Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
1.
Exp Ther Med ; 28(5): 417, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39301261

ABSTRACT

Loganin, a major iridoid glycoside derived from Cornus officinalis, exerts strong anti-inflammatory property. The present study aimed to investigate the underlying mechanism of loganin to reduce estrogen deficiency-induced bone loss through a combination of network pharmacology, molecular docking and in vivo validation. First, the drug targets and structural interactions of loganin with osteoclasts on postmenopausal osteoporosis (PMOP) were predicted through network pharmacology and molecular docking. An ovariectomized (OVX) mouse model was established to experimentally validate loganin's anti-PMOP efficacy, supported by its protective effect on bone destruction and excessive inflammatory cytokines. The top 10 core targets of loganin generated by a protein-protein interaction network were the following: GAPDH, VEGFA, EGFR, ESR1, HRAS, SRC, FGF2, HSP90AA1, PTGS2 and IL-2. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that loganin suppressed PMOP via mediating inflammation, bone formation, IL-17 signaling pathway and NF-κB signaling pathway. Molecular docking results indicated strong binding between loganin and core targets, in which the binding energy was approximately -5.2 and -7.4 kcal/mol. In vivo mouse model revealed that loganin inhibited the expression of pro-osteoclastic markers, such as tartrate-resistant acid phosphatase, C-terminal telopeptide, TNF-α and IL-6, enhanced the secretion of bone formation markers, such as procollagen type I intact n-terminal pro-peptide and IL-10, and improved bone micro-structure (bone volume/tissue volume and trabecular number), representative of the anti-resorptive effect mediated by loganin. In summary, the present study combined network pharmacology and molecular docking to predict the underlying mechanism of loganin against PMOP, validated by the in vivo mouse model showing that loganin attenuated OVX-induced bone loss by inhibiting inflammation.

2.
Biomol Ther (Seoul) ; 32(5): 601-610, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39091013

ABSTRACT

Tofacitinib, a Janus kinase (JAK) inhibitor used to treat rheumatoid arthritis, is metabolized through hepatic cytochrome P450 (CYP), specifically CYP3A1/2 and CYP2C11. Prolonged administration of rheumatoid arthritis medications is generally associated with an increased risk of renal toxicity. Loganin (LGN), an iridoid glycoside, has hepatorenal regenerative properties. This study investigates the potential of LGN to mitigate acute kidney injury (AKI) and its effects on the pharmacokinetics of tofacitinib in rats with cisplatin-induced AKI. Both intravenous and oral administration of tofacitinib to AKI rats significantly increased the area under the plasma concentration-time curve from time 0 to infinity (AUC) compared with control (CON) rats, an increase attributed to the decelerated non-renal clearance (CLNR) and renal clearance (CLR) of tofacitinib. Administration of LGN to AKI rats, however, protected kidneys from severe impairment, restoring the pharmacokinetic parameters (AUC, CLNR, and CLR) of tofacitinib to those observed in untreated CON rats, with partial recovery of kidney function, as evidenced by an increase in creatinine clearance (CLCR). Possible interactions between drugs and natural components should be considered, especially when co-administering both a drug and a natural extract containing LGN or iridoid glycosides to patients with kidney injury.

3.
Fitoterapia ; 177: 106098, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38950636

ABSTRACT

Brain edema after ischemic stroke could worsen cerebral injury in patients who received intravenous thrombolysis. Cornus officinalis Sieb. et Zucc., a long-established traditional Chinese medicine, is beneficial to the treatment of neurodegenerative diseases including ischemic stroke. In particular, its major component, cornel iridoid glycoside (CIG), was evidenced to exhibit neuroprotective effects against cerebral ischemic/reperfusion injury (CIR/I). Aimed to explore the effects of the CIG on brain edema of the CIR/I rats, the CIG was analyzed with the main constituents by using HPLC. The molecular docking analysis was performed between the CIG constituents and AQP4-M23. TGN-020, an AQP4 inhibitor, was used as a comparison. In the in vivo experiments, the rats were pre-treated with the CIG and were injured by performing middle cerebral artery occlusion/reperfusion (MCAO/R). After 24 h, the rats were examined for neurological function, pathological changes, brain edema, and polarized Aqp4 expressions in the brain. The HPLC analysis indicated that the CIG was composed of morroniside and loganin. The molecular docking analysis showed that both morroniside and loganin displayed lower binding energies to AQP4-M23 than TGN-020. The CIG pre-treated rats exhibited fewer neurological function deficits, minimized brain swelling, and reduced lesion volumes compared to the MCAO/R rats. In the peri-infarct and infarct regions, the CIG pre-treatment restored the polarized Aqp4 expression which was lost in the MCAO/R rats. The results suggested that the CIG could attenuate brain edema of the cerebral ischemia/reperfusion rats by modulating the polarized Aqp4 through the interaction of AQP4-M23 with morroniside and loganin.


Subject(s)
Aquaporin 4 , Brain Edema , Cornus , Iridoid Glycosides , Iridoids , Molecular Docking Simulation , Neuroprotective Agents , Reperfusion Injury , Animals , Male , Rats , Aquaporin 4/metabolism , Brain/drug effects , Brain Edema/drug therapy , Brain Ischemia/drug therapy , Cornus/chemistry , Glycosides , Infarction, Middle Cerebral Artery/drug therapy , Iridoid Glycosides/pharmacology , Iridoid Glycosides/isolation & purification , Iridoids/pharmacology , Molecular Structure , Neuroprotective Agents/pharmacology , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy
4.
Clin Exp Pharmacol Physiol ; 51(6): e13858, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636940

ABSTRACT

Intracerebral haemorrhage (ICH) presents significant challenges in clinical management because of the high morbidity and mortality, necessitating novel therapeutic approaches. This study aimed to assess the neuroprotective effects of loganin in a rat ICH model. Sprague-Dawley rats were used, subjected to a collagenase-induced ICH model, followed by loganin treatment at doses of 2.5, 5 and 10 mg/kg. Neurological functions were evaluated using the modified neurological severity score (mNSS) and a rotarod test. Results indicated a significant improvement in neurological functions in loganin-treated groups, evident from the mNSS and rotarod tests, suggesting dose-dependent neuroprotection. Loganin also effectively reduced the blood-brain barrier (BBB) permeability and cerebral oedema. Additionally, it mitigated cellular pyroptosis, as shown by terminal deoxynucleotidyl transferase dUTP nick-end labelling staining and western blot analysis, which indicated reduced levels of pyroptosis markers in treated rats. Furthermore, loganin's regulatory effects on the adenosine A2A receptor and myosin light chain kinase pathways were observed, potentially underpinning its protective mechanism against ICH. The study concludes that loganin exhibits significant neuroprotective properties in a rat ICH model, highlighting its potential as a novel therapeutic strategy. Despite promising results, the study needs further research to determine loganin's therapeutic potential in human ICH patients. This research paves the way for further exploration into loganin's clinical applications, potentially revolutionizing treatment strategies for patients suffering from intracerebral haemorrhage.


Subject(s)
Iridoids , Neuroprotective Agents , Humans , Rats , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Rats, Sprague-Dawley , Pyroptosis , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/chemically induced
6.
Int J Cardiol ; 395: 131426, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37813285

ABSTRACT

BACKGROUND: Myocardial ischemia-reperfusion injury (MIRI) is a pathological process that follows immediate revascularization of myocardial infarction and is characterized by exacerbation of cardiac injury. Loganin, a monoterpene iridoid glycoside derived from Cornus officinalis Sieb. Et Zucc, can exert cardioprotective effects in cardiac hypertrophy and atherosclerosis. However, its role in ischemic heart disease remains largely unknown. METHODS: Considering that Janus kinase 2 (JAK2)/ signal transducer and activator of transcription 3 (STAT3) has a protective effect on the heart, we developed a mouse model of MIRI to investigate the potential role of this pathway in loganin-induced cardioprotection. RESULTS: Our results showed that treatment with loganin (20 mg/kg) prevented the enlargement of myocardial infarction, myocyte destruction, serum markers of cardiac injury, and deterioration of cardiac function induced by MIRI. Myocardium subjected to I/R treatment exhibited higher levels of oxidative stress, as indicated by an increase in malondialdehyde (MDA) and dihydroethidium (DHE) density and a decrease in total antioxidant capacity (T-AOC), glutathione (GSH), and superoxide dismutase (SOD), whereas treatment with loganin showed significant attenuation of I/R-induced oxidative stress. Loganin treatment also increased the expression of anti-apoptotic Bcl-2 and reduced the expression of caspase-3/9, Bax, and the number of TUNEL-positive cells in ischemic cardiac tissue. Moreover, treatment with loganin triggered JAK2/STAT3 phosphorylation, and AG490, a JAK2/STAT3 inhibitor, partially abrogated the cardioprotective effects of loganin, indicating the essential role of JAK2/STAT3 signaling in the cardioprotective effects of loganin. CONCLUSIONS: Our data demonstrate that loganin protects the heart from I/R injury by inhibiting I/R-induced oxidative stress and cellular apoptosis via activation of JAK2/STAT3 signaling.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Animals , Mice , Apoptosis/drug effects , Janus Kinase 2/drug effects , Janus Kinase 2/metabolism , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Oxidative Stress/drug effects , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/metabolism
7.
Article in English | MEDLINE | ID: mdl-37639995

ABSTRACT

Loganin is an iridoid with potent pharmacological effects. Loganin contains a hemiacetal structure and can convert to dialdehyde intermediates after deglycosylation. We hypothesized that the metabolites of loganin with hemiacetal can generate reactive dialdehyde intermediates. This study aims to characterize the metabolic profiling of loganin and especially for the unstable dialdehyde intermediates by using ultra-performance liquid chromatograph-quadrupole orbitrap mass spectrometry. In this study, a total of 26 stable metabolites were identified in loganin-treated rats. Loganin underwent different metabolism in the intestine and liver, which was confirmed mainly by the metabolites in the hepatic portal vein. In the intestine, the major metabolic pathways were ester hydrolysis and deglycosylation, followed by methylation and dehydrogenation. The hepatic metabolism pathways were hydrogenation, hydroxylation, glucuronidation, and sulfonation. The circulating metabolites with high abundance were mainly derived from intestinal metabolism. Importantly, 11 unstable dialdehyde intermediates of loganin were identified and described for the first time. The dialdehyde intermediates were identified by their dihydropyridine conjugates with amino acids. The dialdehyde intermediates were mainly produced in the intestine. The dialdehyde intermediates enable covalent modification of intestinal proteins. Loganin can up-regulate the activity of intestinal bile salt hydrolase (BSH), catalyzing bile acid metabolism. The level of protein adducts was positively associated with BSH activity, indicating dialdehyde intermediates played a key role in the up-regulation of BSH activities. In conclusion, this study not only demonstrates the characteristic metabolic fate of loganin but also facilitates the understanding of the pharmacologic effects of dialdehyde intermediates.


Subject(s)
Intestines , Iridoids , Animals , Rats , Activation, Metabolic
8.
Environ Toxicol ; 38(11): 2730-2740, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37497884

ABSTRACT

Myocardial ischemia-reperfusion (I/R) injury is one of main pathological manifestations of cardiovascular outcomes related to NLRP3 inflammasome-mediated pyroptosis pathway. Loganin is an iridoid glycoside extracted from traditional Chinese medicines, which has multiple activities. However, the roles and mechanism of loganin in myocardial I/R injury remain largely unknown. The models of myocardial I/R injury were established using I/R-treated rats or OGD/R-treated H9C2 cardiomyocytes. Myocardial damage was assessed by TTC and hematoxylin-eosin staining. Pyroptosis-related marker levels were detected by immunohistochemistry, immunofluorescence and western blotting assays. Cell proliferation was examined via EdU assay. Cell apoptosis was investigated by LDH release and flow cytometry. The integrity of cell membrane was analyzed via Dil staining. GLP-1R and NLRP3 levels were detected by immunofluorescence and western blotting assays. Our results showed that loganin suppressed I/R-induced myocardial damage in rats by reducing myocardial infarct, injury and pyroptosis. In addition, loganin attenuated OGD/R-induced cardiomyocyte apoptosis through increasing cell proliferation and reducing LDH release and apoptotic rate. Loganin also mitigated OGD/R-induced cardiomyocyte pyroptosis by reducing cell membrane damage and levels of cleaved caspase-1, IL-1ß and IL-18. Furthermore, loganin repressed GLP-1R/NLRP3 pathway activation in OGD/R-treated H9C2 cardiomyocytes by enhancing GLP-1R expression and decreasing NLRP3 level. GLP-1R/NLRP3 activation by GLP-1R inhibition or NLRP3 overexpression reversed the suppressive effects of loganin on OGD/R-induced cardiomyocyte pyroptosis. These data indicated that loganin prevented OGD/R-induced proliferation inhibition, apoptosis and pyroptosis in OGD/R-treated cardiomyocytes by inhibiting GLP-1R/NLRP3 activity, indicating the therapeutic potential of loganin in myocardial I/R injury.


Subject(s)
Myocardial Reperfusion Injury , Rats , Animals , Myocardial Reperfusion Injury/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Inflammasomes/metabolism
9.
Chem Biol Interact ; 382: 110640, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37473909

ABSTRACT

Diabetic kidney disease (DKD) is an essential cause of end-stage renal disease. The ongoing inflammatory response in the proximal tubule promotes the progression of DKD. Timely and effective blockade of the inflammatory process to protect the kidney during DKD progression is a proven strategy. The purpose of this study was to investigate the protective effect of loganin on diabetic nephropathy in vivo and in vitro and whether this effect was related to the inhibition of pyroptosis. The results indicated that loganin reduced fasting blood glucose, blood urea nitrogen and serum creatinine concentrations, and alleviated renal pathological changes in DKD mice. In parallel, loganin downregulated the expression of pyroptosis related proteins in the renal tubules of DKD mice and decreased serum levels of interleukin-1beta (IL-1ß) and interleukin-18 (IL-18). Furthermore, in vitro experiments showed that loganin attenuated high glucose-induced HK-2 cell injury by reducing the expression of pyroptosis-related proteins, and cytokine levels were also decreased. These fundings were also confirmed in the polyphyllin VI (PPVI) -induced HK-2 cell pyroptosis model. Loganin reduces high glucose induced HK-2 cells pyroptosis by inhibiting reactive oxygen species (ROS) production and NOD-like receptor protein 3 (NLRP3) inflammasome activation. In conclusion, the inhibition of pyroptosis via inhibition of the NLRP3/Caspase-1/Gasdermin D (GSDMD) pathway might be an essential mechanism for loganin treatment of DKD.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , NLR Proteins , Diabetic Nephropathies/drug therapy , Kidney/metabolism , Glucose/pharmacology
10.
CNS Neurosci Ther ; 29(12): 3842-3853, 2023 12.
Article in English | MEDLINE | ID: mdl-37408379

ABSTRACT

AIMS: Corni Fructus (CF) and some CF-contained prescriptions are commonly used in clinical treatment of depression. This investigation aims to evaluate the main active compound of CF in antidepressant properties and its key target. METHODS: Firstly, this study established a behavioral despair model and used high-performance liquid chromatography method to evaluate the antidepressant-like effects of water extract, 20%, 50%, and 80% ethanol extracts of CF, and its main active compound. Then, this study created chronic unpredictable mild stress (CUMS) model to assess loganin's antidepressant-like properties, and its target was evaluated by quantitative real-time polymerase chain reaction, Western blot, Immunofluorescence, enzyme-linked immunosorbent assay, and tyrosine receptor kinase B (TrkB) inhibitor. RESULTS: Results showed that the different extracts of CF significantly shortened the immobility time in forced swimming and tail suspension tests. Moreover, loganin alleviated CUMS-induced depression-like behavior, promoted neurotrophy and neurogenesis, and inhibited neuroinflammation. Furthermore, K252a blocked the improvement of loganin on depression-like behavior, and eliminated the enhancement of neurotrophy and neurogenesis and the inhibition of neuroinflammation. CONCLUSION: Overall, these results indicated that loganin could be used as a major active compound of CF for the antidepressant-like properties and exerted antidepressant-like actions by regulating brain derived neurotrophic factor (BDNF)-TrkB signaling, and TrkB could be used as key target for itsantidepressant-like actions.


Subject(s)
Brain-Derived Neurotrophic Factor , Cornus , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cornus/metabolism , Receptor, trkB , Neuroinflammatory Diseases , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/drug therapy , Stress, Psychological/drug therapy , Hippocampus/metabolism , Disease Models, Animal
11.
Toxicon ; 232: 107202, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37348819

ABSTRACT

The highly disabling nature of spinal cord injuries (SCI) and high cost of treatment and rehabilitation impose a burden on families and society. Loganin has potential medicinal value in alleviating neuroinflammation. This study aimed to explore whether loganin can be used to reduce SCI-induced neuroinflammation and elucidate the molecular mechanisms underlying its action. An SCI rat model was developed to assess whether loganin promotes motor recovery after SCI. The anti-inflammatory effects of loganin on the dorsal horn of the spinal cord were identified by haematoxylin-eosin and immunohistochemical staining. The inflammatory effects of loganin were characterised using a lipopolysaccharide (LPS)-induced neuroinflammatory model in BV2 cells. For mechanistic exploration, the signalling pathways and target proteins of loganin action were predicted using bioinformatics and computational biology and then validated in cellular inflammation models. Loganin promoted animal motor recovery after SCI at the behavioural level, and it inhibited M1 differentiation of microglia and reduced NOD-like receptor thermal protein domain associated protein 3 (NLRP3)-mediated inflammatory responses at the tissue level. Loganin inhibited LPS-induced inflammation in BV2 cells, and bioinformatics and computational biology suggested that loganin acts on the p65 protein through the nuclear factor kappa-B (NF-κB)/NLRP3 signalling pathway. This was validated in a cellular model in which p65 trans-overexpression eliminated the downregulation of inflammatory factors by loganin. In conclusion, loganin reduces neuroinflammatory responses and promotes motor recovery after SCI. Loganin inhibits the NF-κB/NLRP3 signalling pathway by targeting the p65 protein to achieve repair.


Subject(s)
NF-kappa B , Spinal Cord Injuries , Rats , Animals , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuroinflammatory Diseases , Lipopolysaccharides/toxicity , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Spinal Cord , Inflammation/drug therapy , Inflammation/metabolism
12.
J Ethnopharmacol ; 312: 116455, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37019163

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Corni Fructus is a traditional Chinese herb and widely applied for treatment of age-related disorders in China. Iridoid glycoside was considered as the active ingredient of Corni Fructus. Loganin is one of the major iridoid glycosides and quality control components of Corni Fructus. Emerging evidence emphasized the beneficial effect of loganin on neurodegenerative disorders, such as Alzheimer's disease (AD). However, the detailed mechanism underlying the neuroprotective action of loganin remains to be unraveled. AIM OF THE STUDY: To explore the improvement of loganin on cognitive impairment in 3 × Tg-AD mice and reveal the potential mechanism. MATERIALS AND METHODS: Eight-month 3 × Tg-AD male mice were intraperitoneally injected with loganin (20 and 40 mg/kg) for consecutive 21 days. Behavioral tests were used to evaluated the cognition-enhancing effects of loganin, and Nissl staining and thioflavine S staining were performed to analyze neuronal survival and Aß pathology. Western blot analysis, transmission electron microscopy and immunofluorescence were utilized to explore the molecular mechanism of loganin in AD mice involved mitochondrial dynamics and mitophagy. Aß25-35-induced SH-SY5Y cells were applied to verify the potential mechanism in vitro. RESULTS: Loganin significantly mitigated the learning and memory deficit and amyloid ß-protein (Aß) deposition, and recovered synaptic ultrastructure in 3 × Tg-AD mice. Perturbed mitochondrial dynamics characterized by excessive fission and insufficient fusion were restored after loganin treatment. Meanwhile, loganin reversed the increase of mitophagy markers (LC3II, p62, PINK1 and Parkin) and mitochondrial markers (TOM20 and COXIV) in hippocampus of AD mice, and enhanced the location of optineurin (OPTN, a well-known mitophagy receptor) to mitochondria. Accumulated PINK1, Parkin, p62 and LC3II were also revealed in Aß25-35-induced SH-SY5Y cells, which were ameliorated by loganin. Increased OPTN in Aß25-35-treated SH-SY5Y cells was further upregulated by loganin incubation, along with the reduction of mitochondrial ROSand elevation ofmitochondrial membrane potential (MMP). Conversely, OPTN silence neutralized the effect of loganin on mitophagy and mitochondrial function, which is consistent with the finding that loganin presented strong affinity with OPTN measured by molecular docking in silico. CONCLUSIONS: Our observations confirmed that loganin enhanced cognitive function and alleviated AD pathology probably by promoting OPTN-mediated mitophagy,. Loganin might be a potential drug candidate for AD therapy via targeting mitophagy.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neuroblastoma , Mice , Humans , Male , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Mitophagy , Amyloid beta-Peptides , Molecular Docking Simulation , Iridoids/pharmacology , Iridoids/therapeutic use , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/pathology , Protein Kinases , Ubiquitin-Protein Ligases
13.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36902181

ABSTRACT

Obesity is characterized by the excessive accumulation of mature adipocytes that store surplus energy in the form of lipids. In this study, we investigated the inhibitory effects of loganin on adipogenesis in mouse preadipocyte 3T3-L1 cells and primary cultured adipose-derived stem cells (ADSCs) in vitro and in mice with ovariectomy (OVX)- and high-fat diet (HFD)-induced obesity in vivo. For an in vitro study, loganin was co-incubated during adipogenesis in both 3T3-L1 cells and ADSCs, lipid droplets were evaluated by oil red O staining, and adipogenesis-related factors were assessed by qRT-PCR. For in vivo studies, mouse models of OVX- and HFD-induced obesity were orally administered with loganin, body weight was measured, and hepatic steatosis and development of excessive fat were evaluated by histological analysis. Loganin treatment reduced adipocyte differentiation by accumulating lipid droplets through the downregulation of adipogenesis-related factors, including peroxisome proliferator-activated receptor γ (Pparg), CCAAT/enhancer-binding protein α (Cebpa), perilipin 2 (Plin2), fatty acid synthase (Fasn), and sterol regulatory element binding transcription protein 1 (Srebp1). Loganin administration prevented weight gain in mouse models of obesity induced by OVX and HFD. Further, loganin inhibited metabolic abnormalities, such as hepatic steatosis and adipocyte enlargement, and increased the serum levels of leptin and insulin in both OVX- and HFD-induced obesity models. These results suggest that loganin is a potential candidate for preventing and treating obesity.


Subject(s)
Adipogenesis , Anti-Obesity Agents , Iridoids , Animals , Mice , 3T3-L1 Cells , Adipogenesis/drug effects , Anti-Obesity Agents/pharmacology , Diet, High-Fat , Mice, Inbred C57BL , Obesity/metabolism , PPAR gamma/metabolism , Weight Gain , Iridoids/pharmacology
14.
Clin Cosmet Investig Dermatol ; 16: 407-417, 2023.
Article in English | MEDLINE | ID: mdl-36817639

ABSTRACT

Psoriasis, a chronic immune-mediated inflammatory skin disease, influences approximately 2-3% of the world's population. At present, the etiology of psoriasis remains unclear and there is still no causal treatment available. Recent studies indicate that oxidative stress (OS) and T cells dysregulation may participate in the pathogenesis of psoriasis, among which M1-dominant macrophage polarization is a crucial contributor. Macrophages mainly polarize into two different subsets, ie, classically activated macrophage (M1) and alternatively activated macrophage (M2). M1 polarization tends to exacerbate psoriasis via producing substantial reactive oxygen species (ROS) and inflammatory mediators, to encourage OS invasion and T cells dysregulation. Thus, targeting M1 polarization can be a possible therapeutic alternative for psoriasis. Loganin, belonging to iridoid glycosides, is a pharmaceutically active ingredient originated from Cornus officinalis, exerting multiple biological activities, eg, immunomodulation, antioxidation, anti-inflammation, etc. More importantly, it could effectively suppress M1 polarization, thereby arresting OS aggression and T cells' dysregulation. Numerous studies have confirmed that loganin is quite reliable for diseases treatment via suppressing M1 polarization. Nevertheless, reports about loganin treating psoriasis have seldom appeared so far. Accordingly, we hold a hypothesis that loganin would availably manage psoriasis through preventing M1 polarization. Data from previous studies guarantee the potential of loganin in control of psoriasis.

15.
J Ethnopharmacol ; 308: 116288, 2023 May 23.
Article in English | MEDLINE | ID: mdl-36809822

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cornus officinalis Sieb. et Zucc., is a valuable herb commonly used in Chinese medicine clinics. Loganin is a major iridoid glycoside obtained from the traditional Chinese herb Corni Fructus. Loganin, which has been shown to improve depression-like behavior in mice exposed to acute stress, is probably a potential antidepressant candidate. AIM OF THE STUDY: Loganin was evaluated for its effect on chronic unpredictable mild stress (CUMS) induced depressive-like mice, and its action mechanisms were explored. MATERIALS AND METHODS: ICR mice were subjected to the CUMS stimulation method to induce depression. The therapeutic effect of loganin on depressive-like behavior was evaluated by a series of behavioral tests such as sucrose preference test (SPT), forced swim test (FST), tail suspension test (TST) and open-field test (OFT). In addition, the serum levels of adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were measured using ELISA. The levels of monoamine neurotransmitters were detected by high performance liquid chromatography-electrochemical detection (HPLC-ECD). The levels of brain-derived neurotrophic factor (BDNF) in the hippocampus were measured using western blot analysis. RESULTS: The results showed that CUMS induced depressive-like behaviors in mice, as indicated by behavioral tests. Administration of loganin increased the sucrose preference in SPT, as well as decreased the immobility time in FST and TST. Loganin could also improve food intake, and increased crossing times in the OFT. In mechanism, loganin restored the secretion of monoamine neurotransmitters, ACTH and CORT to normal levels. In addition, loganin elevated the expression of BDNF in the hippocampus. In conclusion, loganin exerts antidepressant-like effects in CUMS model mice through modulating monoamine neurotransmitters, ACTH, CORT and BDNF. CONCLUSION: Loganin effectively ameliorated depressive-like symptoms in CUMS-exposed mice by increasing 5-hydroxytryptamine (5-HT) and dopamine (DA) levels, alleviating hypothalamic-pituitary-adrenal (HPA) axis dysfunction, and increasing BDNF expression. In conclusion, the findings of the current study extensive evidence for the application of loganin in stress-associated disorders, specifically targeting depression.


Subject(s)
Brain-Derived Neurotrophic Factor , Depression , Mice , Animals , Depression/drug therapy , Brain-Derived Neurotrophic Factor/metabolism , Mice, Inbred ICR , Antidepressive Agents/pharmacology , Hippocampus , Adrenocorticotropic Hormone , Sucrose/metabolism , Stress, Psychological/drug therapy , Disease Models, Animal , Behavior, Animal
16.
Environ Toxicol ; 38(4): 926-940, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36637150

ABSTRACT

Fracture in acute stage of ischemic stroke can increase inflammatory response and enhance stroke injury. Loganin alleviates the symptoms of many inflammatory diseases through its anti-inflammatory effect, but its role in ischemic stroke and fracture remains to be explored. Here, mice were handled with permanent middle cerebral artery occlusion (pMCAO) followed by tibial fracture 1 day later to establish a pMCAO+fracture model. Loganin or Methyllycaconitine (MLA, a specific a7nAchR inhibitor) were intragastrically administered 2 or 0.5 h before pMCAO, respectively. And mouse motor function and infarct volume were evaluated 3 days after pMCAO. We found that loganin alleviated the neurological deficit, cerebral infarction volume, and neuronal apoptosis (NeuN+ TUNEL+ ) in mice with pMCAO+fracture. And loganin suppressed pMCAO+fracture-induced neuroinflammation by promoting M2 microglia polarization (Iba1+ CD206+ ) and inhibiting M1 microglia polarization (Iba1+ CD11b+ ). While administration with MLA reversed the protective effect of loganin on pMCAO+fracture-induced neurological deficit and neuroinflammation. Next, LPS was used to stimulate BV2 microglia to simulate pMCAO+fracture-induced inflammatory microenvironment in vitro. Loganin facilitated the transformation of LPS-stimulated BV2 cells from M1 pro-inflammatory state (CD11b+ ) to M2 anti-inflammatory state (CD206+ ), which was antagonized by treatment with MLA. And loganin induced autophagy activation in LPS-stimulated BV2 cells by activating a7nAchR. Moreover, treatment with rapamycin (an autophagy activator) neutralized the inhibitory effect of MLA on loganin induced transformation of BV2 cells to M2 phenotype. Furthermore, BV2 cells were treated with LPS, LPS + loganin, LPS + loganin+MLA, or LPS + loganin+MLA+ rapamycin to obtain conditioned medium (CM) for stimulating primary neurons. Loganin reduced the damage of primary neurons caused by LPS-stimulated BV2 microglia through activating a7nAchR and inducing autophagy activation. In conclusion, loganin played anti-inflammatory and neuroprotective roles in pMCAO + fracture mice by activating a7nAchR, enhancing autophagy and promoting M2 polarization of microglia.


Subject(s)
Ischemic Stroke , Microglia , Mice , Animals , alpha7 Nicotinic Acetylcholine Receptor , Neuroinflammatory Diseases , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology
17.
Genes Genomics ; 45(3): 271-284, 2023 03.
Article in English | MEDLINE | ID: mdl-36018494

ABSTRACT

BACKGROUND: Loganin, a type of iridoid glycoside derived from Corni Fructus, is known to have beneficial effects various chronic diseases. However, studies on mechanisms related to antioxidant efficacy in human retinal pigment epithelial (RPE) cells have not yet been conducted. OBJECTIVES: This study was to investigate whether loganin could inhibit oxidative stress-mediated cellular damage caused by hydrogen peroxide (H2O2) in human RPE ARPE-19 cells. METHODS: The preventive effect of loganin on H2O2-induced cytotoxicity, reactive oxygen species (ROS) generation, DNA damage and apoptosis was investigated. In addition, immunofluorescence staining and immunoblotting analysis were applied to evaluate the related mechanisms. RESULTS: The loss of cell viability and increased ROS accumulation in H2O2-treated ARPE-19 cells were significantly abrogated by loganin pretreatment, which was associated with activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and increased expression of heme oxygenase-1 (HO-1). Loganin also markedly attenuated H2O2-induced DNA damage, ultimately ameliorating apoptosis. In addition, H2O2-induced mitochondrial dysfunction was reversed in the presence of loganin as indicated by preservation of mitochondrial integrity, decrease of Bax/Bcl-2 expression ratio, reduction of caspase-3 activity and suppression of cytochrome c release into the cytoplasm. However, zinc protoporphyrin, a selective inhibitor of HO-1, remarkably alleviated the preventive effect offered by loganin against H2O2-mediated ARPE-19 cell injury, suggesting a critical role of Nrf2-mediated activation of HO-1 in the antioxidant activity of loganin. CONCLUSION: The results of this study suggest that loganin-induced activation of the Nrf2/HO-1 axis is at least involved in protecting at least ARPE-19 cells from oxidative injury.


Subject(s)
Antioxidants , NF-E2-Related Factor 2 , Humans , Antioxidants/pharmacology , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Hydrogen Peroxide , Heme Oxygenase-1/metabolism , Cell Line , Oxidative Stress , Epithelial Cells/metabolism , Retinal Pigments/metabolism , Retinal Pigments/pharmacology
18.
Int J Mol Sci ; 23(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36555516

ABSTRACT

Autophagy facilitates the degradation of organelles and cytoplasmic proteins in a lysosome-dependent manner. It also plays a crucial role in cell damage. Whether loganin affects autophagy in chronic constriction injury (CCI)-induced neuropathic pain remains unclear. We investigated the neuroprotective effect of loganin on the autophagic-lysosomal pathway in the rat CCI model. Sprague-Dawley rats were divided into sham, CCI, sham + loganin, and CCI + loganin. Loganin (5 mg/kg/day) was intraperitoneally injected once daily, and rats were sacrificed on day 7 after CCI. This study focused on the mechanism by which loganin modulates autophagic flux after CCI. CCI enhanced the autophagic marker LC3B-II in the ipsilateral spinal cord. The ubiquitin-binding protein p62 binds to LC3B-II and integrates into autophagosomes, which are degraded by autophagy. CCI caused the accumulation of p62, indicating the interruption of autophagosome turnover. Loganin significantly attenuated the expression of Beclin-1, LC3B-II, and p62. Double immunofluorescence staining was used to confirm that LC3B-II and p62 were reduced by loganin in the spinal microglia and astrocytes. Loganin also lessened the CCI-increased colocalization of both proteins. Enhanced lysosome-associated membrane protein 2 (LAMP2) and pro-cathepsin D (pro-CTSD) in CCI rats were also attenuated by loganin, suggesting that loganin improves impaired lysosomal function and autophagic flux. Loganin also attenuated the CCI-increased apoptosis protein Bax and cleaved caspase-3. Loganin prevents CCI-induced neuropathic pain, which could be attributed to the regulation of neuroinflammation, neuronal autophagy, and associated cell death. These data suggest autophagy could be a potential target for preventing neuropathic pain.


Subject(s)
Cardiac Glycosides , Neuralgia , Animals , Rats , Autophagy , Constriction , Hyperalgesia/etiology , Hyperalgesia/complications , Iridoid Glycosides , Neuralgia/drug therapy , Neuralgia/etiology , Neuralgia/metabolism , Rats, Sprague-Dawley
19.
Int J Mol Sci ; 23(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36430605

ABSTRACT

Osteoporosis is a disease caused by impaired bone remodeling that is especially prevalent in elderly and postmenopausal women. Although numerous chemical agents have been developed to prevent osteoporosis, arguments remain regarding their side effects. Here, we demonstrated the effects of loganin, a single bioactive compound isolated from Cornus officinalis, on osteoblast and osteoclast differentiation in vitro and on ovariectomy (OVX)-induced osteoporosis in mice in vivo. Loganin treatment increased the differentiation of mouse preosteoblast cells into osteoblasts and suppressed osteoclast differentiation in primary monocytes by regulating the mRNA expression levels of differentiation markers. Similar results were obtained in an osteoblast-osteoclast co-culture system, which showed that loganin enhanced alkaline phosphatase (ALP) activity and reduced TRAP activity. In in vivo experiments, the oral administration of loganin prevented the OVX-induced loss of bone mineral density (BMD) and microstructure in mice and improved bone parameters. In addition, loganin significantly increased the serum OPG/RANKL ratio and promoted osteogenic activity during bone remodeling. Our findings suggest that loganin could be used as an alternative treatment to protect against osteoporosis.


Subject(s)
Osteogenesis , Osteoporosis , Female , Animals , Mice , Iridoids , Osteoblasts , Osteoporosis/drug therapy
20.
J Int Med Res ; 50(8): 3000605221104764, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36000146

ABSTRACT

OBJECTIVE: Inflammation plays a crucial part in osteoarthritis (OA) development. This work aimed to explore loganin's role and molecular mechanism in inflammation and clarify its anti-inflammatory effects in OA treatment. METHODS: Chondrocytes were stimulated using interleukin (IL)-1ß and loganin at two concentrations (1 µM and 10 µM). Nitric oxide (NO) and prostaglandin E2 (PGE2) expression was assessed. Real-time polymerase chain reaction was used to evaluate inducible NO synthase (iNOS), cyclooxygenase (COX)-2, IL-6, and tumor necrosis factor (TNF)-α mRNA levels. Western blot was used to investigate TLR4, MyD88, p-p65, and IκB-α expression. p65 nuclear translocation, synovial inflammatory response, and cartilage degeneration were also assessed. RESULTS: Loganin significantly reduced IL-1ß-mediated PGE2, NO, iNOS, and COX-2 expression compared with that of the IL-1ß stimulation group. The TLR4/MyD88/NF-κB pathway was suppressed by loganin, which decreased inflammatory cytokine (TNF-α and IL-6) levels compared with those of the IL-1ß stimulation group. Loganin inhibited IL-1ß-mediated NF-κB p65 nuclear translocation compared with that of the IL-1ß stimulation group. Loganin partially suppressed cartilage degeneration and the synovial inflammatory response in vivo. CONCLUSION: This work demonstrated that loganin inhibited IL-1ß-mediated inflammation in rat chondrocytes through TLR4/MyD88/NF-κB pathway regulation, thereby reducing rat cartilage degeneration and the synovial inflammatory response.


Subject(s)
NF-kappa B , Osteoarthritis , Animals , Cartilage/pathology , Chondrocytes/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/pharmacology , Dinoprostone , Inflammation/pathology , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Iridoids , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/pharmacology , NF-kappa B/metabolism , Nitric Oxide/metabolism , Osteoarthritis/pathology , Rats , Signal Transduction , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL