Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.023
Filter
1.
Front Nutr ; 11: 1421007, 2024.
Article in English | MEDLINE | ID: mdl-39224184

ABSTRACT

Introduction: Several studies indicated that depression is associated with liver injury. The role of probiotics in alleviating depression is focused on improving the abnormalities of the central nervous system through the gut-brain axis, while the effect on liver injury is still unclear. The aim of this study was to elucidate the potential link between the antidepressant effect of a potential probiotic strain Bifidobacterium pseudocatenulatum W112 and its effect on alleviating liver injury. Methods: The 4-week-old Kunming mice were exposed to chronic stress for 4 weeks to establish a depression model. Results: The depression-like behavior and related biomakers in chronic unpredictable mild stress (CUMS) mice were altered by supplemented with W112 for 2 weeks. Meanwhile, the modulation effect of W112 the gut microbiota in CUMS mice also result in an increase in the abundance of beneficial bacteria and a decrease in the abundance of harmful bacteria. Significantly, liver injury was observed in CUMS model mice. W112 improved liver injury by reducing AST/ALT in serum. Quantitative PCR results indicated that the mechanism of action of W112 in ameliorating liver injury was that the altered gut microbiota affected hepatic phospholipid metabolism and bile acid metabolism. Discussion: In short, W112 could significantly improve the depressive and liver injury symptoms caused by CUMS. The gut-liver-brain axis is a potential connecting pathway between the antidepressant effects of W112 and its alleviation of liver injury.

2.
Int Immunopharmacol ; 142(Pt A): 112968, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39226827

ABSTRACT

INTRODUCTION: Lead acetate (PbAc), a hazardous heavy metal, poses significant threats to human health and the environment because of widespread industrial exposure. PbAc exposure leads to liver injury primarily through oxidative stress and the disruption of key regulatory pathways. Understanding these mechanisms and exploring protective agents are vital for mitigating PbAc-induced hepatotoxicity. Therefore, we aimed to investigate the molecular pathways implicated in PbAc-induced liver damage, focusing on Sirt-1, Nrf2 (HO-1, NQO1, and SOD), Akt-1/GSK3ß, m-TOR, and P53. Additionally, we aimed to assess the hepatoprotective effects of arbutin, which is administered orally and intraperitoneally, to determine the most effective delivery method. METHODOLOGY: In silico analyses were conducted to identify relevant protein networks associated with Sirt-1 and AKT-1/GSK-3B pathways. The pharmacodynamic properties of arbutin were examined, followed by molecular docking studies to elucidate its interactions with the selected protein network. In vivo preclinical studies were carried out on adult male rats randomly assigned to 6 different treatment groups, including PbAc exposure and PbAc exposure treated with arbutin either orally or intraperitoneally. RESULTS: PbAc exposure led to hepatic oxidative stress, as evidenced by elevated MDA levels and SIRT-1 inhibition, disrupting antioxidant pathways and activating antiautophagic and proapoptotic pathways, ultimately resulting in hepatocyte necrosis. Both oral and intraperitoneal arbutin administration effectively modifed these effects, with intraperitoneal delivery showing superior efficacy in mitigating PbAc-induced histological, immunological, and biochemical alterations. CONCLUSION: This study provides insights into the molecular mechanisms underlying PbAc-induced liver injury and highlights the hepatoprotective potential of arbutin. These findings suggest that arbutin, particularly when administered intraperitoneally, holds promise as a therapeutic agent for combating PbAc-induced hepatotoxicity.

3.
Article in English | MEDLINE | ID: mdl-39225936

ABSTRACT

BACKGROUND: Antituberculosis drug-induced liver injury (ATDILI) is a significant problem of tuberculosis treatment. This systematic review and meta­analysis aimed at evaluating the incidence and risk factors of ATDILI in adult patients with tuberculosis in India. METHODS: Five electronic databases were searched comprehensively for studies on Indian adult patients with tuberculosis investigating the incidence and/or risk factors of ATDILI. The relevant data was pooled in a random or fixed-effect model to calculate the pooled incidence with a 95% confidence interval (CI), standardized mean difference (MD) or odds ratio (OR). RESULTS: Following the screening of 3221 records, 43 studies with 12,041 tuberculosis patients were finally included. Based on the random effect model, the pooled incidence of ATDILI was 12.6% (95% CI, 9.9-15.3%, p < 0.001, I2 = 95.1%). The pooled incidence was higher in patients with daily treatment regimen compared to the thrice weekly regimen (16.5% vs. 3.5%). The concurrent hepatitis B or C infection, alcohol consumption and underlying chronic liver disease were associated with high incidence of ATDILI. The pooled incidence of acute liver failure (ALF) among ATDILI patients was 6.78% (95% CI 3.9-9.5%). Female gender (OR 1.24), older age (MD 0.26), lean body mass index (OR 3.8), hypoalbuminemia (OR 3.09), N-acetyltransferase slow acetylator genotypes (OR 2.3) and glutathione S-transferases M null mutation (OR 1.6) were found to be associated with an increased risk of ATDILI. The pooled mortality rate of ATDILI patients was 1.72% (95% CI 0.4-3.0%) overall and 71.8% (95% CI 49.3-94.2%) in case of ALF. CONCLUSION: Overall, 12.6% patients of tuberculosis in India developed ATDILI when combination of first-line antituberculosis drugs was used. An average of 7% of ATDILI patients progressed to ALF which had a high mortality rate. Older age, female, poor nutritional status and some genetic polymorphisms were identified as significant risk factors.

4.
Food Chem Toxicol ; : 114983, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39245401

ABSTRACT

Organic cation transporter 1 (OCT1, gene symbol: SLC22A1) is mainly responsible for the hepatic uptake of various cationic drugs, closely associated with drug-induced liver injury (DILI). Screening and identifying potent OCT1 inhibitors with little toxicity in natural products is of great value in alleviating OCT1-mediated liver injury. Flavonoids, a group of polyphenols commonly found in foodstuffs and herbal products, have been reported to cause transporter-mediated food/herb-drug interactions (FDIs). Our objective was to investigate potential inhibitors of OCT1 from 96 flavonoids, evaluate the hepatoprotective effects on retrorsine-induced liver injury, and clarify the structure-activity relationships of flavonoids with OCT1. Thirteen flavonoids exhibited significant inhibition (>50%) on OCT1 in OCT1-HEK293 cells. Among them, the five strongest flavonoid inhibitors (IC50<10µM), including α-naphthoflavone, apigenin, 6-hydroxyflavone, luteolin, and isosilybin markedly decreased oxaliplatin-induced cytotoxicity. In retrorsine-induced liver injury models, they also reduced alanine aminotransferase (ALT) and aspartate aminotransferase (AST) to different levels, the best of which was 6-hydroxyflavone. The pharmacophore model clarified that hydrogen bond acceptors at the 4,8,5' position might play a vital role in the inhibitory effect of flavonoids on OCT1. Taken together, our findings would pave the way to predicting the potential risks of flavonoid-related FDIs in humans and optimizing flavonoid structure to alleviate OCT1-mediated liver injury.

5.
Chem Biol Drug Des ; 104(3): e14616, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39245793

ABSTRACT

The purpose of this study was to investigate the protective effect of echinacoside (Ech) on carbon tetrachloride (CCL4)-induced chronic liver injury in rats and its potential mechanisms. Thirty Sprague-Dawley (SD) rats were randomly divided into five groups: the Control group, the CCL4 group, the CCL4 + Ech 25 mg/kg group, the CCL4 + Ech 50 mg/kg group, and the CCL4 + Ech 100 mg/kg group. The rats were injected intraperitoneally with CCL4 solution twice a week to induce chronic liver injury, and Ech intervention lasted for 4 weeks. After the intervention, the liver and blood samples from rats were collected for subsequent analysis. Ech effectively reduced the levels of serum liver injury markers (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, alkaline phosphatase, and total bilirubin), attenuated the hepatocyte degeneration and necrosis, improved the severity of liver fibrosis, and inhibited the local inflammatory response of the liver in a dose-dependent manner. Ech effectively mitigated CCL4-induced chronic liver injury in rats by downregulating the NF-κB/NLRP3 inflammasome pathway.


Subject(s)
Carbon Tetrachloride , Glycosides , Inflammasomes , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Rats, Sprague-Dawley , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/metabolism , Glycosides/pharmacology , Glycosides/chemistry , Glycosides/therapeutic use , Rats , Inflammasomes/metabolism , Male , Signal Transduction/drug effects , Liver/metabolism , Liver/drug effects , Liver/pathology
6.
Phytomedicine ; 134: 155968, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39217651

ABSTRACT

BACKGROUND: The incidence of hypertriglyceridemia-associated acute pancreatitis (HTG-AP) is increasing globally and more so in China. The characteristics of liver-mediated metabolites and related key enzymes are rarely reported in HTG-AP. Chaiqin chengqi decoction (CQCQD) has been shown to protect against AP including HTG-AP in both patients and rodent models, but the underlying mechanisms in HTG-AP remain unexplored. PURPOSE: To assess the characteristics of liver-mediated metabolism and the therapeutic mechanisms of CQCQD in HTG-AP. METHODS: Male human apolipoprotein C3 transgenic (hApoC3-Tg; leading to HTG) mice or wild-type littermates received 7 intraperitoneal injections of cerulein (100 µg/kg) to establish HTG-AP and CER-AP, respectively. In HTG-AP, some mice received CQCQD (5.5 g/kg) gavage at 1, 5 or 9 h after disease induction. AP severity and related liver injury were determined by serological and histological parameters; and underlying mechanisms were identified by lipidomics and molecular biology. Molecular docking was used to identify key interactions between CQCQD compounds and metabolic enzymes, and subsequently validated in vitro in hepatocytes. RESULTS: HTG-AP was associated with increased disease severity indices including augmented liver injury compared to CER-AP. CQCQD treatment reduced severity and liver injury of HTG-AP. Glycerophospholipid (GPL) metabolism was the most disturbed pathway in HTG-AP in comparison to HTG alone. In HTG-AP, the mRNA level of GPL enzymes involved in phosphocholine (PC) and phosphatidylethanolamine (PE) synthesis (Pcyt1a, Pcyt2, Pemt, and Lpcat) were markedly upregulated in the liver. Of the GPL metabolites, lysophosphatidylethanolamine LPE(16:0) in serum of HTG-AP was significantly elevated and positively correlated with the pancreas histopathology score (r = 0.65). In vitro, supernatant from Pcyt2-overexpressing hepatocytes co-incubated with LPE(16:0) or phospholipase A2 (a PC- and PE-hydrolyzing enzyme) alone induced pancreatic acinar cell death. CQCQD treatment downregulated PCYT1a and PCYT2 enzyme levels in the liver. Hesperidin and narirutin were identified top two CQCQD compounds with highest affinity docking to PCYT1a and PCYT2. Both hesperidin and narirutin reduced the level of some GPL metabolites in hepatocytes. CONCLUSION: Liver-mediated GPL metabolism is excessively activated in HTG-AP with serum LPE(16:0) level correlating with disease severity. CQCQD reduces HTG-AP severity partially via modulating key enzymes in GPL metabolism pathway.

7.
Phytomedicine ; 134: 155561, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-39217654

ABSTRACT

BACKGROUND: Didymin is a dietary flavonoid originally discovered by our group as a potent anti-ulcerative colitis (UC) agent. However, whether didymin plays a protective role in UC-associated inflammatory liver injury is still unclear. PURPOSE: This study aimed to evaluate the therapeutic potential of didymin on UC-associated inflammatory liver injury and explore the underlying mechanism. STUDY DESIGN AND METHODS: Colitis model was established in C57BL/6 mice by exposure to DSS, and didymin was administrated intragastrically for consecutive 10 days. The inflammatory liver injury was assessed by levels of alanine aminotransferase (ALT) and aspartate transaminase (AST) in serum and histopathological damage in the liver. In vitro Kupffer cells and RAW264.7 cells challenged with lipopolysaccharides (LPS) were used to explore the modulatory activity of didymin on pro-inflammatory cytokines secretion and Notch1 signaling pathway activation. RESULTS: Didymin significantly mitigated liver coefficiency, ALT and AST levels in serum, and the hepatic histopathological damage caused by DSS-induced acute and chronic colitis. The mRNA expressions of pro-inflammatory factors including Tnf, Il1, and Il6 in liver tissues, Kupffer cells, and RAW264.7 cells stimulated by the influx of LPS was significantly deprived after didymin treatment. Mechanistically, didymin obstructed the protein expression, nuclear translocation of notch intracellular domain 1 (Notch1-ICD) and mRNA expression of hairy and enhancer of split 1 (Hes1). Further, the inhibitory mechanism of the Notch1-Hes1 pathway was dependent on c-Cbl-mediated Notch1-ICD lysosomal degradation. CONCLUSION: Our study verified for the first time that didymin could prevent UC-associated diseases, such as inflammatory liver injury, and the mechanism was related to facilitating Notch1 lysosomal degradation rather than proteasome degradation via promoting protein expression of c-Cbl in macrophages. Our findings that the inhibition of Notch1 signaling transduction helps to alleviate UC-associated liver injury provides possible therapeutics for the treatment of colitis and also furnishes a research paradigm for the study of flavonoids with similar structures.

8.
Prostaglandins Leukot Essent Fatty Acids ; 202: 102640, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39217773

ABSTRACT

Hepatic microvascular disruption caused by injury to liver sinusoidal endothelial cells (LSECs) is an aggravating factor for drug-induced liver injury (DILI). It is suggested that prostaglandin E2 (PGE2) may be able to attenuate LSEC injury. However, it is also known that 15-keto PGE2, a metabolite of PGE2 produced by 15-prostaglandin dehydrogenase (15-PGDH) that is not a ligand of PGE2 receptors, suppresses inflammatory acute liver injury as a ligand of peroxisome proliferator-activated receptor γ. In this study, we aimed to understand whether 15-PGDH activity is essential for preventing DILI by suppressing hepatic microvascular disruption in a mouse model of acetaminophen (APAP)-induced liver injury. To inhibit 15-PGDH activity prior to APAP-induced LSEC injury, we administered the 15-PGDH inhibitor, SW033291, 1 h before and 3 h after APAP treatment. We observed that LSEC injury preceded hepatocellular injury in APAP administered mice. Hepatic endogenous PGE2 levels did not increase up till the initiation of LSEC injury but rather increased after hepatocellular injury. Moreover, hepatic 15-PGDH activity was downregulated in APAP-induced liver injury. The inhibition of 15-PGDH attenuated LSEC injury and subsequently hepatic injury by inhibiting apoptosis in APAP administered mice. Our in vitro studies also suggested that PGE2 inhibited APAP-induced apoptosis via the EP4/PI3K pathway in endothelial cells. Therefore, a decrease in 15-PGDH activity would be beneficial for preventing APAP-induced liver injury by attenuating LSEC injury.

9.
J Food Sci ; 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39218937

ABSTRACT

Sulforaphane-loaded nanoparticles (NP-SF) were prepared in this study to improve their biological effects. Based on propylene glycol alginate and zein as wall materials and anthocyanin and CaCl2 as crosslinking agents, the NPs were encapsulated by the crosslinking method and freeze-dried. With the increasing contents of anthocyanin and Ca2+, the encapsulation efficiency and loading capacity of NP-SF were both increased. In vitro simulated digestion experiments showed controlled release of SF from the NPs. The pharmacokinetics confirmed that NP-SF exerted a slower release effect in rats, with improved SF bioavailability and protective effects on liver injury induced by N-diethylnitrosamine in mice. NP-SF reduced serum indicators of liver injury, increased the activities of antioxidant enzymes and GSH levels, and reduced malondialdehyde levels in the liver. In addition, SF activated the Keap1/Nrf2 signaling pathway and upregulated the expression of the Nrf2 downstream genes NQO1 and heme oxidase 1. High doses of NP-SF, in particular, had a higher therapeutic effect. In conclusion, encapsulation enhanced the biological activity of SF and promoted physiological function.

10.
Liver Int ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248281

ABSTRACT

Gene therapy is being successfully developed for the treatment of several genetic disorders. Various methods of gene transfer have been developed to enable the production of the deficient enzyme or protein. One of the most important is adeno-associated virus vectors, which have been shown to be viable for use in in vivo gene therapy. Several gene therapies have already been approved. They are also promising for acquired diseases. Important examples include gene therapy for haemophilia A and B, X-linked myotubular myopathy, spinal muscular atrophy and several liver diseases such as Criggler-Najjar disease, alpha-1 antitrypsin deficiency and Fabry disease. However, the introduction of a foreign compound into hepatocytes leads to hepatic reactions with heterogeneous phenotypic expression and a wide spectrum of severity, ranging from mild transaminase elevation to acute liver failure. Several mechanisms appear to be involved in liver injury, including an immune response, but also direct toxicity depending on the method of gene transfer. As a result, the incidence, expression and severity of liver injury vary from indication to indication and from patient to patient. Patients treated for haemophilia A are more prone to transaminase elevation than those treated for haemophilia B. Corticosteroids are successfully used to correct liver reactions but also to prevent degradation of the transferred gene and loss of therapeutic activity. The aim of this review is to describe the risk of liver injury according to the indication for gene therapy and the short- and long-term management currently proposed to prevent or correct liver reactions in clinical practice.

11.
Heliyon ; 10(16): e35793, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39220957

ABSTRACT

This study explores the mechanism by which obstructive jaundice (OJ) induces liver damage through pyroptosis. We induced OJ in rats via bile duct ligation and assessed liver damage using serum biochemical markers and histological analysis of liver tissue. Pyroptosis was investigated through immunofluorescence, ELISA, Western blot, and quantitative RT-PCR techniques. Additionally, we examined intestinal function and fecal microbiota alterations in the rats using 16S rDNA sequencing. In vitro experiments involved co-culturing Kupffer cells and hepatocytes, which were then exposed to bile and lipopolysaccharide (LPS). Our findings indicated that OJ modified the gut microbiota, increasing LPS levels, which, in conjunction with bile, initiated a cycle of inflammation, fibrosis, and cell death in the liver. Mechanistically, OJ elevated necrotic markers such as ATP, which in turn activated pyroptotic pathways. Increased levels of pyroptosis-related molecules, including NLRP3, caspase-1, gasdermin D, and IL-18, were confirmed. In our co-cultured cell model, bile exposure resulted in cell death and ATP release, leading to the activation of the NLRP3 inflammasome and its downstream effectors, caspase-1 and IL-18. The combination of bile and LPS significantly intensified pyroptotic responses. This study is the first to demonstrate that LPS and bile synergistically exacerbate liver injury by promoting necrosis and pyroptosis, unveiling a novel mechanism of OJ-associated hepatic damage and suggesting avenues for potential preventive or therapeutic interventions.

12.
World J Hepatol ; 16(8): 1185-1198, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39221098

ABSTRACT

BACKGROUND: Many studies have revealed a link between non-alcoholic fatty liver disease (NAFLD) and coronavirus disease 2019 (COVID-19), making understanding the relationship between these two conditions an absolute requirement. AIM: To provide a qualitative synthesis on the currently present data evaluating COVID-19 and NAFLD. METHODS: This systematic review was conducted in accordance with the guidelines provided by preferred reporting items for systematic reviews and meta-analyses and the questionnaire utilized the population, intervention, comparison, and outcome framework. The search strategy was run on three separate databases, PubMed/MEDLINE, Scopus, and Cochrane Central, which were systematically searched from inception until March 2024 to select all relevant studies. In addition, ClinicalTrials.gov, Medrxiv.org, and Google Scholar were searched to identify grey literature. RESULTS: After retrieval of 11 studies, a total of 39282 patients data were pooled. Mortality was found in 11.5% and 9.4% of people in NAFLD and non-NAFLD groups. In all, 23.2% of NAFLD patients and 22% of non-NAFLD admissions diagnosed with COVID-19 were admitted to the intensive care unit, with days of stay varying. Ventilatory support ranged from 5% to 40.5% in the NAFLD cohort and from 3.1% to 20% in the non-NAFLD cohort. The incidence of acute liver injury showed significance. Clinical improvement on days 7 and 14 between the two classifications was significant. Hospitalization stay ranged from 9.6 days to 18.8 days and 7.3 days to 16.4 days in the aforementioned cohorts respectively, with 73.3% and 76.3% of patients being discharged. Readmission rates varied. CONCLUSION: Clinical outcomes except mortality consistently showed a worsening trend in patients with NAFLD and concomitant COVID-19. Further research in conducting prospective longitudinal studies is essential for a more powerful conclusion.

13.
Cytokine ; 183: 156747, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39236429

ABSTRACT

The liver has a distinctive capacity to regenerate, yet severe acute injury can be life-threatening if not treated appropriately. Inflammation and oxidative stress are central processes implicated in the pathophysiology of acute livery injury. NOX isoforms are important enzymes for ROS generation, NF-κB and NLRP3 activation, its inhibition could be vital in alleviating acute liver injury (ALI). Here in our study, we used apocynin, a natural occurring potent NOX inhibitor, to exploreits potential protective effect against thioacetamide (TAA)-induced ALI through modulating crucial oxidative and inflammatory pathways. Rats were injected once with TAA (500 mg/kg/i.p) and treated with apocynin (10 mg/kg/i.p) twice before TAA challenge. Sera and hepatic tissues were collected for biochemical, mRNA expression, western blot analysis and histopathological assessments. Pretreatment with apocynin improved liver dysfunction evidenced by decreased levels of aminotransferases, ALP, GGT and bilirubin. Apocynin reduced mRNA expression of NOX1 and NOX4 which in turn alleviated oxidative stress, as shown by reduction in MDA and NOx levels, and elevation in GSH levels andcatalase and SOD activities. Moreover, apocynin significantly reduced MPO gene expression. We also demonstrate that apocynin ameliorated inflammation through activating IκBα and suppressing IKKα, IKKß, NF-κBp65 and p-NF-κBp65, IL-6 andTNF-α. Additionally, apocynin potentiated the gene expression of anti-inflammatory IL-10 and reduced levels of hepatic NLRP3, Caspase-1 and IL-1ß. These results suggest that apocynin protects against ALI in association with the inhibition of NOX1 and NOX4 and regulating oxidative and inflammatory pathways.

14.
Biomed Pharmacother ; 179: 117280, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39236474

ABSTRACT

Acetaminophen (APAP) overdose is a prevalent cause of clinical pharmacological liver injury worldwide. Artemether (ART), a first-line antimalarial drug, has demonstrated hepatoprotective activity. However, its effect on APAP-induced acute liver injury (AILI) remains unclear. In this study, we investigated whether ART can protect against AILI and examined its underlying mechanisms. In vivo, ART mitigated APAP-induced liver histological changes, including mitochondrial damage, hepatocyte necrosis, hepatocyte apoptosis, and inflammatory infiltration. Additionally, ART reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in APAP-induced mice. ART also activated the Nrf2-HO-1/GPX4 signaling pathway, exerting antioxidant effects in both in vitro and in vivo models of AILI. To confirm Nrf2 as a target of ART in vivo, we pretreated C57BL/6 mice with the Nrf2 inhibitor, ML385. The results indicated that inhibiting Nrf2 diminishes the protective effect of ART against AILI. Overall, our findings suggest that ART's protective effect against AILI is mediated through the Nrf2-related antioxidant pathway.

15.
Cell Signal ; 123: 111379, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233207

ABSTRACT

BACKGROUND AND AIMS: Acetaminophen (APAP) is the main cause of acute liver injury (ALI) in the Western. Our previous study has shown that fenofibrate activated hepatic expression of fibroblast growth factor 21 (FGF21) can protect the liver form APAP injuries by promoting autophagy. However, the underlying mechanism involved in FGF21-mediated autophagy remains unsolved. METHODS: The ALI mice model was established by intraperitoneal injection of APAP. To investigate the influence of FGF21 on autophagy and Sirt1 expression in APAP-induced ALI, FGF21 knockout (FGF21KO) mice and exogenously supplemented mouse recombinant FGF21 protein were used. In addition, primary isolated hepatocytes and the Sirt1 inhibitor EX527 were used to observe whether FGF21 activated autophagy in APAP injury is regulated by Sirt1 at the cellular level. RESULTS: FGF21, Sirt1, and autophagy levels increased in mice with acute liver injury (ALI) and in primary cultured hepatocytes. Deletion of the FGF21 gene exacerbated APAP-induced liver necrosis and oxidative stress, and decreased mitochondrial potential. It also reduced the mRNA and protein levels of autophagy-related proteins such as Sirt1, LC3-II, and p62, as well as the number of autophagosomes. Replenishment of FGF21 reversed these processes. In addition, EX527 partially counteracted the protective effect of FGF21 by worsening oxidative damage, mitochondrial damage, and reducing autophagy in primary liver cells treated with APAP. CONCLUSION: FGF21 increases autophagy by upregulating Sirt1 to alleviate APAP-induced injuries.

16.
Cureus ; 16(8): e66180, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39233949

ABSTRACT

Statins are one of the most crucial drugs used for the prevention of atherosclerotic coronary artery disease. A wide spectrum of symptoms ranging from myalgia to symptoms of rhabdomyolysis with or without weakness of the upper and lower limbs are indicative of statin-induced rhabdomyolysis or myopathy. The current case series which represents three patients who developed statin-induced myopathy after starting rosuvastatin is one of a few if not the first case series. All three patients had recently started rosuvastatin 40mg once daily post-percutaneous transluminal coronary angioplasty (PTCA) for secondary prevention of atherosclerotic cardiovascular diseases (ASCVDs). Shortly after starting the medication, they were hospitalized due to bilateral lower limb pain and weakness. On further evaluation, they were diagnosed to have rosuvastatin-induced myopathy with acute kidney injury and/or liver injury. In all cases, myopathy, acute renal injury, and liver injury were caused by rosuvastatin, regardless of the presence of a vitamin D deficiency. Despite the documented risk of myopathy and renal toxicity associated with rosuvastatin, the drug remains highly popular worldwide in the modern period. Although all the cases discussed were successfully treated by stopping rosuvastatin and switching it with another class of lipid-lowering agent, it significantly increased morbidity and raised medical expenses. Hence, this case series not only adds to existing safety disputations associated with rosuvastatin but also calls for more pharmacovigilance when recommending this medication.

17.
J Cell Mol Med ; 28(17): e70018, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39223962

ABSTRACT

Ferroptosis, an iron-dependent form of cell death, plays a crucial role in the progression of liver injury in Wilson's disease (WD). Gandouling (GDL) has emerged as a potential therapeutic agent for preventing and treating liver injury in WD. However, the precise mechanisms by which GDL mitigates ferroptosis in WD liver injury remain unclear. In this study, we discovered that treating Toxic Milk (TX) mice with GDL effectively decreased liver copper content, corrected iron homeostasis imbalances, and lowered lipid peroxidation levels, thereby preventing ferroptosis and improving liver injury. Bioinformatics analysis and machine learning algorithms identified Hspb1 as a pivotal regulator of ferroptosis. GDL treatment significantly upregulated the expression of HSPB1 and its upstream regulatory factor HSF1, thereby activating the HSF1/HSPB1 pathway. Importantly, inhibition of this pathway by NXP800 reversed the protective effects of GDL on ferroptosis in the liver of TX mice. In conclusion, GDL shows promise in alleviating liver injury in WD by inhibiting ferroptosis through modulation of the HSF1/HSPB1 pathway, suggesting its potential as a novel therapeutic agent for treating liver ferroptosis in WD.


Subject(s)
Ferroptosis , Heat Shock Transcription Factors , Hepatolenticular Degeneration , Liver , Molecular Chaperones , Signal Transduction , Ferroptosis/drug effects , Animals , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics , Mice , Hepatolenticular Degeneration/drug therapy , Hepatolenticular Degeneration/metabolism , Hepatolenticular Degeneration/pathology , Molecular Chaperones/metabolism , Liver/metabolism , Liver/drug effects , Liver/pathology , Signal Transduction/drug effects , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Disease Models, Animal , Male , Iron/metabolism , Copper/metabolism , Mice, Inbred C57BL , Humans
18.
Food Sci Biotechnol ; 33(13): 3119-3130, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39220309

ABSTRACT

Bisphenol A has become a global public health problem. As an antioxidant, geraniol has potential preventive effects against toxicity. This study analyzes the preventive effect of geraniol against BPA induced liver injury in CD-1 mice. Geraniol administration significantly ameliorated BPA induced liver damage by the increase in superoxide dismutase/catalase enzymatic activities, and decrease in malonaldehyde level; prompted a significant reduction in the expression levels of inflammatory cytokines (TNF-α, IL-1ß, and IL-6), and pyroptosis biomarkers (NLRP3, ASC, and caspase-1); up-regulated the expression of claudin-1, ZO-1, and occludin markedly, which exhibited intestinal barrier function. Also, geraniol treatment optimized the composition and diversity of gut microbiota. It may be summarized that geraniol showed protective effects on liver injury induced by BPA and further revealed that the mechanism might be located on improving intestinal physical barrier function, down-regulating pyroptosis biomarkers, and normalizing intestinal microbiota, consequently reducing inflammatory response in the liver.

19.
Int Immunopharmacol ; 142(Pt A): 113055, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39243556

ABSTRACT

OBJECTIVES: Lipopolysaccharide (LPS), also known as endotoxin, is the main toxic component of the cell wall of gram negative bacteria, which is released after bacterial death and widely exists in the living environment. Human exposure to endotoxin may cause sepsis. The occurrence of septic liver injury is a prominent factor contributing to mortality in patients with sepsis. The purpose of this study is to explore the role of Sappanone A (SA), a homoisoflavonoid isolated from the heartwood of Caesalpinia sappan Linn., in LPS-induced acute liver injury (ALI). METHODS: An LPS-induced ALI mouse model was used to evaluate the effects of SA on septic ALI, and murine cells were treated with LPS to explore the mechanisms underlying SA-provided effects. RESULTS: Treating SA substantially improved LPS-induced ALI. We also performed in silico prediction and RNA-seq analysis to elucidate SA's potential mechanisms of action. The terms generated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of predicted target proteins of SA include inflammation, oxidative stress, and apoptosis; protein-protein interaction network (PPI) analysis indicated that fas binding protein 1 (Fbf1) has the strongest correlation with SA. Consistently, RNA-seq analysis displayed that SA administration regulates cell apoptosis and inflammatory responses, which was further confirmed by checking related markers in livers of mice and murine cells challenged with LPS. Of note, SA significantly decreased the expression of Fbf1 in mouse livers, and promoted apoptosis of injured hepatocytes and hepatocyte proliferation, which were substantially abolished by Fbf1 knockdown in AML12 cells. Besides, SA could increase M2 phenotype polarization but inhibit M1 macrophage polarization in LPS-induced ALI in mice. CONCLUSION: SA enhances hepatocyte proliferation and liver repair in LPS-induced ALI in mcie by promoting injured hepatocyte apoptosis through Fbf1 inhibition and regulating macrophage polarization.

20.
J Colloid Interface Sci ; 678(Pt B): 174-187, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39243718

ABSTRACT

With the rapid advancements in biomedicine, the use of clinical drugs has surged sharply. However, potential hepatotoxicity limits drug exploitation and widespread usage, posing serious threats to patient health. Hepatotoxic drugs disrupt liver enzyme levels and cause refractory pathological damage, creating a challenge in the application of diverse first-line drugs. The activation and deterioration of reactive oxygen and nitrogen species (RONS) and inflammatory signals are key pathological mechanisms of drug-induced liver injury (DILI). Herein, a novel reduced heteropolyacid nanoparticle (RNP) has been developed, possessing high RONS-scavenging ability, strong anti-inflammatory activity, and excellent biosafety. These features enable it to swiftly restore the redox and immune balance of the liver. Intravenous administration of RNP effectively scavenged RONS storm, reversing liver oxidative stress and restoring normal mitochondrial membrane potential and function. Furthermore, by inhibiting c-Jun-N-terminal kinase phosphorylation, RNP facilitated the restoration of nuclear factor erythroid 2-related factor 2-mediated endogenous antioxidant signaling, ultimately rescuing the liver function and tissue morphology in acetaminophen-induced DILI mice. Crucially, the high biocompatible RNP exhibited superior efficacy in the DILI mouse model compared to the clinical antioxidant N-acetylcysteine. This targeted therapeutic approach, tailored to address the onset and progression of DILI, offers valuable new insights into controlling the condition and restoring liver structure and function.

SELECTION OF CITATIONS
SEARCH DETAIL