Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 546
Filter
1.
Methods Mol Biol ; 2855: 315-339, 2025.
Article in English | MEDLINE | ID: mdl-39354316

ABSTRACT

Octadecanoids are a subset of oxylipins derived from 18-carbon fatty acids. These compounds have historically been understudied but have more recently attracted attention to their purported biological activity. One obstacle to the study of octadecanoids has been a lack of specific analytical methods for their measurement. A particular limitation has been the need for chiral-based methods that enable separation and quantification of individual stereoisomers. The use of chirality provides an additional dimension for distinguishing analytes produced enzymatically from those formed through autoxidation. In this chapter, we describe a comprehensive method using chiral supercritical fluid chromatography-tandem mass spectrometry (SFC-MS/MS) for the quantification of octadecanoids in human plasma. This method stands as an effective approach for quantifying octadecanoids and is applicable to diverse research applications including clinical research.


Subject(s)
Chromatography, Supercritical Fluid , Tandem Mass Spectrometry , Chromatography, Supercritical Fluid/methods , Humans , Tandem Mass Spectrometry/methods , Stereoisomerism , Oxylipins/blood , Oxylipins/chemistry
2.
Int J Mol Sci ; 25(18)2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39337391

ABSTRACT

Oxylipins and specialized pro-resolving lipid mediators (SPMs) derived from polyunsaturated fatty acids (PUFAs) are mediators that coordinate an active process of inflammation resolution. While these mediators have potential as circulating biomarkers for several disease states with inflammatory components, the source of plasma oxylipins/SPMs remains a matter of debate but may involve white adipose tissue (WAT). Here, we aimed to investigate to what extent high or low omega (n)-3 PUFA enrichment affects the production of cytokines and adipokines (RT-PCR), as well as oxylipins/SPMs (liquid chromatography-tandem mass spectrometry) in the WAT of mice during lipopolysaccharide (LPS)-induced systemic inflammation (intraperitoneal injection, 2.5 mg/kg, 24 h). For this purpose, n-3 PUFA genetically enriched mice (FAT-1), which endogenously synthesize n-3 PUFAs, were compared to wild-type mice (WT) and combined with n-3 PUFA-sufficient or deficient diets. LPS-induced systemic inflammation resulted in the decreased expression of most adipokines and interleukin-6 in WAT, whereas the n-3-sufficient diet increased them compared to the deficient diet. The n-6 PUFA arachidonic acid was decreased in WAT of FAT-1 mice, while n-3 derived PUFAs (eicosapentaenoic acid, docosahexaenoic acid) and their metabolites (oxylipins/SPMs) were increased in WAT by genetic and nutritional n-3 enrichment. Several oxylipins/SPMs were increased by LPS treatment in WAT compared to PBS-treated controls in genetically n-3 enriched FAT-1 mice. Overall, we show that WAT may significantly contribute to circulating oxylipin production. Moreover, n-3-sufficient or n-3-deficient diets alter adipokine production. The precise interplay between cytokines, adipokines, and oxylipins remains to be further investigated.


Subject(s)
Adipokines , Cytokines , Fatty Acids, Omega-3 , Oxylipins , Animals , Oxylipins/metabolism , Fatty Acids, Omega-3/metabolism , Mice , Cytokines/metabolism , Adipokines/metabolism , Male , Lipopolysaccharides , Mice, Inbred C57BL , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Inflammation/metabolism , Inflammation/chemically induced , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/drug effects
3.
Front Immunol ; 15: 1452749, 2024.
Article in English | MEDLINE | ID: mdl-39290706

ABSTRACT

Oxidative stress and the accompanying chronic inflammation constitute an important metabolic problem that may lead to pathology, especially when the body is exposed to physicochemical and biological factors, including UV radiation, pathogens, drugs, as well as endogenous metabolic disorders. The cellular response is associated, among others, with changes in lipid metabolism, mainly due to the oxidation and the action of lipolytic enzymes. Products of oxidative fragmentation/cyclization of polyunsaturated fatty acids (PUFAs) [4-HNE, MDA, 8-isoprostanes, neuroprostanes] and eicosanoids generated as a result of the enzymatic metabolism of PUFAs significantly modify cellular metabolism, including inflammation and the functioning of the immune system by interfering with intracellular molecular signaling. The key regulators of inflammation, the effectiveness of which can be regulated by interacting with the products of lipid metabolism under oxidative stress, are inflammasome complexes. An example is both negative or positive regulation of NLRP3 inflammasome activity by 4-HNE depending on the severity of oxidative stress. 4-HNE modifies NLRP3 activity by both direct interaction with NLRP3 and alteration of NF-κB signaling. Furthermore, prostaglandin E2 is known to be positively correlated with both NLRP3 and NLRC4 activity, while its potential interference with AIM2 or NLRP1 activity is unproven. Therefore, the influence of PUFA metabolites on the activity of well-characterized inflammasome complexes is reviewed.


Subject(s)
Fatty Acids, Unsaturated , Inflammasomes , Oxidative Stress , Inflammasomes/metabolism , Humans , Fatty Acids, Unsaturated/metabolism , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction , Inflammation/metabolism , Inflammation/immunology , Lipid Metabolism
4.
Proc Natl Acad Sci U S A ; 121(37): e2405821121, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39236243

ABSTRACT

While the acute inflammatory response to harmful stimuli is protective, unrestrained neutrophil swarming drives collateral tissue damage and inflammation. Biosynthesized from omega-3 essential polyunsaturated fatty acids, resolvins are a family of signaling molecules produced by immune cells within the resolution phase to orchestrate return to homeostasis. Understanding the mechanisms that govern biosynthesis of these potent molecules gives insight into stimulating endogenous resolution and offers fresh opportunities for preventing and treating excessive inflammation. In this report, using materials prepared by total synthesis and liquid chromatography and tandem mass spectrometry-based matching studies, we established the role of 7,8(S,S)-epoxytetraene intermediate in the biosynthesis of resolvin D1, resolvin D2, and the resolvin conjugate in tissue regeneration (RCTR1) by human phagocytes. We demonstrated that this 7,8(S,S)-epoxy-containing intermediate is directly converted to resolvin D2 by human M2-like macrophages and to resolvin D1 and RCTR1 by human macrophages, neutrophils, and peripheral blood mononuclear cells. In addition, both human recombinant soluble epoxide hydrolase (sEH) and the glutathione S-transferase leukotriene C4 synthase (LTC4S) each catalyze conversion of this epoxide to resolvin D1 and RCTR1, respectively. MS3 ion-trap scans and isotope incorporation of 18O from H218O with sEH indicated that the oxygen atom at C-8 in resolvin D1 is derived from water. Results from molecular docking simulations with biosynthetic precursor 17S-hydroperoxy-4,7,10,13,19-cis-15-trans-docosahexaenoic acid and the epoxy intermediate were consistent with 5-lipoxygenase production of resolvin D1. Together, these results give direct evidence for the role of resolvin 7,8(S,S)-epoxytetraene intermediate in the endogenous formation of resolution-phase mediators resolvin D1, resolvin D2, and RCTR1 by human phagocytes.


Subject(s)
Docosahexaenoic Acids , Macrophages , Neutrophils , Humans , Docosahexaenoic Acids/metabolism , Docosahexaenoic Acids/biosynthesis , Neutrophils/metabolism , Macrophages/metabolism , Receptors, G-Protein-Coupled
5.
Clin Transl Immunology ; 13(9): e70000, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39286529

ABSTRACT

Objectives: In cystic fibrosis (CF), an imbalanced lipid metabolism is associated with lung inflammation. Little is known about the role that specific lipid mediators (LMs) exert in CF lung inflammation, and whether their levels change during early disease progression. Therefore, we measured airway LM profiles of young CF patients, correlating these with disease-associated parameters. Methods: Levels of omega (ω)-3/6 PUFAs and their LM derivatives were determined in bronchoalveolar lavage fluid (BALF) of children with CF ages 1-5 using a targeted high-performance liquid chromatography-tandem mass spectrometry approach. Hierarchical clustering analysis was performed on relative LM levels. Individual relative LM levels were correlated with neutrophilic inflammation (BALF %Neu) and structural lung damage (PRAGMA-CF %Disease). Significant correlations were included in a backward multivariate linear regression model to identify the LMs that are best related to disease progression. Results: A total of 65 BALF samples were analysed for ω-3/6 lipid content. LM profiles clustered into an arachidonic acid (AA)-enriched and a linoleic acid (LA)-enriched sample cluster. AA derivatives like 17-OH-DH-HETE, 5-HETE, 5,15-diHETE, 15-HETE, 15-KETE, LTB4 and 6-trans-LTB4 positively correlated with BALF %Neu and/or PRAGMA %Dis. Contrastingly, 9-HoTrE and the LA derivatives 9-HoDE, 9(10)-EpOME, 9(10)-DiHOME, 13-HoDE, 13-oxoODE and 12(13)-EpOME negatively correlated with BALF %Neu and/or PRAGMA %Dis. 6-trans-LTB4 was the strongest predictor for BALF %Neu. 5-HETE and 15-KETE contributed most to PRAGMA %Dis prediction. Conclusions: Our data provide more insight into the lung lipidome of infants with CF, and show that a shift from LA derivatives to AA derivatives in BALF associates with early CF lung disease progression.

6.
Animal ; 18(10): 101317, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39305823

ABSTRACT

Weaning is a decisive event in piglets' life. This study aimed to evaluate whether the inclusion of fish oil, rich in eicosapentaenoic and docosahexaenoic acids (EPA and DHA), in sow and piglet diets, increased the concentration of anti-inflammatory molecules in the blood of weaned piglets and whether the effect was dependent on the pigs being born with either low or a high birth BW (bBW). Thirty-six sows in four consecutive batches were randomly distributed between a control diet with animal fat (15 g/kg in gestation and 30 g/kg in lactation) or a n-3 long-chain fatty acid diet (LCFA; totally or half replacing animal fat by fish oil during gestation and lactation, respectively) from service until weaning (ca. 28 days). At birth, the two lightest (LBW) and the two heaviest (HBW) piglets in each litter were identified and, at weaning, grouped in pens by pairs prioritising their bBW. Pens were further distributed into a control (30 g/kg animal fat) or n-3 LCFA diet (totally replacing animal fat by fish oil) for 28 days. At the end of the trial, blood was collected from piglets in the first batch (n = 48). Serum fatty acids (FAs) were quantified by GC, plasma oxylipins by ultra-HPLC-MS, and plasma immune indicators by ELISA. An interaction between piglet diet and bBW for average daily gain (P = 0.020) and average daily feed intake (P = 0.014) during the whole postweaning indicated that dietary n-3 LCFA-promoted LBW piglets to have a similar growth and intake than HBW piglets reaching 1.5 kg average BW more at the end of the postweaning period than LBW control piglets. Fish oil in piglet diets also increased the concentrations of total n-3 FA, EPA and DHA (all P < 0.001), their resultant oxylipins, particularly their hydroxy derivatives from lipoxygenase enzymatic pathway (all P < 0.001) and tended to increase immunoglobulin M (P = 0.067) in blood. Regarding the bBW category, LBW piglets tend to increase tumour necrosis factor α in plasma (P = 0.083) compared to HBW. It is concluded that fish oil in postweaning diets could enhance the daily gain and feed intake of LBW piglets, increasing the concentration of serum n-3 FAs and their derived oxylipins in plasma.

7.
J Am Soc Mass Spectrom ; 35(10): 2331-2343, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39252416

ABSTRACT

Lipid mediators, which include specialized pro-resolving mediators and classic eicosanoids, are pivotal in both initiating and resolving inflammation. The regulation of these molecules determines whether inflammation resolves naturally or persists. However, our understanding of how these mediators are regulated over time in various inflammatory contexts is limited. This gap hinders our grasp of the mechanisms underlying the disease onset and progression. Due to their localized action and low endogenous levels in many tissues, developing robust and highly sensitive methodologies is imperative for assessing their endogenous regulation in diverse inflammatory settings. These methodologies will help us gain insight into their physiological roles. Here, we establish methodologies for extracting, identifying, and quantifying these mediators. Using our methods, we identified a total of 37 lipid mediators. Additionally, by employing a reverse-phase HPLC method, we successfully separated both double-bond and chiral isomers of select lipid mediators, including Lipoxin (LX) A4, 15-epi-LXA4, Protectin (PD) D1, PDX, and 17R-PD1. Validation of the method was performed in both solvent and surrogate matrix for linearity of the standard curves, lower limits of quantitation (LLOQ), accuracy, and precision. Results from these studies demonstrated that linearity was good with r2 values > 0.98, and LLOQ for the mediators ranged from 0.01 to 0.9 pg in phase and from 0.1 to 8.5 pg in surrogate matrix. The relative standard deviation (RSD) for inter- and intraday precision in solvent ranged from 5% to 12% at low, intermediate, and high concentrations, whereas the RSD for the inter- and intraday variability in the accuracy ranged from 95% to 87% at low to high concentrations. The recovery in biological matrices (plasma and serum) for the internal standards used ranged from 60% to 118%. We observed a marked ion suppression for molecules evaluated in negative ionization mode, while there was an ion enhancement effect by the matrix for molecules evaluated in positive ionization mode. Comparison of the integration algorithms, namely, AutoPeak and MQ4, and approaches for calculating signal-to-noise ratios (i.e., US Pharmacopeia, relative noise, peak to peak, and standard deviation) demonstrated that different integration algorithms tested had little influence on signal-to-noise ratio calculations. In contrast, the method used to calculate the signal-to-noise ratio had a more significant effect on the results, with the relative noise approach proving to be the most robust. The methods described herein provide a platform to study the SPM and classic eicosanoids in biological tissues that will help further our understanding of disease mechanisms.


Subject(s)
Eicosanoids , Eicosanoids/analysis , Eicosanoids/metabolism , Eicosanoids/chemistry , Chromatography, High Pressure Liquid/methods , Animals , Lipoxins/analysis , Lipoxins/metabolism , Lipoxins/chemistry , Tandem Mass Spectrometry/methods , Humans , Reproducibility of Results , Mice , Docosahexaenoic Acids/analysis , Docosahexaenoic Acids/chemistry , Limit of Detection
8.
Immunology ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39268960

ABSTRACT

Gliotoxin (GT), a secondary metabolite and virulence factor of the fungal pathogen Aspergillus fumigatus, suppresses innate immunity and supports the suppression of host immune responses. Recently, we revealed that GT blocks the formation of the chemotactic lipid mediator leukotriene (LT)B4 in activated human neutrophils and monocytes, and in rodents in vivo, by directly inhibiting LTA4 hydrolase. Here, we elucidated the impact of GT on LTB4 biosynthesis and the entire lipid mediator networks in human M1- and M2-like monocyte-derived macrophages (MDMs) and in human tissue-resident alveolar macrophages. In activated M1-MDMs with high capacities to generate LTs, the formation of LTB4 was effectively suppressed by GT, connected to attenuated macrophage phagocytic activity as well as human neutrophil movement and migration. In resting macrophages, especially in M1-MDMs, GT elicited strong formation of prostaglandins, while bacterial exotoxins from Staphylococcus aureus evoked a broad spectrum of lipid mediator biosynthesis in both MDM phenotypes. We conclude that GT impairs functions of activated innate immune cells through selective suppression of LTB4 biosynthesis, while GT may also prime the immune system by provoking prostaglandin formation in macrophages.

9.
Physiol Rep ; 12(15): e16178, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39128880

ABSTRACT

Acute vascular injury provokes an inflammatory response, resulting in neointimal hyperplasia (NIH) and downstream pathologies. The resolution of inflammation is an active process in which specialized proresolving lipid mediators (SPM) and their receptors play a central role. We sought to examine the acute phase response of SPM and their receptors in both circulating blood and the arterial wall in a rat angioplasty model. We found that the ratio of proresolving to pro-inflammatory lipid mediators (LM) in plasma decreased sharply 1 day after vascular injury, then increased slightly by day 7, while that in arteries remained depressed. Granulocyte expression of SPM receptors ALX/FPR2 and DRV2/GPR18, and a leukotriene B4 receptor BLT1 increased postinjury, while ERV1/ChemR23 expression was reduced early and then recovered by day 7. Importantly, we show unique arterial expression patterns of SPM receptors in the acute setting, with generally low levels through day 7 that contrasted sharply with that of the pro-inflammatory CCR2 receptor. Overall, these data document acute, time-dependent changes of LM biosynthesis and SPM receptor expression in plasma, leukocytes, and artery walls following acute vascular injury. A biochemical imbalance between inflammation and resolution LM pathways appears persistent 7 days after angioplasty in this model. These findings may help guide therapeutic approaches to accelerate vascular healing and improve the outcomes of vascular interventions for patients with advanced atherosclerosis.


Subject(s)
Rats, Sprague-Dawley , Animals , Male , Rats , Vascular System Injuries/metabolism , Vascular System Injuries/pathology , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, Leukotriene B4/metabolism , Inflammation Mediators/metabolism
11.
Arch Biochem Biophys ; 759: 110109, 2024 09.
Article in English | MEDLINE | ID: mdl-39117070

ABSTRACT

Chronic inflammation is an important pathogenetic factor that leads to the progression of Alzheimer's disease (AD), and specialized pro-resolving lipid mediators (SPMs) play critical role in regulating inflammatory responses during AD pathogenesis. Maresin1 (MaR1) is the latest discovered SPMs, and it is found that MaR1 improves AD cognitive impairment by regulating neurotrophic pathways to protect AD synapses and reduce Aß production, which made MaR1 as candidate agent for AD treatment. Unfortunately, the underlying mechanisms are still largely known. In this study, the AD mice and cellular models were subjected to MaR1 treatment, and we found that MaR1 reduced Aß production to ameliorate AD-related symptoms and increased the expression levels of ADAM10/17, sAPPα and sAPPß to exert its anti-inflammatory role. In addition, as it was determined by Western Blot analysis, we observed that MaR1 could affected the neuroprotective signal pathways. Specifically, MaR1 downregulated p57NTR and upregulated TrkA to activate the p75NTR/TrkA signal pathway, and it could increase the expression levels of p-PI3K and p-Akt, and downregulated p-mTOR to activate the PI3K/AKT/ERK/mTOR pathway. Finally, we verified the role of ADAM10/17 in regulating AD progression, and we found that silencing of ADAM10/17 inactivated the above neuroprotective signal pathways to aggravate AD pathogenesis. In conclusion, MaR1 is verified as potential therapeutic agent for AD by eliminating Aß production, upregulating ADAM10/17, sAPPα and sAPPß, and activating the neuroprotective p75NTR/TrkA pathway and the PI3K/AKT/ERK/mTOR pathway.


Subject(s)
ADAM10 Protein , Alzheimer Disease , Amyloid Precursor Protein Secretases , Amyloid beta-Peptides , Docosahexaenoic Acids , Signal Transduction , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Animals , ADAM10 Protein/metabolism , ADAM10 Protein/genetics , Amyloid Precursor Protein Secretases/metabolism , Signal Transduction/drug effects , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/metabolism , Amyloid beta-Peptides/metabolism , Mice , Inflammation/metabolism , Pilot Projects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , Male
12.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(8): 159542, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39097080

ABSTRACT

Obesity, a global epidemic linked to around 4 million deaths yearly, arises from lifestyle imbalances impacting inflammation-related conditions like non-alcoholic fatty liver disease and gut dysbiosis. But the long-term effects of inflammation caused by lifestyle-related dietary changes remain unexplained. In this study, we used young male C57Bl/6 mice which were fed either an obesogenic diet (OBD) or a control diet (CON) for six months. Later, a group of mice from the OBD group were intervened to the CON diet (OBD-R) for four months, while another OBD group remained on the OBD diet. The OBD induced distinct changes in gut microbial, notably elevating Firmicutes and Actinobacteria, while reducing Bacteroidetes and Tenericutes. OBD-R restored microbial abundance like CON. Analyzing liver, plasma, and fecal samples revealed OBD-induced alterations in various structural and bioactive lipids, which were normalized to CON in the OBD-R, showcasing lipid metabolism flexibility and adaptability to dietary shifts. OBD increased omega 6 fatty acid, Arachidonic Acid (AA) and decreased omega 3-derived lipid mediators in the OBD mimicking non-alcoholic fatty liver disease thus impacting inflammation-resolution pathways. OBD also induced hepatic inflammation via increasing alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and proinflammatory markers CCR2, TNF-α, and IL-1ß in liver. Transitioning from OBD to CON mitigated inflammatory gene expression and restored lipid and cholesterol networks. This study underscores the intricate interplay between lifestyle-driven dietary changes, gut microbiota, lipid metabolism, and liver health. Notably, it suggests that shift from an OBD (omega-6 enriched) to CON partially alleviates signs of chronic inflammation during aging. Understanding these microbial, lipidomic, and hepatic inflammatory dynamics reveals potential therapeutic avenues for metabolic disorders induced by diet, emphasizing the pivotal role of diet in sustaining metabolic health.


Subject(s)
Aging , Gastrointestinal Microbiome , Inflammation , Lipid Metabolism , Liver , Mice, Inbred C57BL , Obesity , Animals , Mice , Liver/metabolism , Liver/pathology , Male , Obesity/metabolism , Obesity/microbiology , Inflammation/metabolism , Aging/metabolism , Lipidomics/methods , Signal Transduction , Diet, High-Fat/adverse effects , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/diet therapy , Dysbiosis/metabolism , Dysbiosis/microbiology , Dysbiosis/diet therapy
13.
J Integr Complement Med ; 30(9): 897-901, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39007170

ABSTRACT

Background: Yoga may promote health via a complex modulation of inflammation. Little is known about oxylipins, a class of circulating mediators involved in inflammation resolution. Objective: To explore the acute effects of yoga exercise on systemic levels of oxylipins. Methods: This is a secondary analysis of a three-arm (high-intensity-yoga: HY, n = 10); moderate-intensity-yoga: MY, n = 10; and no-intervention-control: CON, n = 10) pilot randomized controlled trial employing a single bout of yoga exercise. Blood samples (baseline and 4-timepoint post-intervention) were used for an unbiased metabolipidomic profiling analysis. Net Areas Under the Curve per oxylipin were evaluated for each group. Results: Lipoxin(LX)B4, prostaglandin(PG)D2, and resolvin(Rv)D3 exhibited a greater magnitude of change in HY compared with MY and CON. Conclusion: Findings inform the design of future trials exploring the acute effects of yoga exercise on oxylipins' systemic levels.


Subject(s)
Oxylipins , Yoga , Humans , Oxylipins/blood , Pilot Projects , Male , Adult , Female , Exercise/physiology , Middle Aged , Inflammation/blood
14.
J Neuroinflammation ; 21(1): 185, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080670

ABSTRACT

BACKGROUND: Brain inflammation contributes significantly to the pathophysiology of Alzheimer's disease, and it is manifested by glial cell activation, increased production of cytokines/chemokines, and a shift in lipid mediators from a pro-homeostatic to a pro-inflammatory profile. However, whether the production of bioactive lipid mediators is affected at earlier stages, prior to the deposition of Aß plaques and tau hyperphosphorylation, is unknown. The differential contribution of an evolving amyloid and tau pathology on the composition and abundance of membrane phospholipids and bioactive lipid mediators also remains unresolved. METHODS: In this study, we examined the cortical levels of DHA- and AA-derived bioactive lipid mediators and of membrane phospholipids by liquid chromatography with tandem mass spectrometry in transgenic rat models of the Alzheimer's-like amyloid and tau pathologies at early and advanced pathological stages. RESULTS: Our findings revealed a complex balance between pro-inflammatory and pro-resolving processes in which tau pathology has a more pronounced effect compared to amyloid pathology. At stages preceding tau misfolding and aggregation, there was an increase in pro-resolving lipid mediators (RVD6 and NPD1), DHA-containing phospholipids and IFN-γ levels. However, in advanced tau pathology displaying NFT-like inclusions, neuronal death, glial activation and cognitive deficits, there was an increase in cytokine and PGD2, PGE2, and PGF2α generation accompanied by a drop in IFN-γ levels. This pathology also resulted in a marked increase in AA-containing phospholipids. In comparison, pre-plaque amyloid pathology already presented high levels of cytokines and AA-containing phospholipids together with elevated RVD6 and NPD1 levels. Finally, Aß plaque deposition was accompanied by a modest increase in prostaglandins, increased AA-containing phospholipids and reduced DHA-containing phospholipids. CONCLUSIONS: Our findings suggest a dynamic trajectory of inflammatory and lipid mediators in the evolving amyloid and tau pathologies and support their differing roles on membrane properties and, consequentially, on signal transduction.


Subject(s)
Alzheimer Disease , Brain , Disease Models, Animal , Phospholipids , Rats, Transgenic , tau Proteins , Animals , Phospholipids/metabolism , Rats , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , tau Proteins/metabolism , Brain/metabolism , Brain/pathology , Amyloid beta-Peptides/metabolism , Plaque, Amyloid/pathology , Plaque, Amyloid/metabolism , Male , Humans
15.
Int J Mol Sci ; 25(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000027

ABSTRACT

Cytokines, chemokines, and interferons are released in response to viral infection with the ultimate aim of viral clearance. However, in SARS-CoV-2 infection, there is an imbalanced immune response, with raised cytokine levels but only a limited interferon response with inefficient viral clearance. Furthermore, the inflammatory response can be exaggerated, which risks both acute and chronic sequelae. Several observational studies have suggested a reduced risk of progression to severe COVID-19 in subjects with a higher omega-3 index. However, randomized studies of omega-3 supplementation have failed to replicate this benefit. Omega-3 fats provide important anti-inflammatory effects; however, fatty fish contains many other fatty acids that provide health benefits distinct from omega-3. Therefore, the immune health benefit of whole salmon oil (SO) was assessed in adults with mild to moderate COVID-19. Eleven subjects were randomized to best supportive care (BSC) with or without a full spectrum, enzymatically liberated SO, dosed at 4g daily, for twenty-eight days. Nasal swabs were taken to measure the change in gene expression of markers of immune response and showed that the SO provided both broad inflammation-resolving effects and improved interferon response. The results also suggest improved lung barrier function and enhanced immune memory, although the clinical relevance needs to be assessed in longer-duration studies. In conclusion, the salmon oil was well tolerated and provided broad inflammation-resolving effects, indicating a potential to enhance immune health.


Subject(s)
COVID-19 , Chemokines , Cytokines , Fish Oils , Interferons , SARS-CoV-2 , Humans , Fish Oils/pharmacology , Fish Oils/therapeutic use , COVID-19/immunology , COVID-19/virology , Male , Interferons/metabolism , Interferons/genetics , SARS-CoV-2/immunology , Cytokines/metabolism , Female , Middle Aged , Chemokines/metabolism , Chemokines/genetics , Adult , COVID-19 Drug Treatment , Fatty Acids, Omega-3/pharmacology
16.
Prostaglandins Other Lipid Mediat ; 174: 106870, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39038698

ABSTRACT

Specialized pro-resolving mediators (SPMs) are oxidized lipid mediators that have been shown to resolve inflammation in cellular and animal models as well as humans. SPMs and their biological precursors are even commercially available as dietary supplements. It has been understood for more than forty years that pro-inflammatory oxidized lipid mediators, including prostaglandins and leukotrienes, are rapidly inactivated via metabolism. Studies on the metabolism of SPMs are, however, limited. Herein, we report that resolvin D5 (RvD5) and resolvin D1 (RvD1), well-studied SPMs, are readily metabolized by human liver microsomes (HLM) to glucuronide conjugated metabolites. We further show that this transformation is catalyzed by specific uridine 5'-diphospho-glucuronosyltransferase (UGT) isoforms. Additionally, we demonstrate that RvD5 and RvD1 metabolism by HLM is influenced by non-steroidal anti-inflammatory drugs (NSAIDs), which can act as UGT inhibitors through cyclooxygenase-independent mechanisms. The results from these studies highlight the importance of considering metabolism, as well as factors that influence metabolic enzymes, when seeking to quantify SPMs in vivo.


Subject(s)
Docosahexaenoic Acids , Glucuronosyltransferase , Microsomes, Liver , Humans , Glucuronosyltransferase/metabolism , Docosahexaenoic Acids/metabolism , Microsomes, Liver/metabolism , Microsomes, Liver/enzymology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Metabolic Detoxication, Phase II
17.
FASEB J ; 38(14): e23828, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39037419

ABSTRACT

Unresolved inflammation, due to unfavorable imbalances between pro-inflammatory and pro-resolving mediators, leads to chronic inflammatory pathologies that are often sex-biased and regulated by sex hormones, including inflammatory bowel disease. Lipid mediators (LM) produced from polyunsaturated fatty acids by various lipoxygenases (LOX) and cyclooxygenases govern all stages of inflammation, i.e., the initiation and progression by pro-inflammatory eicosanoids and its resolution by specialized pro-resolving mediators (SPM). Here, we reveal sex-specific differences in murine experimental colitis with male preponderance, which was abolished by sex hormone deprivation using gonadectomy, and this correlated to the levels of inflammation-relevant mediators in the colon. Oral dextran sodium sulfate administration caused more severe colon inflammation in male CD-1 mice than in female counterparts during the acute phase. Colitis in males yielded higher colonic cytokine/chemokine levels but lower 12-/15-LOX-derived LM including SPM compared to female animals in the resolving phase. Sex hormone deprivation in male mice by orchidectomy ameliorated colitis and impaired pro-inflammatory cytokine/chemokine levels but elevated 12-/15-LOX products including SPM, thus abolishing the observed sex differences. Conversely, ovariectomy impaired the levels of those LM that dominated in females and that were increased in males after gonadectomy. Our findings suggest that male sex hormones promote the development of colitis connected to the biosynthesis of inflammatory cytokines, chemokines, and certain LM, especially pro-resolving 12-/15-LOX products that appear to be suppressed in the male colon due to androgens.


Subject(s)
Colitis , Gonadal Steroid Hormones , Animals , Male , Mice , Female , Colitis/metabolism , Colitis/chemically induced , Colitis/pathology , Gonadal Steroid Hormones/metabolism , Inflammation/metabolism , Dextran Sulfate/toxicity , Sex Characteristics , Colon/metabolism , Colon/pathology , Orchiectomy , Cytokines/metabolism , Inflammation Mediators/metabolism
18.
Int J Mol Sci ; 25(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000023

ABSTRACT

Chronic exposure to harmful pollutants, chemicals, and pathogens from the environment can lead to pathological changes in the epithelial barrier, which increase the risk of developing an allergy. During allergic inflammation, epithelial cells send proinflammatory signals to group 2 innate lymphoid cell (ILC2s) and eosinophils, which require energy and resources to mediate their activation, cytokine/chemokine secretion, and mobilization of other cells. This review aims to provide an overview of the metabolic regulation in allergic asthma, atopic dermatitis (AD), and allergic rhinitis (AR), highlighting its underlying mechanisms and phenotypes, and the potential metabolic regulatory roles of eosinophils and ILC2s. Eosinophils and ILC2s regulate allergic inflammation through lipid mediators, particularly cysteinyl leukotrienes (CysLTs) and prostaglandins (PGs). Arachidonic acid (AA)-derived metabolites and Sphinosine-1-phosphate (S1P) are significant metabolic markers that indicate immune dysfunction and epithelial barrier dysfunction in allergy. Notably, eosinophils are promoters of allergic symptoms and exhibit greater metabolic plasticity compared to ILC2s, directly involved in promoting allergic symptoms. Our findings suggest that metabolomic analysis provides insights into the complex interactions between immune cells, epithelial cells, and environmental factors. Potential therapeutic targets have been highlighted to further understand the metabolic regulation of eosinophils and ILC2s in allergy. Future research in metabolomics can facilitate the development of novel diagnostics and therapeutics for future application.


Subject(s)
Hypersensitivity , Humans , Hypersensitivity/metabolism , Hypersensitivity/immunology , Animals , Eosinophils/metabolism , Eosinophils/immunology , Epithelial Cells/metabolism , Epithelial Cells/immunology , Immunity, Innate , Dermatitis, Atopic/immunology , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Lymphocytes/metabolism , Lymphocytes/immunology , Rhinitis, Allergic/metabolism , Rhinitis, Allergic/immunology
19.
Methods Mol Biol ; 2816: 13-24, 2024.
Article in English | MEDLINE | ID: mdl-38977584

ABSTRACT

Zebrafish (Danio rerio) has emerged as a pivotal model organism in vertebrate development research over several decades. Beyond its contributions to developmental biology, zebrafish have increasingly played a crucial role in the field of lipidomics. Lipidomics, a comprehensive analysis of lipids within biological systems, offers profound insights into lipid metabolism and signaling pathways. This chapter explores the zebrafish's unique attributes that make it an ideal candidate for lipidomics studies. With a genome sharing numerous genetic similarities with humans, zebrafish serve as a powerful model for dissecting lipid metabolism and unraveling the complexities of lipid mediator-related diseases. In this chapter, we delve into specific protocols tailored for utilizing zebrafish in lipidomics research and similar investigations. Through a comprehensive exploration of zebrafish as a model organism, this chapter aims to provide researchers with valuable insights and methodologies for advancing lipidomics studies using zebrafish.


Subject(s)
Lipid Metabolism , Lipidomics , Zebrafish , Zebrafish/metabolism , Animals , Lipidomics/methods , Lipids/analysis , Models, Animal , Humans
20.
Methods Mol Biol ; 2816: 53-67, 2024.
Article in English | MEDLINE | ID: mdl-38977588

ABSTRACT

This chapter conducts an in-depth exploration of the impact of musculoskeletal (MSK) disorders and injuries, with a specific emphasis on their consequences within the older population demographic. It underscores the escalating demand for innovative interventions in MSK tissue engineering. The chapter also highlights the fundamental role played by lipid signaling mediators (LSMs) in tissue regeneration, with relevance to bone and muscle recovery. Remarkably, Prostaglandin E2 (PGE2) emerges as a central orchestrator in these regenerative processes. Furthermore, the chapter investigates the complex interplay between bone and muscle tissues, explaining the important influence exerted by LSMs on their growth and differentiation. The targeted modulation of LSM pathways holds substantial promise as a beneficial way for addressing muscle disorders. In addition to these conceptual understandings, the chapter provides a comprehensive overview of methodologies employed in the identification of LSMs, with a specific focus on the Liquid Chromatography-Mass Spectrometry (LC-MS). Furthermore, it introduces a detailed LC MS/MS-based protocol tailored for the detection of PGE2, serving as an invaluable resource for researchers immersed in this dynamic field of study.


Subject(s)
Dinoprostone , Lipidomics , Tandem Mass Spectrometry , Humans , Lipidomics/methods , Dinoprostone/metabolism , Dinoprostone/analysis , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Musculoskeletal Diseases/diagnosis , Lipid Metabolism , Lipids/analysis
SELECTION OF CITATIONS
SEARCH DETAIL