at low levels in respiratory cells, we propose a potential antiviral approach utilizing TLR7 agonists to activate EV-D68-infected cells into an anti-viral defense state. Notably, our findings demonstrate that pharmacological activation of TLR7 effectively suppresses EV-D68 replication in respiratory tract cells through a TLR7/MyD88-dependent mechanism. This study not only presents a promising drug candidate and target against EV-D68 dissemination but also highlights the potential to exploit unique alterations in cellular innate immune responses induced by viral infections, selectively inducing a defensive state in infected cells while safeguarding uninfected normal cells from potential adverse effects associated with therapeutic interventions.


Subject(s)
Antiviral Agents , Enterovirus D, Human , Toll-Like Receptor 7 , Virus Replication , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/metabolism , Humans , Virus Replication/drug effects , Enterovirus D, Human/drug effects , Antiviral Agents/pharmacology , Indoles/pharmacology , Enterovirus Infections/virology , Immunity, Innate/drug effects , Cell Line , Virus Internalization/drug effects , Pteridines
9.
J Infect Dis ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38547499

ABSTRACT

Enterovirus D68 (EV-D68) infections are associated with severe respiratory disease and acute flaccid myelitis (AFM). The European Non-Polio Enterovirus Network (ENPEN) aimed to investigate the epidemiological and genetic characteristics of EV-D68 and its clinical impact during the fall-winter season of 2021/22. From 19 European countries, 58 institutes reported 10,481 (6.8%) EV-positive samples of which 1,004 (9.6%) were identified as EV-D68 (852 respiratory samples). Clinical data was reported for 969 cases. 78.9% of infections were reported in children (0-5 years); 37.9% of cases were hospitalised. Acute respiratory distress was commonly noted (93.1%) followed by fever (49.4%). Neurological problems were observed in 6.4% of cases with six reported with AFM. Phylodynamic/Nextstrain and phylogenetic analyses based on 694 sequences showed the emergence of two novel B3-derived lineages, with no regional clustering. In conclusion, we describe a large-scale EV-D68 European upsurge with severe clinical impact and the emergence of B3-derived lineages.

10.
Vaccine ; 42(9): 2463-2474, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38472067

ABSTRACT

Enterovirus D68 (EV-D68), a pathogen that causes respiratory symptoms, mainly in children, has been implicated in acute flaccid myelitis, which is a poliomyelitis-like paralysis. Currently, there are no licensed vaccines or treatments for EV-D68 infections. Here, we investigated the optimal viral inactivation reagents, vaccine adjuvants, and route of vaccination in mice to optimize an inactivated whole-virion (WV) vaccine against EV-D68. We used formalin, ß-propiolactone (BPL), and hydrogen peroxide as viral inactivation reagents and compared their effects on antibody responses. Use of any of these three viral inactivation reagents effectively induced neutralizing antibodies. Moreover, the antibody response induced by the BPL-inactivated WV vaccine was enhanced when adjuvanted with cytosine phosphoguanine oligodeoxynucleotide (CpG ODN) or AddaVax (MF59-like adjuvant), but not with aluminum hydroxide (alum). Consistent with the antibody response results, the protective effect of the inactivated WV vaccine against the EV-D68 challenge was enhanced when adjuvanted with CpG ODN or AddaVax, but not with alum. Further, while the intranasal inactivated WV vaccine induced EV-D68-specific IgA antibodies in the respiratory tract, it was less protective against EV-D68 challenge than the injectable vaccine. Thus, an injectable inactivated EV-D68 WV vaccine prepared with appropriate viral inactivation reagents and an optimal adjuvant is a promising EV-D68 vaccine.


Subject(s)
Alum Compounds , Enterovirus D, Human , Enterovirus Infections , Polysorbates , Squalene , Humans , Child , Animals , Mice , Antibodies, Viral , Vaccines, Inactivated , Oligodeoxyribonucleotides , Adjuvants, Immunologic
11.
Emerg Infect Dis ; 30(3): 423-431, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38407198

ABSTRACT

Surveillance for emerging pathogens is critical for developing early warning systems to guide preparedness efforts for future outbreaks of associated disease. To better define the epidemiology and burden of associated respiratory disease and acute flaccid myelitis (AFM), as well as to provide actionable data for public health interventions, we developed a multimodal surveillance program in Colorado, USA, for enterovirus D68 (EV-D68). Timely local, state, and national public health outreach was possible because prospective syndromic surveillance for AFM and asthma-like respiratory illness, prospective clinical laboratory surveillance for EV-D68 among children hospitalized with respiratory illness, and retrospective wastewater surveillance led to early detection of the 2022 outbreak of EV-D68 among Colorado children. The lessons learned from developing the individual layers of this multimodal surveillance program and how they complemented and informed the other layers of surveillance for EV-D68 and AFM could be applied to other emerging pathogens and their associated diseases.


Subject(s)
Central Nervous System Viral Diseases , Enterovirus D, Human , Myelitis , Neuromuscular Diseases , Respiratory Tract Diseases , Child , Humans , Colorado/epidemiology , Prospective Studies , Retrospective Studies , Wastewater , Wastewater-Based Epidemiological Monitoring
12.
mSphere ; 9(2): e0052623, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38259063

ABSTRACT

Enterovirus D68 (EV-D68) is predominantly associated with mild respiratory infections, but can also cause severe respiratory disease and extra-respiratory complications, including acute flaccid myelitis. Systemic dissemination of EV-D68 is crucial for the development of extra-respiratory diseases, but it is currently unclear how EV-D68 spreads systemically (viremia). We hypothesize that immune cells contribute to the systemic dissemination of EV-D68, as this is a mechanism commonly used by other enteroviruses. Therefore, we investigated the susceptibility and permissiveness of human primary immune cells for different EV-D68 isolates. In human peripheral blood mononuclear cells inoculated with EV-D68, only B cells were susceptible but virus replication was limited. However, in B cell-rich cultures, such as Epstein-Barr virus-transformed B-lymphoblastoid cell line (BLCL) and primary lentivirus-transduced B cells, which better represent lymphoid B cells, were productively infected. Subsequently, we showed that dendritic cells (DCs), particularly immature DCs, are susceptible and permissive for EV-D68 infection and that they can spread EV-D68 to autologous BLCL. Altogether, our findings suggest that immune cells, especially B cells and DCs, could play an important role in the pathogenesis of EV-D68 infection. Infection of these cells may contribute to systemic dissemination of EV-D68, which is an essential step toward the development of extra-respiratory complications.IMPORTANCEEnterovirus D68 (EV-D68) is an emerging respiratory virus that has caused outbreaks worldwide since 2014. EV-D68 infects primarily respiratory epithelial cells resulting in mild respiratory diseases. However, EV-D68 infection is also associated with extra-respiratory complications, including polio-like paralysis. It is unclear how EV-D68 spreads systemically and infects other organs. We hypothesized that immune cells could play a role in the extra-respiratory spread of EV-D68. We showed that EV-D68 can infect and replicate in specific immune cells, that is, B cells and dendritic cells (DCs), and that virus could be transferred from DCs to B cells. Our data reveal a potential role of immune cells in the pathogenesis of EV-D68 infection. Intervention strategies that prevent EV-D68 infection of immune cells will therefore potentially prevent systemic spread of virus and thereby severe extra-respiratory complications.


Subject(s)
Enterovirus D, Human , Enterovirus Infections , Epstein-Barr Virus Infections , Respiratory Tract Infections , Humans , Leukocytes, Mononuclear , Herpesvirus 4, Human , Dendritic Cells
13.
Clin Transl Allergy ; 14(1): e12330, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38282201

ABSTRACT

BACKGROUND: Acute asthma exacerbation in children is often caused by respiratory infections. In this study, a coordinated national surveillance system for acute asthma hospitalizations and causative respiratory infections was established. We herein report recent trends in pediatric acute asthma hospitalizations since the COVID-19 pandemic in Japan. METHODS: Thirty-three sentinel hospitals in Japan registered all of their hospitalized pediatric asthma patients and their causal pathogens. The changes in acute asthma hospitalization in children before and after the onset of the COVID-19 pandemic and whether or not COVID-19 caused acute asthma exacerbation were investigated. RESULTS: From fiscal years 2010-2019, the median number of acute asthma hospitalizations per year was 3524 (2462-4570), but in fiscal years 2020, 2021, and 2022, the numbers were 820, 1,001, and 1,026, respectively (the fiscal year in Japan is April to March). This decrease was observed in all age groups with the exception of the 3- to 6-year group. SARS-CoV-2 was evaluated in 2094 patients from fiscal years 2020-2022, but the first positive case was not detected until February 2022. Since then, only 36 of them have been identified with SARS-CoV-2, none of which required mechanical ventilation. Influenza, RS virus, and human metapneumovirus infections also decreased in FY 2020. In contrast, 24% of patients had not been receiving long-term control medications before admission despite the severity of bronchial asthma. CONCLUSION: SARS-CoV-2 was hardly detected in children with acute asthma hospitalization during the COVID-19 pandemic. This result indicated that SARS-CoV-2 did not induce acute asthma exacerbation in children. Rather, infection control measures implemented against the pandemic may have consequently reduced other respiratory virus infections and thus acute asthma hospitalizations during this period. However, the fact that many hospitalized patients have not been receiving appropriate long-term control medications is a major problem that should be addressed.

14.
J Microbiol Immunol Infect ; 57(2): 238-245, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38233293

ABSTRACT

BACKGROUND: Enterovirus D68 (EV-D68) is an important reemerging pathogen that causes severe acute respiratory infection and acute flaccid paralysis, mainly in children. Since 2014, EV-D68 outbreaks have been reported in the United States, Europe, and east Asia; however, no outbreaks have been reported in southeast Asian countries, including Myanmar, during the previous 10 years. METHODS: EV-D68 was detected in nasopharyngeal swabs from children with acute lower respiratory infections in Myanmar. The samples were previously collected from children aged 1 month to 12 years who had been admitted to the Yankin Children Hospital in Yangon, Myanmar, between May 2017 and January 2019. EV-D68 was detected with a newly developed EV-D68-specific real-time PCR assay. The clade was identified by using a phylogenetic tree created with the Bayesian Markov chain Monte Carlo method. RESULTS: During the study period, nasopharyngeal samples were collected from 570 patients. EV-D68 was detected in 42 samples (7.4 %)-11 samples from 2017 to 31 samples from 2018. The phylogenetic tree revealed that all strains belonged to clade B3, which has been the dominant clade worldwide since 2014. We estimate that ancestors of currently circulating genotypes emerged during the period 1980-2004. CONCLUSIONS: To our knowledge, this is the first report of EV-D68 detection in children with acute lower respiratory infections in Yangon, Myanmar, in 2017-2018. Detection and detailed virologic analyses of EV-D68 in southeast Asia is an important aspect of worldwide surveillance and will likely be useful in better understanding the worldwide epidemiologic profile of EV-D68 infection.


Subject(s)
Enterovirus D, Human , Enterovirus Infections , Enterovirus , Pneumonia , Respiratory Tract Infections , Child , Humans , United States , Enterovirus D, Human/genetics , Myanmar/epidemiology , Phylogeny , Bayes Theorem , Pneumonia/epidemiology , Disease Outbreaks , Enterovirus/genetics
15.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1016501

ABSTRACT

Objective @#To investigate the clinical and molecular epidemiological characteristics of 10 patients with enterovirus (EV)-D68 infections in the respiratory tract in Shaoxing City, Zhejiang Province, so as to provide insights into formulation of control interventions for EV-D68 infections.@*Methods@#Clinical specimens were sampled from patients with acute respiratory tract infections (ARTIs) admitted to sentinel hospitals in Shaoxing City from 2021 to 2022, and EV-D68 was detected using real-time fluorescent PCR assay and sequencing of the VP1 region of enterovirus. The epidemiological and etiological characteristics of EV-D68 infected cases were descriptively analyzed. @*Results@#A total of 3 009 specimens were sampled from patients with ARTIs from 2021 to 2022, and the detection of EV-D68 was 0.33%. Of all EV-D68-infected patients, there were 6 men and 4 women, and 5 cases under 18 years of age, 2 cases at ages of 18 to 60 years and 3 cases at ages of over 60 years. EV-D68 infection predominantly occurred in summer (5 cases detected between May and July) and autumn (5 cases detected between September and October). The main clinical symptoms included fever (10 cases), sore throat (9 cases) and cough (8 cases), and all 10 cases recovered well, with no deaths reported. Sequencing identified D3 subtype in all 10 specimens positive for EV-D68. @*Conclusions@#The ARTIs caused by EV-D68 occurred predominantly among children under 18 years of age in Shaoxing City, and was highly prevalent in summer and autumn. D3 was the predominant enterovirus subtype.

16.
Epidemics ; 46: 100736, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38118274

ABSTRACT

Recent outbreaks of enterovirus D68 (EV-D68) infections, and their causal linkage with acute flaccid myelitis (AFM), continue to pose a serious public health concern. During 2020 and 2021, the dynamics of EV-D68 and other pathogens have been significantly perturbed by non-pharmaceutical interventions against COVID-19; this perturbation presents a powerful natural experiment for exploring the dynamics of these endemic infections. In this study, we analyzed publicly available data on EV-D68 infections, originally collected through the New Vaccine Surveillance Network, to predict their short- and long-term dynamics following the COVID-19 interventions. Although long-term predictions are sensitive to our assumptions about underlying dynamics and changes in contact rates during the NPI periods, the likelihood of a large outbreak in 2023 appears to be low. Comprehensive surveillance data are needed to accurately characterize future dynamics of EV-D68. The limited incidence of AFM cases in 2022, despite large EV-D68 outbreaks, poses further questions for the timing of the next AFM outbreaks.


Subject(s)
COVID-19 , Central Nervous System Viral Diseases , Enterovirus D, Human , Enterovirus Infections , Myelitis , Neuromuscular Diseases , Humans , COVID-19/epidemiology , Neuromuscular Diseases/epidemiology , Myelitis/epidemiology , Disease Outbreaks , Enterovirus Infections/epidemiology , Enterovirus Infections/prevention & control
17.
Emerg Infect Dis ; 30(1): 141-145, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38147067

ABSTRACT

In a 2-year study in Leuven, Belgium, we investigated the use of wastewater sampling to assess community spread of respiratory viruses. Comparison with the number of positive clinical samples demonstrated that wastewater data reflected circulation levels of typical seasonal respiratory viruses, such as influenza, respiratory syncytial virus, and enterovirus D68.


Subject(s)
Enterovirus D, Human , Influenza, Human , Respiratory Syncytial Virus, Human , Humans , Belgium/epidemiology , Wastewater , Respiratory Syncytial Virus, Human/genetics
18.
J Virol ; 97(12): e0160023, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38047678

ABSTRACT

IMPORTANCE: Enterovirus D68 (EV-D68) is an emerging respiratory pathogen associated with acute flaccid myelitis. Currently, no approved vaccines or antiviral drugs are available. Here, we report four functionally independent neutralizing antigenic sites (I to IV) by analyses of neutralizing monoclonal antibody (MAb)-resistant mutants. Site I is located in the VP1 BC loop near the fivefold axis. Site II resides in the VP2 EF loop, and site III is situated in VP1 C-terminus; both sites are located at the south rim of the canyon. Site IV is composed of residue in VP2 ßB strand and residues in the VP3 BC loop and resides around the threefold axis. The developed MAbs targeting the antigenic sites can inhibit viral binding to cells. These findings advance the understanding of the recognition of EV-D68 by neutralizing antibodies and viral evolution and immune escape and also have important implications for the development of novel EV-D68 vaccines.


Subject(s)
Antibodies, Neutralizing , Capsid Proteins , Enterovirus D, Human , Enterovirus Infections , Humans , Capsid , Capsid Proteins/chemistry , Enterovirus D, Human/genetics , Enterovirus Infections/immunology , Enterovirus Infections/virology
19.
J Virol ; 97(12): e0092823, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38047713

ABSTRACT

IMPORTANCE: Most protease-targeted antiviral development evaluates the ability of small molecules to inhibit the cleavage of artificial substrates. However, before they can cleave any other substrates, viral proteases need to cleave themselves out of the viral polyprotein in which they have been translated. This can occur either intra- or inter-molecularly. Whether this process occurs intra- or inter-molecularly has implications for the potential for precursors to accumulate and for the effectiveness of antiviral drugs. We argue that evaluating candidate antivirals for their ability to block these cleavages is vital to drug development because the buildup of uncleaved precursors can be inhibitory to the virus and potentially suppress the selection of drug-resistant variants.


Subject(s)
Antiviral Agents , Enterovirus , Viral Protease Inhibitors , Viral Proteases , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Proteolysis , Viral Proteases/metabolism , Viral Protease Inhibitors/pharmacology , Enterovirus/drug effects , Enterovirus/physiology , Polyproteins/metabolism
20.
J Biomed Sci ; 30(1): 96, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110940

ABSTRACT

BACKGROUND: Human enteroviruses A71 (EV-A71) and D68 (EV-D68) are the suspected causative agents of hand-foot-and-mouth disease, aseptic meningitis, encephalitis, acute flaccid myelitis, and acute flaccid paralysis in children. Until now, no cure nor mucosal vaccine existed for EV-A71 and EV-D68. Novel mucosal bivalent vaccines are highly important for preventing EV-A71 and EV-D68 infections. METHODS: In this study, formalin-inactivated EV-A71 and EV-D68 were used as antigens, while PS-G, a polysaccharide from Ganoderma lucidum, was used as an adjuvant. Natural polysaccharides have the characteristics of intrinsic immunomodulation, biocompatibility, low toxicity, and safety. Mice were immunized intranasally with PBS, EV-A71, EV-D68, or EV-A71 + EV-D68, with or without PS-G as an adjuvant. RESULTS: The EV-A71 + EV-D68 bivalent vaccine generated considerable EV-A71- and EV-D68-specific IgG and IgA titres in the sera, nasal washes, saliva, bronchoalveolar lavage fluid, and feces. These antibodies neutralized EV-D68 and EV-A71 infectivity. They also cross-neutralized infections by different EV-D68 and EV-A71 sub-genotypes. Furthermore, compared with the PBS group, EV-A71 + EV-D68 + PS-G-vaccinated mice exhibited an increased number of EV-D68- and EV-A71-specific IgA- and IgG-producing cells. In addition, T-cell proliferative responses, and IFN-γ and IL-17 secretion in the spleen were substantially induced when PS-G was used as an adjuvant with EV-A71 + EV-D68. Finally, in vivo challenge experiments demonstrated that the immune sera induced by EV-A71 + EV-D68 + PS-G conferred protection in neonate mice against lethal EV-A71 and EV-D68 challenges as indicated by the increased survival rate and decreased clinical score and viral RNA tissue expression. Taken together, all EV-A71/EV-D68 + PS-G-immunized mice developed potent specific humoral, mucosal, and cellular immune responses to EV-D68 and EV-A71 and were protected against them. CONCLUSIONS: These findings demonstrated that PS-G can be used as a potential adjuvant for EV-A71 and EV-D68 bivalent mucosal vaccines. Our results provide useful information for the further preclinical and clinical development of a mucosal bivalent enterovirus vaccine against both EV-A71 and EV-D68 infections.


Subject(s)
Enterovirus A, Human , Enterovirus D, Human , Enterovirus Infections , Enterovirus , Reishi , Child , Animals , Humans , Mice , Enterovirus D, Human/genetics , Enterovirus A, Human/genetics , Vaccines, Combined , Antigens, Viral , Immunoglobulin A , Immunoglobulin G
SELECTION OF CITATIONS
SEARCH DETAIL