Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Cureus ; 16(6): e61635, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38966460

ABSTRACT

The type of liver cancer that occurs most frequently is hepatocellular carcinoma (HCC). The majority of cases of HCC are secondary to alcoholic cirrhosis or viral hepatitis. The presence of malignant cells with modest nuclear atypia that resemble normal hepatocytes and the lack of bare nuclei in the smears, which shows the neoplastic hepatocytes' capacity, are characteristics of a well-differentiated HCC plasma membrane to tolerate smearing. We present the case of an 83-year-old male patient with a well-differentiated HCC, who had no etiological factors and no signs of alcohol cirrhotic liver, or any symptoms of liver disease which are the main causes of the HCC.

2.
JHEP Rep ; 5(4): 100670, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36873420

ABSTRACT

Background & Aims: Hepatocyte transplantation has emerged as a possible treatment option for end-stage liver disease. However, an important obstacle to therapeutic success is the low level of engraftment and proliferation of transplanted hepatocytes, which do not survive long enough to exert therapeutic effects. Thus, we aimed to explore the mechanisms of hepatocyte proliferation in vivo and find a way to promote the growth of transplanted hepatocytes. Methods: Hepatocyte transplantation was performed in Fah -/- mice to explore the mechanisms of hepatocyte proliferation in vivo. Guided by in vivo regeneration mechanisms, we identified compounds that promote hepatocyte proliferation in vitro. The in vivo effects of these compounds on transplanted hepatocytes were then evaluated. Results: The transplanted mature hepatocytes were found to dedifferentiate into hepatic progenitor cells (HPCs), which proliferate and then convert back to a mature state at the completion of liver repopulation. The combination of two small molecules Y-27632 (Y, ROCK inhibitor) and CHIR99021 (C, Wnt agonist) could convert mouse primary hepatocytes into HPCs, which could be passaged for more than 30 passages in vitro. Moreover, YC could stimulate the proliferation of transplanted hepatocytes in Fah -/- livers by promoting their conversion into HPCs. Netarsudil (N) and LY2090314 (L), two clinically used drugs which target the same pathways as YC, could also promote hepatocyte proliferation in vitro and in vivo, by facilitating HPC conversion. Conclusions: Our work suggests drugs promoting hepatocyte dedifferentiation may facilitate the growth of transplanted hepatocytes in vivo and may facilitate the application of hepatocyte therapy. Impact and implications: Hepatocyte transplantation may be a treatment option for patients with end-stage liver disease. However, one important obstacle to hepatocyte therapy is the low level of engraftment and proliferation of the transplanted hepatocytes. Herein, we show that small molecule compounds which promote hepatocyte proliferation in vitro by facilitating dedifferentiation, could promote the growth of transplanted hepatocytes in vivo and may facilitate the application of hepatocyte therapy.

3.
Expert Rev Gastroenterol Hepatol ; 14(3): 185-196, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32098516

ABSTRACT

Introduction: Hepatocyte transplantation (HT) is a promising alternative to liver transplantation for the treatment of liver-based metabolic diseases and acute liver failure (ALF). However, shortage of good-quality liver tissues, early cell loss post-infusion, reduced cell engraftment and function restricts clinical application.Areas covered: A comprehensive literature search was performed to cover pre-clinical and clinical HT studies. The review discusses the latest developments to address HT limitations: cell sources from marginal/suboptimal donors to neonatal livers, differentiating pluripotent stem cells into hepatocyte-like cells, in vitro expansion, prevention of immune response to transplanted cells by encapsulation or using innate immunity-inhibiting agents, and enhancing engraftment through partial hepatectomy or irradiation.Expert opinion: To date, published data are highly encouraging specially the alginate-encapsulated hepatocyte treatment of children with ALF. Hepatocyte functions can be further improved through co-culturing with mesenchymal stromal cells. Moreover, ex-vivo genetic correction will enable the use of autologous cells in future personalized medicine.


Subject(s)
Cell Transplantation/standards , Hepatocytes/transplantation , Liver Diseases/therapy , Cell Transplantation/methods , Cells, Cultured/transplantation , Humans , Liver Diseases/metabolism , Liver Diseases/surgery , Liver Transplantation
4.
Stem Cells ; 34(12): 2889-2901, 2016 12.
Article in English | MEDLINE | ID: mdl-27375002

ABSTRACT

It has been proposed that tissue stem cells supply multiple epithelial cells in mature tissues and organs. However, it is unclear whether tissue stem cells generally contribute to cellular turnover in normal healthy organs. Here, we show that liver progenitors distinct from bipotent liver stem/progenitor cells (LPCs) persistently exist in mouse livers and potentially contribute to tissue maintenance. We found that, in addition to LPCs isolated as EpCAM+ cells, liver progenitors were enriched in CD45- TER119- CD31- EpCAM- ICAM-1+ fraction isolated from late-fetal and postnatal livers. ICAM-1+ liver progenitors were abundant by 4 weeks (4W) after birth. Although their number decreased with age, ICAM-1+ liver progenitors existed in livers beyond that stage. We established liver progenitor clones derived from ICAM-1+ cells between 1 and 20W and found that those clones efficiently differentiated into mature hepatocytes (MHs), which secreted albumin, eliminated ammonium ion, stored glycogen, and showed cytochrome P450 activity. Even after long-term culture, those clones kept potential to differentiate to MHs. When ICAM-1+ clones were transplanted into nude mice after retrorsine treatment and 70% partial hepatectomy, donor cells were incorporated into liver plates and expressed hepatocyte nuclear factor 4α, CCAAT/enhancer binding protein α, and carbamoylphosphate synthetase I. Moreover, after short-term treatment with oncostatin M, ICAM-1+ clones could efficiently repopulate the recipient liver tissues. Our results indicate that liver progenitors that can efficiently differentiate to MHs exist in normal adult livers. Those liver progenitors could be an important source of new MHs for tissue maintenance and repair in vivo, and for regenerative medicine ex vivo. Stem Cells 2016;34:2889-2901.


Subject(s)
Aging/physiology , Cell Differentiation , Cell Separation , Hepatocytes/cytology , Liver/cytology , Stem Cells/cytology , Animals , Antigens, CD/metabolism , Cell Lineage , Cell Proliferation/drug effects , Clone Cells , Epithelial Cell Adhesion Molecule/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Intercellular Adhesion Molecule-1/metabolism , Liver/growth & development , Mice, Inbred C57BL , Oncostatin M/pharmacology , Stem Cells/drug effects , Stem Cells/metabolism
5.
J Cell Sci ; 126(Pt 22): 5239-46, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24046446

ABSTRACT

In developing organs, epithelial tissue structures are mostly developed by the perinatal period. However, it is unknown whether epithelial cells are already functionally mature and whether they are fixed in their lineage. Here we show that epithelial cells alter their plasticity during postnatal development by examining the differentiation potential of epithelial cell adhesion molecule (EpCAM)(+) cholangiocytes (biliary epithelial cells) isolated from neonatal and adult mouse livers. We found that neonatal cholangiocytes isolated from 1-week-old liver converted into functional hepatocytes in the presence of oncostatin M and Matrigel®. In contrast, neither morphological changes nor expression of hepatocyte markers were induced in adult cholangiocytes. The transcription factors hepatocyte nuclear factor 4α and CCAAT/enhancer binding protein α (C/EBPα), which are necessary for hepatocytic differentiation, were induced in neonatal cholangiocytes but not in adult cells, whereas grainyhead-like 2 (Grhl2) and hairy-enhance of slit 1 (Hes1), which are implicated in cholangiocyte differentiation, were continuously expressed in adult cells. Overexpression of C/EBPα and Grhl2 promoted and inhibited hepatocytic differentiation, respectively. Furthermore, adult cholangiocytes formed a monolayer with higher barrier function than neonatal ones did, suggesting that cholangiocytes are still in the process of epithelial maturation even after forming tubular structures during the neonatal period. Taken together, these results suggest that cholangiocytes lose plasticity to convert into hepatocytes during epithelial maturation. They lose competency to upregulate hepatocytic transcription factors and downregulate cholagiocytic ones under conditions inducing hepatocytic differentiation. Our results suggest that a molecular machinery augmenting epithelial integrity limits lineage plasticity of epithelial cells.


Subject(s)
Biliary Tract/cytology , Cell Differentiation/genetics , Hepatocytes/cytology , Liver/cytology , Animals , Antigens, Neoplasm/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Adhesion Molecules/genetics , Epithelial Cell Adhesion Molecule , Epithelial Cells/cytology , Epithelial Cells/metabolism , Hepatocyte Nuclear Factor 4/metabolism , Hepatocytes/metabolism , Liver/growth & development , Mice , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL