ABSTRACT
Dressings should protect wounds, promote healing, absorb fluids, and maintain moisture. Bacterial cellulose is a biopolymer that stands out in biomaterials due to its high biocompatibility in several applications. In the area of dressings, it is already marketed as an alternative to traditional dressings. However, it lacks any intrinsic activity; among these, the need for antimicrobial activity in infected wounds stands out. We developed a cationic cellulose film by modifying cellulose with 1-(5-carboxypentyl)pyridin-1-ium bromide, enhancing its wettability (contact angle: 26.6°) and water retention capacity (2714.37 %). This modified film effectively retained oxacillin compared to the unmodified control. Liposomal encapsulation further prolonged oxacillin release up to 11 days. Both oxacillin-loaded films and liposomal formulations demonstrated antimicrobial activity against Staphylococcus aureus. Our findings demonstrate the potential of chemically modified cellulose as a platform for controlled anionic antibiotics and/or their formulations delivery in wound care.
Subject(s)
Anti-Bacterial Agents , Bandages , Cellulose , Delayed-Action Preparations , Drug Liberation , Liposomes , Oxacillin , Staphylococcus aureus , Cellulose/chemistry , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Oxacillin/administration & dosage , Oxacillin/pharmacology , Oxacillin/chemistry , Cations/chemistry , Anions/chemistry , Wound Healing/drug effects , WettabilityABSTRACT
Combined use of edible films (EF) with nanoencapsulation systems could be an effective alternative for improving the films' physical properties and maintaining bioactive compounds' stability. This research work focuses on the combined use of EF of cellulose-derived biopolymers enriched with liposomes that encapsulate grape seed tannins and on the subsequent evaluation of the physical properties and wettability. Tannin-containing liposomal suspensions (TLS) showed 570.8 ± 6.0 nm particle size and 99% encapsulation efficiency. In vitro studies showed that the release of tannins from liposomes was slower than that of free tannins, reaching a maximum release of catechin of 0.13 ± 0.01%, epicatechin of 0.57 ± 0.01%, and gallic acid of 3.90 ± 0.001% over a 144 h period. Adding liposomes to biopolymer matrices resulted in significant decrease (p < 0.05) of density, surface tension, tensile strength, elongation percentage, and elastic modulus in comparison to the control, obtaining films with greater flexibility and lower breaking strength. Incorporating TLS into EF formulations resulted in partially wetting the hydrophobic surface, reducing adhesion and cohesion compared to EF without liposomes. Results indicate that the presence of liposomes improves films' physical and wettability properties, causing them to extend and not contract when applied to hydrophobic food surfaces.
ABSTRACT
BACKGROUND: Neglected parasitic diseases constitute a broad spectrum of clinical conditions that, in the chronic phase, lack effective therapies for the target population. The utilization of vaccines based on liposomal nanocarrier systems is emerging, thereby enhancing clinical outcomes in various comorbidities. Consequently, this study aims to assess the immunological activity induced by liposomal nanocarriers against neglected parasitic diseases. METHODS: For the review, the Pubmed, Embase, and Lilacs databases were used using the descriptors vaccine, parasite, and liposome. The following inclusion criteria were adopted: in vivo and in vitro experimental articles. As exclusion criteria: book chapters, editorials, literature reviews and duplicate articles found during the database search. RESULTS: A total of 226 articles were identified, from which 34 were selected for review. The primary diseases identified included Babesia bovis, Entamoeba histolytica, Leishmania braziliensis, Leishmania donovani, Leishmania major, Leishmania infantum, Plasmodium falciparum, Plasmodium chabaudi, Plasmodium chabaudi, Plasmodium yoelii, Toxoplasma gondii and Trypanosoma cruzi. An elevation in cytokines such as GM-CSF, MCP-1, INF-γ, TNF-α, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, and IL-17 was observed in the studies evaluated regarding the parasitic diseases. Furthermore, cytokines such as IL-4, IL-10, and TGF-ß were diminished with the administration of the vaccine systems in those studies. CONCLUSION: Therefore, the administration of liposomal nanovaccine systems can effectively ameliorate the clinical condition of patients by modulating their immunological profile.
ABSTRACT
(1) Introduction: Curcumin and Lippia origanoides essential oils have a broad spectrum of biological activities; however, their physicochemical instability, low solubility, and high volatility limit their therapeutic use. Encapsulation in liposomes has been reported as a feasible approach to increase the physicochemical stability of active substances, protect them from interactions with the environment, modulate their release, reduce their volatility, improve their bioactivity, and reduce their toxicity. To date, there are no reports on the co-encapsulation of curcumin and Lippia origanoides essential oils in liposomes. Therefore, the objective of this work is to prepare and physiochemical characterize liposomes loaded with the mixture of these compounds and to evaluate different in vitro biological activities. (2) Methods: Liposomes were produced using the thin-layer method and physiochemical characteristics were calculated. The antimicrobial and cytotoxic activities of both encapsulated and non-encapsulated compounds were evaluated. (3) Results: Empty and loaded nanometric-sized liposomes were obtained that are monodisperse and have a negative zeta potential. They inhibited the growth of Staphylococcus aureus and did not exhibit cytotoxic activity against mammalian cells. (4) Conclusions: Encapsulation in liposomes was demonstrated to be a promising strategy for natural compounds possessing antimicrobial activity.
Subject(s)
Curcumin , Liposomes , Lippia , Oils, Volatile , Staphylococcus aureus , Liposomes/chemistry , Curcumin/chemistry , Curcumin/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Lippia/chemistry , Humans , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cell Survival/drug effects , Particle SizeABSTRACT
In this study, we evaluated the impact of incorporating diblock and triblock amphiphilic copolymers, as well as cholesterol into DPPC liposomes on the release of a model molecule, calcein, mediated by exogenous phospholipase A2 activity. Our findings show that calcein release slows down in the presence of copolymers at low concentration, while at high concentration, the calcein release profile resembles that of the DPPC control. Additionally, calcein release mediated by exogenous PLA2 decreases as the amount of solubilized cholesterol increases, with a maximum between 18 mol% and 20 mol%. At concentrations higher than 24 mol%, no calcein release was observed. Studies conducted on HEK-293 and HeLa cells revealed that DPPC liposomes reduced viability by only 5% and 12%, respectively, after 3 hours of incubation, while DPPC liposome in presence of 33 mol% of Cholesterol reduced viability by approximately 11% and 23%, respectively, during the same incubation period. For formulations containing copolymers at low and high concentrations, cell viability decreased by approximately 20% and 40%, respectively, after 3 hours of incubation. Based on these preliminary results, we can conclude that the presence of amphiphilic copolymers at low concentration can be used in the design of new DPPC liposomes, and together with cholesterol, they can modulate liposome stabilization. The new formulations showed low cytotoxicity in HEK-293 cells, and it was observed that calcein release depended entirely on PLA2 activity and the presence of calcium ions.
ABSTRACT
Encapsulation and drying technologies allow the engineering of innovative raw materials from plant biodiversity, with potential applications in pharmaceutical and cosmetic fields. Lipid-based nanoencapsulation stands out for its efficiency, ease of production, and versatility in encapsulating substances, whether hydrophilic or lipophilic. This work aimed at encapsulating pequi oil in liposomes and freeze-dried liposomes to enhance its stability and functional benefits, such as skin hydration and anti-aging effects, for use in innovative cosmetic formulations. Pequi oil-extracted from the Caryocar brasiliense fruit pulp, a plant species from Brazilian plant biodiversity-is rich in secondary metabolites and fatty acids. Liposomes and dried liposomes offer controlled production processes and seamless integration into cosmetic formulations. The physicochemical analysis of the developed liposomes confirmed that the formulations are homogeneous and electrokinetically stable, as evidenced by consistent particle size distribution and zeta potential values, respectively. The gel-type formulations loaded with the dried liposomes exhibit enhanced skin hydration, improved barrier function, and refined microrelief, indicating improvements in skin conditions. These results highlight the potential of dried liposomes containing pequi oil for the development of innovative cosmeceutical products. This research contributes to the valorization of Brazilian biodiversity by presenting an innovative approach to leveraging the dermatological benefits of pequi oil in cosmetic applications.
ABSTRACT
Bufotenine is a fluorescent analog of Dimethyltryptamine (DMT) that has been widely studied due to its psychedelic properties and biological activity. However, little is known about its spectroscopic properties in different media. Thus, we present in this work, for the first time, the spectroscopic behavior of bufotenine and bufotenine N-oxide by means of their fluorescence properties. Both molecules exhibit changes in optical absorption and emission spectra with variations in pH of the medium and in different solvents. Assays in the presence of biomembranes models, like micelles and liposomes, were also performed. In surfactants titration experiments, the spectral shift observed in fluorescence shows the interaction of both molecules with pre-micellar structures and with micelles. Steady state anisotropy measurements show that both bufotenine and bufotenine N-oxide, in the studied concentration range, interact with liposomes without causing changes in the fluidity of the lipid bilayer. These results can be useful in studies that aim at searching for new compounds, inspired by bufotenine and bufotenine N-oxide, with relevant pharmacological activities and also in studies that use these molecules as markers of psychiatric disorders.
Subject(s)
Bufotenin , Liposomes , Humans , Solvents , Micelles , Oxides , Hydrogen-Ion ConcentrationABSTRACT
Nanovesicles produced with lipids and polymers are promising devices for drug and bioactive delivery and are of great interest in pharmaceutical applications. These nanovesicles can be engineered for improvement in bioavailability, patient compliance or to provide modified release or enhanced delivery. However, their applicability strongly depends on the safety and low immunogenicity of the components. Despite this, the use of unsaturated lipids in nanovesicles, which degrade following oxidation processes during storage and especially during the proper routes of administration in the human body, may yield toxic degradation products. In this study, we used a biopolymer (chitosan) labeled with flavonoid (catechin) as a component over a lipid bilayer for micro- and nanovesicles and characterized the structure of these vesicles in oxidation media. The purpose of this was to evaluate the in situ effect of the antioxidant in three different vesicular systems of medium, low and high membrane curvature. Liposomes and giant vesicles were produced with the phospholipids DOPC and POPC, and crystalline cubic phase with monoolein/DOPC. Concentrations of chitosan-catechin (CHCa) were included in all the vesicles and they were challenged in oxidant media. The cytotoxicity analysis using the MTT assay (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) revealed that concentrations of CHCa below 6.67 µM are non-toxic to HeLa cells. The size and zeta potential of the liposomes evidenced the degradation of their structures, which was minimized by CHCa. Similarly, the membrane of the giant vesicle, which rapidly deteriorated in oxidative solution, was protected in the presence of CHCa. The production of a lipid/CHCa composite cubic phase revealed a specific cubic topology in small-angle X-ray scattering, which was preserved in strong oxidative media. This study demonstrates the specific physicochemical characteristics introduced in the vesicular systems related to the antioxidant CHCa biopolymer, representing a platform for the improvement of composite nanovesicle applicability.
ABSTRACT
The efflux systems are considered important mechanisms of bacterial resistance due to their ability to extrude various antibiotics. Several naturally occurring compounds, such as sesquiterpenes, have demonstrated antibacterial activity and the ability to inhibit efflux pumps in resistant strains. Therefore, the objective of this research was to analyze the antibacterial and inhibitory activity of the efflux systems NorA, Tet(K), MsrA, and MepA by sesquiterpenes nerolidol, farnesol, and α-bisabolol, used either individually or in liposomal nanoformulation, against multi-resistant Staphylococcus aureus strains. The methodology consisted of in vitro testing of the ability of sesquiterpenes to reduce the Minimum Inhibitory Concentration (MIC) and enhance the action of antibiotics and ethidium bromide (EtBr) in broth microdilution assays. The following strains were used: S. aureus 1199B carrying the NorA efflux pump, resistant to norfloxacin; IS-58 strain carrying Tet(K), resistant to tetracyclines; RN4220 carrying MsrA, conferring resistance to erythromycin. For the EtBr fluorescence measurement test, K2068 carrying MepA was used. It was observed the individual sesquiterpenes exhibited better antibacterial activity as well as efflux pump inhibition. Farnesol showed the lowest MIC of 16.5 µg/mL against the S. aureus RN4220 strain. Isolated nerolidol stood out for reducing the MIC of EtBr to 5 µg/mL in the 1199B strain, yielding better results than the positive control CCCP, indicating strong evidence of NorA inhibition. The liposome formulations did not show promising results, except for liposome/farnesol, which reduced the MIC of EtBr against 1199B and RN4220. Further research is needed to evaluate the mechanisms of action involved in the inhibition of resistance mechanisms by the tested compounds.
Subject(s)
Methicillin-Resistant Staphylococcus aureus , Sesquiterpenes , Farnesol/pharmacology , Staphylococcus aureus/metabolism , Methicillin-Resistant Staphylococcus aureus/metabolism , Liposomes , Multidrug Resistance-Associated Proteins , Anti-Bacterial Agents/pharmacology , Sesquiterpenes/pharmacology , Ethidium/pharmacology , Microbial Sensitivity Tests , Bacterial Proteins/metabolismABSTRACT
Mucosal vaccination appears to be suitable to protect against SARS-CoV-2 infection. In this study, we tested an intranasal mucosal vaccine candidate for COVID-19 that consisted of a cationic liposome containing a trimeric SARS-CoV-2 spike protein and CpG-ODNs, a Toll-like receptor 9 agonist, as an adjuvant. In vitro and in vivo experiments indicated the absence of toxicity following the intranasal administration of this vaccine formulation. First, we found that subcutaneous or intranasal vaccination protected hACE-2 transgenic mice from infection with the wild-type (Wuhan) SARS-CoV-2 strain, as shown by weight loss and mortality indicators. However, when compared with subcutaneous administration, the intranasal route was more effective in the pulmonary clearance of the virus and induced higher neutralizing antibodies and anti-S IgA titers. In addition, the intranasal vaccination afforded protection against gamma, delta, and omicron virus variants of concern. Furthermore, the intranasal vaccine formulation was superior to intramuscular vaccination with a recombinant, replication-deficient chimpanzee adenovirus vector encoding the SARS-CoV-2 spike glycoprotein (Oxford/AstraZeneca) in terms of virus lung clearance and production of neutralizing antibodies in serum and bronchial alveolar lavage (BAL). Finally, the intranasal liposomal formulation boosted heterologous immunity induced by previous intramuscular vaccination with the Oxford/AstraZeneca vaccine, which was more robust than homologous immunity.
ABSTRACT
The search for new antimicrobial agents is a continuous struggle, mainly because more and more cases of resistant strains are being reported. Mycobacterium tuberculosis (MTB) is the main microorganism responsible for millions of deaths worldwide. The development of new antimicrobial agents is generally aimed at finding strong interactions with one or more bacterial receptors. It has been proven that bacteriophages have the ability to adhere to specific and selective regions. However, their transport and administration must be carefully evaluated as an excess could prevent a positive response and the bacteriophages may be eliminated during their journey. With this in mind, the mycobacteriophage D29 was encapsulated in nanoliposomes, which made it possible to determine its antimicrobial activity during transport and its stability in the treatment of active and latent Mycobacterium tuberculosis. The antimicrobial activity, the cytotoxicity in macrophages and fibroblasts, as well as their infection and time-kill were evaluated. Phage nanoencapsulation showed efficient cell internalization to induce MTB clearance with values greater than 90%. Therefore, it was shown that nanotechnology is capable of assisting in the activity of degradation-sensitive compounds to achieve better therapy and evade the immune response against phages during treatment.
ABSTRACT
In the search for anxiolytic drugs with fewer adverse effects, calcium blockers were proposed as a benzodiazepines (BZDs) alternative. In this context, the anxiolytic effect of nimodipine has been demonstrated. However, its low bioavailability and solubility could be improved by using nanostructured drug delivery systems such as liposomes. In this way, liposomal formulation containing nimodipine (NMD-Lipo) was developed. The NMD-lipo is a formulation capable of improving the kinetic characteristics of the drug, as well as the anxiolytic effect of nimodipine. In this work, the serotonergic system participation in the anxiolytic mechanism of the liposomal formulation containing nimodipine (NMD-Lipo) was investigated. A possible 5-HT1A receptor mediation on the NMD-Lipo anxiolytic effect was demonstrated by using WAY 100635 (5-HT1A receptor antagonist) since the antagonist reversed the NMD-Lipo anxiolytic effect in the light/dark test and elevated plus maze test. The results demonstrated that the NMD-Lipo administration had anxiolytic activity through 5-HT1A receptors without causing sedation or compromising the motor coordination of the tested animals.
ABSTRACT
Antibiotic resistance has become an urgent threat to health care in recent years. The use of drug delivery systems provides advantages over conventional administration of antibiotics and can slow the development of antibiotic resistance. In the current study, we developed a toxin-triggered liposomal antibiotic delivery system, in which the drug release is enabled by the leukotoxin (LtxA) produced by the Gram-negative pathogen, Aggregatibacter actinomycetemcomitans. LtxA has previously been shown to mediate membrane disruption by promoting a lipid phase change in nonlamellar lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-methyl (N-methyl-DOPE). In addition, LtxA has been observed to bind strongly and nearly irreversibly to membranes containing large amounts of cholesterol. Here, we designed a liposomal delivery system composed of N-methyl-DOPE and cholesterol to take advantage of these interactions. Specifically, we hypothesized that liposomes composed of N-methyl-DOPE and cholesterol, encapsulating antibiotics, would be sensitive to LtxA, enabling controlled antibiotic release. We observed that liposomes composed of N-methyl-DOPE were sensitive to the presence of low concentrations of LtxA, and cholesterol increased the extent and kinetics of content release. The liposomes were stable under various storage conditions for at least 7 days. Finally, we showed that antibiotic release occurs selectively in the presence of an LtxA-producing strain of A. actinomycetemcomitans but not in the presence of a non-LtxA-expressing strain. Together, these results demonstrate that the designed liposomal vehicle enables toxin-triggered delivery of antibiotics to LtxA-producing strains of A. actinomycetemcomitans.
ABSTRACT
This study aimed to increase the encapsulation efficiency (EE%) of liposomes loaded with green tea polyphenols (GTP), by optimizing with response surface methodology (RSM), characterizing the obtained particles, and modeling their release under conventional heating and pulsed electric fields. GTP-loaded liposomes were prepared under conditions of Lecithin/Tween 80 (4:1, 1:1, and 1:4), cholesterol (0, 30, and 50%), and chitosan as coating (0, 0.05, and 0.1%). Particles were characterized by size, polydispersity index, ζ-potential, electrical conductivity, and optical microscopy. The release kinetics was modeled at a temperature of 60 °C and an electric field of 5.88 kV/cm. The optimal manufacturing conditions of GTP liposomes (ratio of lecithin/Tween 80 of 1:1, cholesterol 50%, and chitosan 0.1%) showed an EE% of 60.89% with a particle diameter of 513.75 nm, polydispersity index of 0.21, ζ-potential of 33.67 mV, and electrical conductivity of 0.14 mS/cm. Optical microscopy verified layering in the liposomes. The kinetic study revealed that the samples with chitosan were more stable to conventional heating, and those with higher cholesterol content were more stable to pulsed electric fields. However, in both treatments, the model with the best fit was the Peppas model. The results of the study allow us to give an indication of the knowledge of the behavior of liposomes under conditions of thermal and non-thermal treatments, helping the development of new functional ingredients based on liposomes for processed foods.
ABSTRACT
Novel lipid-based nanosystems have been of interest in improving conventional drug release methods. Liposomes are the most studied nanostructures, consisting of lipid bilayers ideal for drug delivery, thanks to their resemblance to the cell plasma membrane. Asymmetric liposomes are vesicles with different lipids in their inner and outer layers; because of this, they can be configured to be compatible with the therapeutic drug while achieving biocompatibility and stability. Throughout this review, topics such as the applications, advantages, and synthesis techniques of asymmetric liposomes will be discussed. Further, an in silico analysis by computational tools will be examined as a helpful tool for designing and understanding asymmetric liposome mechanisms in pharmaceutical applications. The dual-engineered design of asymmetric liposomes makes them an ideal alternative for transdermal drug delivery because of the improved protection of pharmaceuticals without lowering adsorption rates and system biocompatibility.
ABSTRACT
The use of nucleotides for biomedical applications is an old desire in the scientific community. As we will present here, there are references published over the past 40 years with this intended use. The main problem is that, as unstable molecules, nucleotides require some additional protection to extend their shelf life in the biological environment. Among the different nucleotide carriers, the nano-sized liposomes proved to be an effective strategic tool to overcome all these drawbacks related to the nucleotide high instability. Moreover, due to their low immunogenicity and easy preparation, the liposomes were selected as the main strategy for delivery of the mRNA developed for COVID-19 immunization. For sure this is the most important and relevant example of nucleotide application for human biomedical conditions. In addition, the use of mRNA vaccines for COVID-19 has increased interest in the application of this type of technology to other health conditions. For this review article, we will present some of these examples, especially focused on the use of liposomes to protect and deliver nucleotides for cancer therapy, immunostimulatory activities, enzymatic diagnostic applications, some examples for veterinarian use, and the treatment of neglected tropical disease.
ABSTRACT
Acetylcholinesterase (AChE), hydrolyzes acetylcholine to choline and acetate, thereby terminating this neurotransmitter effect at cholinergic synapses. Therefore, AChE inhibition is used for counterbalance the cholinergic deficit in Alzheimer's disease (AD) patients. In the present work, in order to find new plant acetylcholinesterase inhibitors, the hydroalcoholic extracts from seventeen medicinal plant species were screened for their acetylcholinesterase inhibition activity, as well as total phenolic (TPC) and flavonoids contents (TFC) and antioxidant activity using ORAC (Oxygen Radical Absorbance Capacity) assay, and their ability to inhibit lipid peroxidation. The results revealed that Rumex acetosa, Taraxacum officinale and Hypericum perforatum extracts possessing the highest TPC and TFC, were the most effective in terms of ORAC antioxidant activity, and acetylcholinesterase inhibition, in addition to their ability to inhibit liposomes peroxidation, suggesting that those plant species may provide a substantial source of secondary metabolites, which act as natural antioxidants and acetylcholinesterase inhibitors, and may be beneficial in the treatment of AD.
La acetilcolinesterasa (AChE) hidroliza la acetilcolina se hidroliza en colina y acetato, terminando así este efecto neurotransmisor en las sinapsis colinérgicas. Por lo tanto, la inhibición de la AChE se utiliza para contrarrestar el déficit colinérgico en pacientes con enfermedad de Alzheimer (EA). En el presente trabajo, con el fin de encontrar nuevos inhibidores de la acetilcolinesterasa vegetal, se analizaron los extractos hidroalcohólicos de diecisiete especies de plantas medicinales para determinar su actividad inhibidora de la acetilcolinesterasa, así como el contenido total de fenólicos (TPC) y flavonoides (TFC) y la actividad antioxidante utilizando ORAC (Capacidad de absorbancia de radicales de oxígeno) y su capacidad para inhibir la peroxidación de lípidos. Los resultados revelaron que los extractos de Rumexacetosa, Taraxacum officinale e Hypericum perforatum que poseen los más altos TPC y TFC, fueron los más efectivos en términos de actividad antioxidante ORAC e inhibición de acetilcolinesterasa, además de su capacidad para inhibir la peroxidación de los liposomas, sugiriendo que esas especies de plantas puede proporcionar una fuente sustancial de metabolitos secundarios, que actúan como antioxidantes naturales e inhibidores de la acetilcolinesterasa, y puede ser beneficioso en el tratamiento de la EA.
Subject(s)
Cholinesterase Inhibitors/pharmacology , Hypericum , Taraxacum , Rumex , Alzheimer Disease/drug therapy , Antioxidants/pharmacology , Phenols/analysis , Flavonoids/analysis , Lipid Peroxidation/drug effects , Cholinesterase Inhibitors/chemistry , Reactive Oxygen Species , Morocco , Antioxidants/chemistryABSTRACT
Coffea canephora plant stem cells can have bioactive compounds with tissue repairing and anti-inflammatory action. This study aimed to develop a liposomal stem cell extract formulation obtained from the leaves of C. canephora (LSCECC) and to investigate its capacity to contribute to the dynamic mechanisms of tissue repair. The liposome cream was developed and characterized through the dynamic light scattering technique, atomic force microscopy, and transmission electron microscopy. The excisional full-thickness skin wound model was used and daily topically treated with the LSCECC formulation or vehicle control. On days 2, 7, 14, and 21 after wounding, five rats from each group were euthanized and the rates of wound closure and re-epithelialization were evaluated using biochemical and histological tests. LSCECC resulted in faster re-epithelialization exhibiting a significant reduction in wound area of 36.4, 42.4, and 87.5% after 7, 10, and 14 days, respectively, when compared to vehicle control. LSCECC treated wounds exhibited an increase in granular tissue and a proper inflammatory response mediated by the reduction of pro-inflammatory cytokines like TNF-α and IL-6 and an increase of IL-10. Furthermore, wounds treated with LSCECC showed an increase in the deposition and organization of collagen fibers at the wound site and improved scar tissue quality due to the increase in transforming growth factor-beta and vascular endothelial growth factor. Our data showed that LSCECC improves wound healing, the formation of extracellular matrix, modulates inflammatory response, and promotes neovascularization being consider a promising bioactive extract to promote and support healthy skin. The graphical presents the action of LSCECC in all four phases of wound healing and tissue repair. The LSCECC can reduce the inflammatory infiltrate in the inflammatory phase by decreasing the pro-inflammatory cytokines like IL-6 and TNF-α, in addition to maintaining this modulation through lesser activation and recruitment of macrophages. The LSCECC can also increase the release of IL-10, an anti-inflammatory cytokine, decreasing local edema. The increase in VEGF provides neovascularization and the supply of nutrients to newly repaired tissue. Finally, signaling via TGF-ß increases the production and organization of collagen fibers in the remodeling phase.
Subject(s)
Coffea , Interleukin-10 , Rats , Animals , Interleukin-10/metabolism , Coffea/metabolism , Cell Extracts , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Vascular Endothelial Growth Factor A , Liposomes/metabolism , Wound Healing/physiology , Skin/pathology , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Collagen/metabolismABSTRACT
Drug delivery systems are believed to increase pharmaceutical efficacy and the therapeutic index by protecting and stabilizing bioactive molecules, such as protein and peptides, against body fluids' enzymes and/or unsuitable physicochemical conditions while preserving the surrounding healthy tissues from toxicity. Liposomes are biocompatible and biodegradable and do not cause immunogenicity following intravenous or topical administration. Still, their most important characteristic is the ability to load any drug or complex molecule uncommitted to its hydrophobic or hydrophilic character. Selecting lipid components, ratios and thermo-sensitivity is critical to achieve a suitable nano-liposomal formulation. Nano-liposomal surfaces can be tailored to interact successfully with target cells, avoiding undesirable associations with plasma proteins and enhancing their half-life in the bloodstream. Macropinocytosis-dynamin-independent, cell-membrane-cholesterol-dependent processes, clathrin, and caveolae-independent mechanisms are involved in liposome internalization and trafficking within target cells to deliver the loaded drugs to modulate cell function. A successful translation from animal studies to clinical trials is still an important challenge surrounding the approval of new nano-liposomal drugs that have been the focus of investigations. Precision medicine based on the design of functionalized nano-delivery systems bearing highly specific molecules to drive therapies is a promising strategy to treat degenerative diseases.
ABSTRACT
Matrix vesicles (MVs) contain the whole machinery necessary to initiate apatite formation in their lumen. We suspected that, in addition to tissue-nonspecific alkaline phosphatase (TNAP), Na,K,-ATPase (NKA) could be involved in supplying phopshate (Pi) in the early stages of MV-mediated mineralization. MVs were extracted from the growth plate cartilage of chicken embryos. Their average mean diameters were determined by Dynamic Light Scattering (DLS) (212 ± 19 nm) and by Atomic Force Microcopy (AFM) (180 ± 85 nm). The MVs had a specific activity for TNAP of 9.2 ± 4.6 U·mg-1 confirming that the MVs were mineralization competent. The ability to hydrolyze ATP was assayed by a colorimetric method and by 31P NMR with and without Levamisole and SBI-425 (two TNAP inhibitors), ouabain (an NKA inhibitor), and ARL-67156 (an NTPDase1, NTPDase3 and Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) competitive inhibitor). The mineralization profile served to monitor the formation of precipitated calcium phosphate complexes, while IR spectroscopy allowed the identification of apatite. Proteoliposomes containing NKA with either dipalmitoylphosphatidylcholine (DPPC) or a mixture of 1:1 of DPPC and dipalmitoylphosphatidylethanolamine (DPPE) served to verify if the proteoliposomes were able to initiate mineral formation. Around 69-72% of the total ATP hydrolysis by MVs was inhibited by 5 mM Levamisole, which indicated that TNAP was the main enzyme hydrolyzing ATP. The addition of 0.1 mM of ARL-67156 inhibited 8-13.7% of the total ATP hydrolysis in MVs, suggesting that NTPDase1, NTPDase3, and/or NPP1 could also participate in ATP hydrolysis. Ouabain (3 mM) inhibited 3-8% of the total ATP hydrolysis by MVs, suggesting that NKA contributed only a small percentage of the total ATP hydrolysis. MVs induced mineralization via ATP hydrolysis that was significantly inhibited by Levamisole and also by cleaving TNAP from MVs, confirming that TNAP is the main enzyme hydrolyzing this substrate, while the addition of either ARL-6715 or ouabain had a lesser effect on mineralization. DPPC:DPPE (1:1)-NKA liposome in the presence of a nucleator (PS-CPLX) was more efficient in mineralizing compared with a DPPC-NKA liposome due to a better orientation of the NKA active site. Both types of proteoliposomes were able to induce apatite formation, as evidenced by the presence of the 1040 cm-1 band. Taken together, the findings indicated that the hydrolysis of ATP was dominated by TNAP and other phosphatases present in MVs, while only 3-8% of the total hydrolysis of ATP could be attributed to NKA. It was hypothesized that the loss of Na/K asymmetry in MVs could be caused by a complete depletion of ATP inside MVs, impairing the maintenance of symmetry by NKA. Our study carried out on NKA-liposomes confirmed that NKA could contribute to mineral formation inside MVs, which might complement the known action of PHOSPHO1 in the MV lumen.