ABSTRACT
Bilirubin plays a key role in early diagnosis, prognosis, and prevention of liver diseases. Unconjugated bilirubin (UCB) requires conversion to a water-soluble form through liver glucuronidation, producing monoglucuronide (BMG) or diglucuronide bilirubin (BDG) for bile excretion. This study aimed to assess the roles of bilirubin's molecular species-UCB, BMG, and BDG-in diagnosing and understanding the pathogenesis of liver cirrhosis in patients with acute-on-chronic liver failure (ACLF), compensated liver cirrhosis (LC) patients, and healthy individuals. The study included patients with ACLF and compensated LC of diverse etiologies, along with healthy controls. We collected laboratory and clinical data to determine the severity and assess mortality. We extracted bilirubin from serum samples to measure UCB, BMG, and BDG using liquid chromatography-mass spectrometry (LC-MS). The quantification of bilirubin was performed by monitoring the mass charge (m/z) ratio. Of the 74 patients assessed, 45 had ACLF, 11 had LC, and 18 were healthy individuals. Among ACLF patients, the levels of molecular species of bilirubin were UCB 19.69 µmol/L, BMG 47.71 µmol/L, and BDG 2.120 µmol/L. For compensated cirrhosis patients, the levels were UCB 11.29 µmol/L, BMG 1.49 µmol/L, and BDG 0.055 µmol/L, and in healthy individuals, the levels were UCB 6.42 µmol/L, BMG 0.52 µmol/L, and BDG 0.028 µmol/L. The study revealed marked elevations in the bilirubin species in individuals with ACLF compared to those with compensated cirrhosis and healthy controls, underscoring the progression of liver dysfunction. The correlation of BMG and BDG levels with commonly used inflammatory markers suggests a relationship between bilirubin metabolism and systemic inflammation in ACLF.
Subject(s)
Acute-On-Chronic Liver Failure , Bilirubin , Liver Cirrhosis , Humans , Acute-On-Chronic Liver Failure/metabolism , Acute-On-Chronic Liver Failure/blood , Acute-On-Chronic Liver Failure/etiology , Bilirubin/metabolism , Bilirubin/blood , Female , Male , Middle Aged , Adult , Liver Cirrhosis/metabolism , Liver Cirrhosis/blood , Liver Cirrhosis/complications , Biomarkers/blood , Aged , Case-Control Studies , Prognosis , Chromatography, LiquidABSTRACT
BACKGROUND: This study aimed to investigate the serum metabolite profiles during neoadjuvant chemoradiotherapy (NCRT) in locally advanced rectal cancer (LARC) using liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis. METHODS: 60 serum samples were collected from 20 patients with LARC before, during, and after radiotherapy. LC-MS metabolomics analysis was performed to identify the metabolite variations. Functional annotation was applied to discover altered metabolic pathways. The key metabolites were screened and their ability to predict sensitivity to radiotherapy was calculated using random forests and ROC curves. RESULTS: The results showed that NCRT led to significant changes in the serum metabolite profiles. The serum metabolic profiles showed an apparent separation between different time points and different sensitivity groups. Moreover, the functional annotation showed that the differential metabolites were associated with a series of important metabolic pathways. Pre-radiotherapy (3Z,6Z)-3,6-Nonadiena and pro-radiotherapy 1-Hydroxyibuprofen showed good predictive performance in discriminating the sensitive and non-sensitive group to NCRT, with an AUC of 0.812 and 0.75, respectively. Importantly, the combination of different metabolites significantly increased the predictive ability. CONCLUSION: This study demonstrated the potential of LC-MS metabolomics for revealing the serum metabolite profiles during NCRT in LARC. The identified metabolites may serve as potential biomarkers and therapeutic targets for the management of this disease. Furthermore, the understanding of the affected metabolic pathways may help design more personalized therapeutic strategies for LARC patients.
ABSTRACT
Rotigotine (RTG) is a dopamine agonist used in the treatment of Parkinson's disease. As it is susceptible to oxidation, stability studies must be carefully designed for the identification and characterization of all possible degradation products. Here, RTG degradation was evaluated according to the International Conference on Harmonization guidelines under various stress conditions, including acidic and basic hydrolysis, oxidative, metallic, photolytic, and thermal conditions. Additionally, more severe stress conditions were applied to induce RTG degradation. Significant degradation was only observed under oxidative and photolytic conditions. The samples were analyzed by high performance liquid chromatography coupled to photodiode array detectors, charged aerosol, and high-resolution mass spectrometry. Chromatographic analyses revealed the presence of eight substances related to RTG, four of which were already described and were qualified impurities (impurities B, C, K and E) and four new degradation products (DP-1 - DP-4), whose structures were characterized by high-resolution mass spectrometry through Q-Orbitrap and electrospray ionization. In the stress testing of the active pharmaceutical ingredient in solid form, significant RTG degradation was observed in the presence of the oxidative matrix. The results corroborate the literature that confirm the high susceptibility of RTG to oxidation and the importance of using different detectors to detect degradation products in forced degradation studies.
Subject(s)
Drug Stability , Spectrometry, Mass, Electrospray Ionization , Tetrahydronaphthalenes , Thiophenes , Chromatography, High Pressure Liquid/methods , Thiophenes/chemistry , Thiophenes/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Tetrahydronaphthalenes/chemistry , Tetrahydronaphthalenes/analysis , Oxidation-Reduction , Dopamine Agonists/analysis , Dopamine Agonists/chemistry , Hydrolysis , Drug Contamination/prevention & control , PhotolysisABSTRACT
We investigated bile salts' ability to induce phenotypic changes in biofilm production and protein expression of pathogenic Escherichia coli strains. For this purpose, 82 pathogenic E. coli strains isolated from humans (n = 70), and animals (n = 12), were examined for their ability to form biofilms in the presence or absence of bile salts. We also identified bacterial proteins expressed in response to bile salts using sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-electrophoresis) and liquid chromatography-mass spectrometry (LC-MS/MS). Lastly, we evaluated the ability of these strains to adhere to Caco-2 epithelial cells in the presence of bile salts. Regarding biofilm formation, two strains isolated from an outbreak in Republic of Georgia in 2009 were the only ones that showed a high and moderate capacity to form biofilm in the presence of bile salts. Further, we observed that those isolates, when in the presence of bile salts, expressed different proteins identified as outer membrane proteins (i.e. OmpC), and resistance to adverse growth conditions (i.e. F0F1, HN-S, and L7/L12). We also found that these isolates exhibited high adhesion to epithelial cells in the presence of bile salts. Together, these results contribute to the phenotypic characterization of E. coli O104: H4 strains.
Subject(s)
Escherichia coli Infections , Escherichia coli O104 , Escherichia coli Proteins , Shiga-Toxigenic Escherichia coli , Animals , Humans , Escherichia coli/metabolism , Virulence , Caco-2 Cells , Chromatography, Liquid , Tandem Mass Spectrometry , Biofilms , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolismABSTRACT
Microbial competition within plant tissues affects invading pathogens' fitness. Metabolomics is a great tool for studying their biochemical interactions by identifying accumulated metabolites. Xylella fastidiosa, a Gram-negative bacterium causing Pierce's disease (PD) in grapevines, secretes various virulence factors including cell wall-degrading enzymes, adhesion proteins, and quorum-sensing molecules. These factors, along with outer membrane vesicles, contribute to its pathogenicity. Previous studies demonstrated that co-inoculating X. fastidiosa with the Paraburkholderia phytofirmans strain PsJN suppressed PD symptoms. Here, we further investigated the interaction between the phytopathogen and the endophyte by analyzing the exometabolome of wild-type X. fastidiosa and a diffusible signaling factor (DSF) mutant lacking quorum sensing, cultivated with 20% P. phytofirmans spent media. Liquid chromatography-mass spectrometry (LC-MS) and the Method for Metabolite Annotation and Gene Integration (MAGI) were used to detect and map metabolites to genomes, revealing a total of 121 metabolites, of which 25 were further investigated. These metabolites potentially relate to host adaptation, virulence, and pathogenicity. Notably, this study presents the first comprehensive profile of X. fastidiosa in the presence of a P. phytofirmans spent media. The results highlight that P. phytofirmans and the absence of functional quorum sensing affect the ratios of glutamine to glutamate (Gln:Glu) in X. fastidiosa. Additionally, two compounds with plant metabolism and growth properties, 2-aminoisobutyric acid and gibberellic acid, were downregulated when X. fastidiosa interacted with P. phytofirmans. These findings suggest that P. phytofirmans-mediated disease suppression involves modulation of the exometabolome of X. fastidiosa, impacting plant immunity.
ABSTRACT
Employing a combination of liquid chromatography electrospray ionization and paper spray ionization high-resolution tandem mass spectrometry, extracts from cupuassu (Theobroma grandiflorum) pulp prepared with either water, methanol, acetonitrile or combinations thereof were subjected to metabolite fingerprinting. Among the tested extractors, 100% methanol extracted preferentially phenols and cinnamic acids derivatives, whereas acetonitrile and acetonitrile/methanol were more effective in extracting terpenoids and flavonoids, respectively. And while liquid chromatography- mass spectrometry detected twice as many metabolites as paper spray ionization tandem mass spectrometry, the latter proved its potential as a screening technique. Comprehensive structural annotation showed a high production of terpenes, mainly oleanane triterpene derivatives. of the mass spectra Further, five major metabolites with known antioxidant activity, namely catechin, citric acid, epigallocatechin-3'-glucuronide, 5,7,8-trihydroxyflavanone, and asiatic acid, were subjected to molecular docking analysis using the antioxidative enzyme peroxiredoxin 5 (PRDX5) as a model receptor. Based on its excellent docking score, a pharmacophore model of 5,7,8-trihydroxyflavanone was generated, which may help the design of new antioxidants.
ABSTRACT
In this work, the photolysis of the antibiotic norfloxacin (NOR) and the formation of its photodegradation products were studied using UV and solar radiation. Their extraction was also assessed in Milli-Q water and secondary effluents from a wastewater treatment plant. The photolysis of NOR was chromatographically monitored. The structure of each degradation product is related to the reaction of NOR with reactive oxygen species (ROS), as confirmed using radical quenchers and mass spectrometry. Additionally, the feasibility of extracting NOR and its degradation products was assessed using a commercial solid phase extraction system. Photolysis results showed the formation of five degradation products, generated under exposure to both types of radiation. The decays in NOR concentrations for the solar and UV treatments were adjusted to pseudo first-order kinetics with apparent constant values of ksolar = 1.19 × 10-3 s-1 and kUV = 3.84 × 10-5 s-1. Furthermore, the superoxide radical was the main participant species in the formation of the degradation products P3, P4, and P5. Species P1 and P2 do not need this radical for their formation. The presence of NOR in water opens the possibility of its photolysis by solar radiation. This work contributes to the understanding of the mechanisms that mediate its photodegradation, in addition to studying potential options for its determination and its photodegradation products in the sample treatment.
Subject(s)
Anti-Bacterial Agents , Water Pollutants, Chemical , Humans , Anti-Bacterial Agents/chemistry , Norfloxacin/analysis , Photolysis , Sunlight , Kinetics , Water/chemistry , Water Pollutants, Chemical/analysis , Ultraviolet RaysABSTRACT
BACKGROUND: The invasive gastropod Pomacea canaliculata has received great attention in the last decades as a result of its negative impact on crops agriculture, yet knowledge of their digestive physiology remains incomplete, particularly the enzymatic breakdown of macromolecules such as proteins and lipids. RESULTS: Discovery proteomics revealed aspartic peptidases, cysteine peptidases, serine peptidases, metallopeptidases and threonine peptidases, as well as acid and neutral lipases and phospholipases along the digestive tract of P. canaliculata. Peptides specific to peptidases (139) and lipases (14) were quantified by targeted mass spectrometry. Digestion begins in the mouth via diverse salivary peptidases (nine serine peptidases; seven cysteine peptidases, one aspartic peptidase and 22 metallopeptidases) and then continues in the oesophagus (crop) via three luminal metallopeptidases (Family M12) and six serine peptidases (Family S1). Downstream, the digestive gland provides a battery of enzymes composed of aspartic peptidase (one), cysteine peptidases (nine), serine peptidases (12) and metallopeptidases (24), including aminopeptidases, carboxypeptidases and dipeptidases). The coiled gut has M1 metallopeptidases that complete the digestion of small peptides. Lipid extracellular digestion is completed by triglyceride lipases. CONCLUSION: From an integrative physiological and anatomical perspective, P. canaliculata shows an unexpected abundance and diversity of peptidases, which participate mainly in extracellular digestion. Moreover, the previously unknown occurrence of luminal lipases from the digestive gland is reported for the first time. Salivary and digestive glands were the main tissues involved in the synthesis and secretion of these enzymes, but plausibly the few luminally exclusive peptidases are secreted by ventrolateral pouches or epithelial unicellular glands. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Subject(s)
Gastropoda , Animals , Proteomics , Cysteine , Gastrointestinal Tract , Peptides , Metalloproteases , Serine Proteases , Serine Endopeptidases , SerineABSTRACT
Deguelia nitidula (Benth.) A.M.G.Azevedo & R.A.Camargo (Fabaceae) is an herbaceous plant distributed in the Brazilian Amazon, and it is called "raiz do sol" (sun roots). On Marajó Island, quilombola communities use its prepared roots to treat skin diseases commonly caused by fungi, viruses, and bacteria. Thus, in this study, the extract, and its fractions from D. nitidula roots were used to perform in vitro cytotoxic and antibacterial assays against Staphylococcus aureus strains. Thereafter, liquid chromatography-mass spectrometry (LC-MS) was used for the metabolite annotation process. The ethanolic extract of D. nitidula roots show significant bactericidal activity against S. aureus with IC50 82 µg.mL-1 and a selectivity index (SI) of 21.35. Furthermore, the SREFr2 and SREFr3 fractions show a potent bactericidal activity, i.e., MIC of 46.8 µg.mL-1 for both, and MBC of 375 and 93.7 µg.mL-1, respectively. As showcased, SREFr3 shows safe and effective antibacterial activity mainly in respect to the excellent selectivity index (SI = 82.06). On the other hand, SREFr2 shows low selectivity (SI = 6.8), which characterizes it as not safe for therapeutic use. Otherwise, due to a limited amount of reference MS2 spectra in public libraries, up to now, it was not possible to perform a complete metabolite annotation. Despite that, our antibacterial results for SREFr3 and correlated substructures of amino acid derivatives show that the roots of D. nitidula are a natural source of specialized metabolites, which can be isolated in the future, and then used as a support for further bio-guided research, as well as natural drug development.
ABSTRACT
The liquid chromatography-mass spectrometry (LC-MS)-based metabolomics approach is a powerful technology for discovering novel biologically active molecules. In this study, we investigated the metabolic profiling of Orchidaceae species using LC-HRMS/MS data combined with chemometric methods and dereplication tools to discover antifungal compounds. We analyze twenty ethanolic plant extracts from Vanda and Cattleya (Orchidaceae) genera. Molecular networking and chemometric methods were used to discriminate ions that differentiate healthy and fungal-infected plant samples. Fifty-three metabolites were rapidly annotated through spectral library matching and in silico fragmentation tools. The metabolomic profiling showed a large production of polyphenols, including flavonoids, phenolic acids, chromones, stilbenoids, and tannins, which varied in relative abundance across species. Considering the presence and abundance of metabolites in both groups of samples, we can infer that these constituents are associated with biochemical responses to microbial attacks. In addition, we evaluated the metabolic dynamic through the synthesis of stilbenoids in fungal-infected plants. The tricin derivative flavonoid- and the loliolide terpenoidfound only in healthy plant samples, are promising antifungal metabolites. LC-HRMS/MS, combined with state-of-the-art tools, proved to be a rapid and reliable technique for fingerprinting medicinal plants and discovering new hits and leads.
Subject(s)
Orchidaceae , Stilbenes , Antifungal Agents/metabolism , Chromatography, Liquid/methods , Mass Spectrometry/methods , Metabolomics/methods , Plants/metabolism , Stilbenes/metabolismABSTRACT
Since its inception, liquid chromatography-mass spectrometry (LC-MS) has been continuously improved upon in many aspects, including instrument capabilities, sensitivity, and resolution. Moreover, the costs to purchase and operate mass spectrometers and liquid chromatography systems have decreased, thus increasing affordability and availability in sectors outside of academic and industrial research. Processing power has also grown immensely, cutting the time required to analyze samples, allowing more data to be feasibly processed, and allowing for standardized processing pipelines. As a result, proteomics via LC-MS has become popular in many areas of biological sciences, forging an important seat for itself in targeted and untargeted assays, pure and applied science, the laboratory, and the clinic. In this chapter, many of these applications of LC-MS-based proteomics and an outline of how they can be executed will be covered. Since the field of personalized medicine has matured alongside proteomics, it has also come to rely on various mass spectrometry methods and will be elaborated upon as well. As time goes on and mass spectrometry evolves, there is no doubt that its presence in these areas, and others, will only continue to grow.
Subject(s)
Proteomics , Tandem Mass Spectrometry , Chromatography, LiquidABSTRACT
Objectives: The aim of this study was the development and validation of a fast method to quantify artepillin C in green propolis using ultra high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS). Methods: High purity (97.8%) artepillin C was isolated from green propolis using chromatography techniques. Quantification was performed using a C18 (2.1 x 100 mm; 1.7 µm) column, gradient of water and methanol (with 0.01% formic acid) as mobile phase, at a flow rate of 0.4 mL/min and 45 ºC in temperature. A mass spectrometer operated in selected reaction monitoring mode to monitor the deprotonated molecular ion of artepillin C (m/z 299) > fragment ion (m/z 200.12). Several parameters such as specificity, linearity, limit of detection (LOD), limit of quantitation (LOQ), precision, accuracy, and robustness were determined. Results: The method was linear in the 50 400 µg/mL range (r2 = 0.9906), showing LOD = 10.79 µg/mL and LOQ = 32.70 µg/mL with satisfactory intra-day and inter-day precision with relative standard deviation (RSD %) of 1.9% and 3.4%, respectively. The accuracy showed recovery of 93-104%, the method was robust and artepillin C was quantified in green propolis at 6.51%. Conclusions: The proposed method showed advantages in comparison with other methods, such as short analysis time and high selectivity for artepillin C.
ABSTRACT
ABSTRACT: Some harmful algal blooms produce lipophilic marine biotoxins (LMTs) such as okadaic acid (OA; and its analogs dinophysistoxins [DTXs]), yessotoxins (YTXs), pectenotoxins (PTXs), and azaspiracids (AZAs), all of which may accumulate in filter-feeding bivalve mollusks. European health regulations stipulate a limit of 160 µg/kg for OA or DTXs, PTXs, and AZAs and 3.75 mg/kg for YTXs. Argopecten purpuratus is a valuable commercial marine bivalve exploited in Peru. Despite its importance and the periodic reports of the presence of harmful algal blooms in Peruvian coastal waters, information regarding potential contamination of these scallops by LMTs is lacking. We evaluated LMTs in 115 samples of A. purpuratus collected between November 2013 and March 2015 from 18 production areas distributed along the Peruvian coast. The hepatopancreas, which accumulates most of the toxins in the scallop, was analyzed with liquid chromatography-tandem mass spectrometry to quantify OA in its free form, YTX, AZA-1, and PTX-2. Baseline separation was achieved in 19 min. Linearity (R2 > 0.997), precision (coefficient of variation < 15%), and limits of quantification (0.155 to 0.479 ng/mL) were satisfactory. YTX was found in 72 samples, and PTX-2 was found in 17 samples, but concentrations of both biotoxins were below the regulatory limits. Free OA and AZA-1 were not detected in the scallop samples. This atypical profile (i.e., presence of PTX-2 and absence of OA) may be linked to the presence of the dinoflagellate Dinophysis acuminata. The production of YTX could be associated with the phytoplankton Gonyaulax spinifera and Protoceratium reticulatum. This is the first systematic assessment of the four types of LMTs in shellfish from Peruvian coastal waters. The results suggest low prevalence of LMTs in Peruvian bay scallops but support continued surveillance and analysis of LMTs in Peru.
Subject(s)
Pectinidae , Animals , Chromatography, Liquid , Okadaic Acid/analysis , Peru , Shellfish/analysisABSTRACT
The use of chemotherapy agents has been growing worldwide, due to the increase number of cancer cases. In several countries, mainly in Europe countries, these drugs have been detected in hospitals and municipal wastewaters. In Brazil this issue is poorly explored. The main goal of this study was to assess the presence of three anti-cancer drugs, 5-fluorouracil (5-FU), gemcitabine (GEM) and cyclophosphamide (CP), and two metabolites, alpha-fluoro-beta-alanine (3-NH2-F) and 2'-deoxy-2',2'-difluorouridine (2-DOH-DiF), in effluents from a large cancer hospital, in the municipal wastewater treatment plant (WWTP) influent and effluent, and also to evaluate toxicity of the mixtures of these compounds by ecotoxicological testing in zebrafish. The sample collections were performed in Barretos Cancer Hospital of the large cancer center in Brazil. After each collection, the samples were filtered for subsequent Liquid Chromatography Mass Spectrometry analysis. The presence of CP, GEM, and both metabolites (3-NH2-F and 2-DOH-DiF) were detected in the hospital wastewater and the WWTP influent. Three drugs, GEM, 2-DOH-DiF and CP, were detected in the WWTP effluent. Two drugs were detected below the limit of quantification, 2-DOH-DiF: Subject(s)
Antineoplastic Agents
, Neoplasms
, Water Pollutants, Chemical
, Animals
, Antineoplastic Agents/analysis
, Brazil
, Cancer Care Facilities
, Cities
, Ecotoxicology
, Environmental Monitoring
, Europe
, Waste Disposal, Fluid
, Wastewater/analysis
, Water Pollutants, Chemical/analysis
, Water Pollutants, Chemical/toxicity
ABSTRACT
Metabolic syndrome (MetS) is a multifactor condition predisposing for diabetes, cardiovascular diseases and other degenerative disorders. Although several diagnostic criteria have been established, none of them is specific and there is a call for better pathophysiological explanation of MetS and for the discovery of molecular biomarkers. Phenotype characterization at metabolome level might be useful for both purposes. To this end, our aim was to perform comparative untargeted metabolomics of urines from MetS patients and from the control group. The study participants included 52 diagnosticated and 50 healthy individuals from Leon city in central Mexico; 23 anthropometric and clinical parameters were measured and submitted to Principal Component Analysis (PCA). The obtained PCA model allowed us for selection of 11 MetS patients and 13 control subjects, correspondingly representative for each of the two groups (clearly separated in PCA). The first morning urines from these subjects were ambulatory collected and, after methanol extraction and acidification, were submitted to capillary liquid chromatography-high resolution mass spectrometry (LC-HRMS). The obtained data were analyzed on MetaboScape® platform (Bruker Daltonics). Specifically, t-test applied to LC-HRMS data revealed several ions presenting at least 3-fold higher intensities in MetS with respect to the control samples (p < 0.05). Data analysis and complementary experiments yielded the identification of the following metabolites: indole-3-acetic acid, indole-3-acetic acid-O-glucuronide, N-(indol-3-ylacetyl) glutamine, indole-3-carbaldehyde and hydroxyhexanoycarnitine. Additionally, indole-3-carboxylic acid was annotated with 2.13-fold higher abundance in MetS patients. To assess the contribution of individual metabolites in the difference between two groups of subjects, partial least square discriminant analysis was performed for LC-HRMS data and the obtained values of variable importance in projection (VIP), confirmed the association of six above mentioned compounds with MetS. Overall, this study provides direct evidence on the disturbed catabolism of tryptophan in metabolic syndrome.
Subject(s)
Indoles , Metabolic Syndrome , Metabolomics/methods , Tryptophan , Adult , Chromatography, Liquid/methods , Cross-Sectional Studies , Female , Humans , Indoles/metabolism , Indoles/urine , Male , Mass Spectrometry/methods , Metabolic Syndrome/metabolism , Metabolic Syndrome/urine , Metabolome/physiology , Principal Component Analysis , Tryptophan/metabolism , Tryptophan/urineABSTRACT
Malassezia yeasts are lipid dependent and part of the human and animal skin microbiome. However, they are also associated with a variety of dermatological conditions and even cause systemic infections. How these yeasts can live as commensals on the skin and switch to a pathogenic stage has long been a matter of debate. Lipids are important cellular molecules, and understanding the lipid metabolism and composition of Malassezia species is crucial to comprehending their biology and host-microbe interaction. Here, we investigated the lipid composition of Malassezia strains grown to the stationary phase in a complex Dixon medium broth. In this study, we perform a lipidomic analysis of a subset of species; in addition, we conducted a gene prediction analysis for the detection of lipid metabolic proteins. We identified 18 lipid classes and 428 lipidic compounds. The most commonly found lipids were triglycerides (TAG), sterol (CH), diglycerides (DG), fatty acids (FAs), phosphatidylcholine (PC), phosphatidylethanolamine (PE), ceramides, cholesteryl ester (CE), sphingomyelin (SM), acylcarnitine, and lysophospholipids. Particularly, we found a low content of CEs in Malassezia furfur, atypical M. furfur, and Malassezia pachydermatis and undetectable traces of these components in Malassezia globosa, Malassezia restricta, and Malassezia sympodialis. Remarkably, uncommon lipids in yeast, like diacylglyceryltrimethylhomoserine and FA esters of hydroxyl FAs, were found in a variable concentration in these Malassezia species. The latter are bioactive lipids recently reported to have antidiabetic and anti-inflammatory properties. The results obtained can be used to discriminate different Malassezia species and offer a new overview of the lipid composition of these yeasts. We could confirm the presence and the absence of certain lipid-biosynthesis genes in specific species. Further analyses are necessary to continue disclosing the complex lipidome of Malassezia species and the impact of the lipid metabolism in connection with the host interaction.
Subject(s)
Malassezia , Animals , Humans , Lipidomics , Lipids , Malassezia/genetics , Saccharomyces cerevisiaeABSTRACT
Pharmaceuticals are biologically active molecules that may exert toxic effects to a wide range of aquatic organisms. They are considered contaminants of emerging concern due to their common presence in wastewaters and in the receiving surface waters, and the lack of specific regulations to monitor their environmental occurrence and risks. In this work, the environmental exposure and risks of pharmaceuticals have been studied in the Mijares River, Eastern Mediterranean coast (Spain). A total of 57 surface water samples from 19 sampling points were collected in three monitoring campaigns between June 2018 and February 2019. A list of 40 compounds was investigated using a quantitative target UHPLC-MS/MS method. In order to complement the data obtained, a wide-scope screening of pharmaceuticals and metabolites was also performed by UHPLC-HRMS. The ecological risks posed by the pharmaceutical mixtures were evaluated using species sensitivity distributions built with chronic toxicity data for aquatic organisms. In this study, up to 69 pharmaceuticals and 9 metabolites were identified, out of which 35 compounds were assessed using the quantitative method. The highest concentrations in water corresponded to acetaminophen, gabapentin, venlafaxine, valsartan, ciprofloxacin and diclofenac. The compounds that were found to exert the highest toxic pressure on the aquatic ecosystems were principally analgesic/anti-inflammatory drugs and antibiotics. These were: phenazone > azithromycin > diclofenac, and to a lower extent norfloxacin > ciprofloxacin > clarithromycin. The monitored pharmaceutical mixtures are expected to exert severe ecological risks in areas downstream of WWTP discharges, with the percentage of aquatic species affected ranging between 65% and 82% in 3 out of the 19 evaluated sites. In addition, five antibiotics were found to exceed antibiotic resistance thresholds, thus potentially contributing to resistance gene enrichment in environmental bacteria. This work illustrates the wide use and impact of pharmaceuticals in the area under study, and the vulnerability of surface waters if only conventional wastewater treatments are applied. Several compounds included in this study should be incorporated in future water monitoring programs to help in the development of future regulations, due to their potential risk to the aquatic environment.
Subject(s)
Pharmaceutical Preparations , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Risk Assessment , Spain , Tandem Mass Spectrometry , Wastewater/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicityABSTRACT
Plasma and tissue from breast cancer patients are valuable for diagnostic/prognostic purposes and are accessible by multiple mass spectrometry (MS) tools. Liquid chromatography-mass spectrometry (LC-MS) and ambient mass spectrometry imaging (MSI) were shown to be robust and reproducible technologies for breast cancer diagnosis. Here, we investigated whether there is a correspondence between lipid cancer features observed by desorption electrospray ionization (DESI)-MSI in tissue and those detected by LC-MS in plasma samples. The study included 28 tissues and 20 plasma samples from 24 women with ductal breast carcinomas of both special and no special type (NST) along with 22 plasma samples from healthy women. The comparison of plasma and tissue lipid signatures revealed that each one of the studied matrices (i.e., blood or tumor) has its own specific molecular signature and the full interposition of their discriminant ions is not possible. This comparison also revealed that the molecular indicators of tissue injury, characteristic of the breast cancer tissue profile obtained by DESI-MSI, do not persist as cancer discriminators in peripheral blood even though some of them could be found in plasma samples.
Subject(s)
Breast Neoplasms/metabolism , Carcinoma, Ductal/metabolism , Lipid Metabolism , Lipidomics/methods , Spectrometry, Mass, Electrospray Ionization/methods , Adult , Aged , Aged, 80 and over , Breast Neoplasms/blood , Carcinoma, Ductal/blood , Female , Humans , Lipids/blood , Middle AgedABSTRACT
It is important to study the stability of plant extracts used as active ingredients in phytotherapic medicine, as degradation of the active principles directly affects the efficacy and safety of these products. Therefore, a stability study of the hydroalcoholic extract of the species: Mikania glomerata and Mikania laevigata was conducted in order to determine the speed of degradation and shelf life of these extracts, which are incorporated in cough syrup in Brazil. Leaves of both species were dried in an oven or by lyophilization (freeze-dried). Hydroalcoholic extracts underwent both accelerated stability study of six months and long-term stability study for 12 months. Samples were stored at different temperatures and every three months were analysed by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) to monitor their chemical profile, quantifying coumarin and chlorogenic acid. For all conditions of the study, a reduction of the content of the chemical marker of this species, coumarin, greater than 5% was observed, so a shelf life of two years cannot be assigned to the hydroalcoholic extracts of these species as observed in commercial extracts.
Subject(s)
Plant Extracts/analysis , Efficacy , Asteraceae/classification , Mikania/classification , Mass Spectrometry/methods , Chlorogenic Acid/adverse effects , Chromatography, High Pressure Liquid/methods , Cough , Coumarins/classificationABSTRACT
Over several millennia, various native plant species in South America have been used for their healing and psychoactive properties. Chemical analysis of archaeological artifacts provides an opportunity to study the use of psychoactive plants in the past and to better understand ancient botanical knowledge systems. Liquid chromatography tandem mass spectrometry (LC-MS/MS) was used to analyze organic residues from a ritual bundle, radiocarbon dated to approximately 1,000 C.E., recovered from archaeological excavations in a rock shelter located in the Lípez Altiplano of southwestern Bolivia. The site is located at an elevation of â¼3,900 m above sea level and contains evidence of intermittent human occupations during the last 4,000 years. Chemical traces of bufotenine, dimethyltryptamine, harmine, and cocaine, including its degradation product benzoylecgonine, were identified, suggesting that at least three plants containing these compounds were part of the shamanic paraphernalia dating back 1,000 years ago, the largest number of compounds recovered from a single artifact from this area of the world, to date. This is also a documented case of a ritual bundle containing both harmine and dimethyltryptamine, the two primary ingredients of ayahuasca. The presence of multiple plants that come from disparate and distant ecological areas in South America suggests that hallucinogenic plants moved across significant distances and that an intricate botanical knowledge was intrinsic to pre-Columbian ritual practices.