Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 608
Filter
1.
Sci Rep ; 14(1): 23512, 2024 10 09.
Article in English | MEDLINE | ID: mdl-39384900

ABSTRACT

Alzheimer disease (AD) is characterized by progressive loss of memory. Synaptic loss is now the best correlate of cognitive dysfunction in patients with Alzheimer's disease. Thus, restoration or limitation of synapse loss is a promising strategy for pharmacotherapy of AD. N-N substituted piperazines are widely used chemical compounds for drug interventions to treat different illnesses including CNS diseases such as drug abuse, mental and anxiety disorders. Piperazine derivatives are small molecules that are usually well tolerated and cross blood brain barrier (BBB). Thus, disubstituted piperazines are good tools for searching and developing novel disease-modifying drugs. Previously, we have determined the piperazine derivative, 51164, as an activator of TRPC6 in dendritic spines. We have demonstrated synaptoprotective properties of 51164 in AD mouse models. However, 51164 was not able to cross BBB. Within the current study, we identified a novel piperazine derivative, cmp2, that is structurally similar to 51164 but is able to cross BBB. Cmp2 binds central part of monomeric TRPC6 in similar way as hypeforin does. Cmp2 selectively activates TRPC6 but not structurally related TRPC3 and TRPC7. Novel piperazine derivative exhibits synaptoprotective properties in culture and slices and penetrates the BBB. In vivo study indicated cmp2 (10 mg/kg I.P.) reversed deficits in synaptic plasticity in the 5xFAD mice. Thus, we suggest that cmp2 is a novel lead compound for drug development. The mechanism of cmp2 action is based on selective TRPC6 stimulation and it is expected to treat synaptic deficiency in hippocampal neurons.


Subject(s)
Alzheimer Disease , Hippocampus , Neurons , Piperazines , TRPC6 Cation Channel , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Hippocampus/metabolism , Hippocampus/drug effects , Piperazines/pharmacology , Neurons/metabolism , Neurons/drug effects , TRPC6 Cation Channel/metabolism , Mice , Humans , Synapses/drug effects , Synapses/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Piperazine/chemistry , Piperazine/pharmacology , TRPC Cation Channels/metabolism , Disease Models, Animal
2.
Mol Divers ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225906

ABSTRACT

A series of flavonol derivatives containing piperazine and quinoxaline had been designed and synthesized. The biological activity test results showed that some of the target compounds had good antifungal activity against various fungi. N5 had the best antifungal activity against Phomopsis sp (P.s.) and Phytophthora capsica (P.c.). The half maximal effective concentration (EC50) was 12.9 and 25.8 µg/mL against P.s. and P.c., respectively, which were better than azoxystrobin (Az, 25.4 and 71.1 µg/mL). In addition, the protective and curative activities of N5 against kiwifruit were 85.9 and 67.0% at 200 µg/mL in vivo, which were better than that of Az (65.9 and 57.0%). The protective and curative activities against chili leaves were 80.6 and 66.5% at 200 µg/mL, which were better than that of Az (77.6 and 60.0%). The scanning electron microscopy (SEM) experiment showed that the action of N5 caused the mycelium to bend and fold, changed its morphology and caused damaged to the mycelium. Through the measurement of relative conductivity, leakage of cytoplasmic contents and determination of malondialdehyde (MDA) content indicated that N5 could damage the integrity of pathogenic fungal cell membranes, change the permeability of cell membranes, and affect the normal growth of mycelium.

3.
Enzymes ; 56: 231-260, 2024.
Article in English | MEDLINE | ID: mdl-39304288

ABSTRACT

Bacterial tyrosinase is a copper-containing metalloenzyme with diverse physio-chemical properties, that have been identified in various bacterial strains, including actinobacteria and proteobacteria. Tyrosinases are responsible for the rate-limiting catalytic steps in melanin biosynthesis and enzymatic browning. The physiological role of bacterial tyrosinases in melanin biosynthesis has been harnessed for the production of coloring and dyeing agents. Additionally, bacterial tyrosinases have the capability of cross-linking activity, demonstrated material functionalization applications, and applications in food processing with varying substrate specificities and stability features. These characteristics make bacterial tyrosinases a valuable alternative to well-studied mushroom tyrosinases. The key feature of substrate specificity of bacterial tyrosinase has been exploited to engineer biosensors that have the ability to detect the minimal amount of different phenolic compounds. Today, the world is facing the challenge of multi-drugs resistance in various diseases, especially antibiotic resistance, skin cancer, enzymatic browning of fruits and vegetables, and melanogenesis. To address these challenges, medicinal scientists are developing novel chemotherapeutic agents by inhibiting bacterial tyrosinases. To serve this purpose, heterocyclic compounds are of particular interest due to their vast spectrum of biological activities and their potential as effective tyrosinase inhibitors. In this chapter, a plethora of research explores applications of bacterial tyrosinases in different fields, such as the production of dyes and pigments, catalytic applications in organic synthesis, bioremediation, food and feed applications, biosensors, wool fiber coating and the rationalized synthesis, and structure-activity relationship of bacterial tyrosinase inhibitors.


Subject(s)
Bacteria , Enzyme Inhibitors , Monophenol Monooxygenase , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Bacteria/drug effects , Bacteria/enzymology , Substrate Specificity , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Humans , Melanins/biosynthesis , Melanins/antagonists & inhibitors , Melanins/metabolism
4.
Sci Rep ; 14(1): 22112, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333217

ABSTRACT

Carbon dioxide (CO2) is the main greenhouse gas that drives global warming, climate change, and other environmental issues. CO2 absorption using amine solvents stands out as one of the most well-known industrial technologies of CO2 capture. However, accurate prediction of CO2 absorption in aqueous amine solutions under different operating conditions is crucial for designing an efficient amine scrubbing system in power plants. In this work, CO2 solubility in aqueous piperazine (PZ) solutions was modeled using 517 experimental data points covering a temperature range of 298 to 373 K, PZ concentration of 0.1 to 6.2 mol/L (M), and CO2 partial pressure of 0.03 to 7399 kPa. To this end, four robust machine learning algorithms, including gradient boosting with categorical features support (CatBoost), light gradient boosting machine (LightGBM), extreme gradient boosting (XGBoost), and adaptive boosting decision trees (AdaBoost-DT) were utilized. Among the developed models, the CatBoost model presented the highest accuracy with an overall determination coefficient (R2) of 0.9953 and an average absolute relative error of 2.36%. Sensitivity analysis revealed that CO2 partial pressure had the greatest influence on CO2 absorption in aqueous PZ solutions, followed by PZ concentration and temperature. Moreover, CO2 partial pressure positively influenced CO2 absorption in aqueous PZ solutions, while PZ concentration and temperature exhibited negative effects. Finally, the leverage technique indicated that both the experimental data bank used for modeling and the model's estimates were statistically acceptable and valid showing only 8 points (∼1.5% of total data) as possible suspected data.

5.
Chem Asian J ; : e202400688, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136397

ABSTRACT

2,5-disubstituted N,N'-alkylpiperazines represent an interesting target in organic synthesis both for pharmaceutical or agrochemical applications and as a promising class of ligands in coordination chemistry. We report here a microwave-enhanced synthesis of these compounds starting from non-activated N-alkyl aziridines in the presence of catalytic amounts of simple ammonium metallates. A remarkable TOF of 2787.9 h-1 has been observed in the case of [TBA]2[ZnI4] as the catalyst (catalyst loading 0.1 mol%) and with an almost complete selectivity (up to 97%) in favor of both diastereoisomers (meso and chiral form) of the target 2,5-disubstituted piperazines, obtained in 1:1 ratio. The two isomers are easily separated, because the meso form precipitates in pure from the reaction crude. A stereochemical investigation and the unprecedented isolation of 2,6-disubstituted N,N'-alkylpiperazines allowed us to shed light on the reaction mechanism.

6.
Front Chem ; 12: 1423385, 2024.
Article in English | MEDLINE | ID: mdl-39165334

ABSTRACT

The urease enzyme is recognized as a valuable therapeutic agent for treating the virulent Helicobacter pylori bacterium because of its pivotal role in aiding the colonization and growth of the bacterium within the gastric mucosa. In order to control the harmful consequences of bacterial infections, urease inhibition presents itself as a promising and effective approach. The current research aimed to synthesize pyridylpiperazine-based carbodithioate derivatives 5a-5n and 7a-7n that could serve as potential drug candidates for preventing bacterial infections through urease inhibition. The synthesized carbodithioate derivatives 5a-5n and 7a-7n were explored to assess their ability to inhibit the urease enzyme after their structural explication by gas chromatography-mass spectrometry (GC-MS). In the in vitro evaluation with thiourea as a standard drug, it was observed that all the synthesized compounds exhibited significant inhibitory activity compared to the reference drug. Among the compounds tested, 5j (bearing an o-tolyl moiety) emerged as the most effective inhibitor, displaying strong urease inhibition with an IC50 value of 5.16 ± 2.68 µM. This IC50 value is notably lower than that of thiourea (23 ± 0.03 µM), indicating the significantly most potent potential of inhibition. In molecular docking of 5j within the active site of urease, numerous noteworthy interactions were identified.

7.
Molecules ; 29(16)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39202802

ABSTRACT

A base-induced synthesis of 2-(4-(2-(phenylthio)ethyl)piperazinyl) acetonitriles by reaction of disulfides, 1-(chloromethyl)-4-aza-1-azonia bicyclo[2.2.2]octane chloride and trimethylsilyl cyanide is reported. The scope of the method is demonstrated with 30 examples. The reaction mechanism research indicates that the three-component reaction would be a SN2 reaction. The products exhibit good activities towards advanced synthesis of aqueous soluble acyl-CoA: cholesterol O-acyltransferase-1 (ACAT-1) inhibitors. Our work is superior as it uses less-odor disulfides as carbon sources and EtOH as solvent in a water and dioxygen insensitive reaction system, followed by a simple purification process.

8.
Pharm Res ; 41(9): 1843-1853, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39112777

ABSTRACT

OBJECTIVE: Resveratrol-piperazine cocrystals have been obtained by ultrasound (US) and microwave-assisted (MW) techniques, using the solution and slurry-based methods, to study the influence of the synthesis method on the resulting cocrystal properties, and scalability of the processes. The potential of these cocrystals is represented by the unique properties of their components, resveratrol, and piperazine, which could be also used in veterinary practice. Resveratrol has antimicrobial, antiviral and anticarcinogenic properties, while piperazine can be used in the treatment of parasitic infections. METHODS: The influence of ultrasound and microwave-assisted treatment was studied by varying synthesis parameters such as reaction time, temperature, and US or MW power. The main advantage of using these methods is represented by shorter synthesis time compared to conventional methods, resulting in the direct formation of the cocrystals. RESULTS: All samples were obtained in high purity, above 97%. Cocrystal yield correlated positively with ultrasound reaction time, while temperature was not found to influence the microwave synthesis yield up to 50°C, in the case of solution-based methods. MW and US-assisted solution-based methods lead to yields between 52.9 and 68.1%. In the case of the slurry-based method, a minimum reaction time of 5 min leads to the formation of cocrystals with high purity. The resveratrol-piperazine cocrystal's solubility and in vitro antibacterial activity were also evaluated, showing promising results. CONCLUSIONS: Ultrasound and microwave-assisted techniques offer a viable alternative for synthesizing resveratrol-piperazine cocrystals with short reaction times, high yield, and purity, suitable for scalable resveratrol-piperazine cocrystals.


Subject(s)
Crystallization , Microwaves , Piperazines , Resveratrol , Resveratrol/chemistry , Resveratrol/pharmacology , Resveratrol/chemical synthesis , Piperazines/chemistry , Piperazines/chemical synthesis , Piperazines/pharmacology , Piperazine/chemistry , Solubility , Temperature
9.
Front Pharmacol ; 15: 1385637, 2024.
Article in English | MEDLINE | ID: mdl-39104399

ABSTRACT

To overcome the poor solubility, permeability, and bioavailability of the plant isoflavone daidzein (DAI), a novel salt of DAI with anhydrous piperazine (PIP) was obtained based on cocrystallization strategy. The new salt DAI-PIP was characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectroscopy, and optical microscopy. The results showed that the maximum apparent solubility (Smax) of DAI-PIP increased by 7.27-fold and 1000-fold compared to DAI in pH 6.8 buffer and water, respectively. The peak apparent permeability coefficient (P app ) of DAI-PIP in the Caco-2 cell model was 30.57 ± 1.08 × 10-6 cm/s, which was 34.08% higher than that of DAI. Additionally, compared to DAI, the maximum plasma concentration (Cmax) value of DAI-PIP in beagle dogs was approximately 4.3 times higher, and the area under the concentration-time curve (AUC0-24) was approximately 2.4 times higher. This study provides a new strategy to enhance the dissolution performance and bioavailability of flavonoid drugs, laying a foundation for expanding their clinical applications.

10.
Front Pharmacol ; 15: 1394369, 2024.
Article in English | MEDLINE | ID: mdl-39148540

ABSTRACT

Objective: Diabetic nephropathy (DN) is a serious complication that may occur during the later stages of diabetes, and can be further exacerbated by podocyte damage. Piperazine ferulate (PF) has well-defined nephroprotective effects and is used clinically in the treatment of chronic nephritis and other kidney diseases. However, the renoprotective effects and mechanisms of PF on DN are not clear. This study aims to investigate the protective effect of PF on DN and its mechanism of action, to inform the clinical application of PF in DN treatment. Methods: Network pharmacology was performed to predict the mechanism of action of PF in DN. Male Sprague Dawley rats were intraperitoneally injected with STZ (60 mg/kg) to establish a DN model, and then assessed for renal injury after 12 weeks of administration. In vitro, rat podocytes were treated with 25 mmol/L glucose and cultured for 24 h, followed by an assessment of cell injury. Results: Our results showed that PF significantly improved renal function, reduced renal pathological changes, decreased inflammatory response, and alleviated podocyte damage in DN rats. PF also attenuated glucose-induced podocyte injury in vitro. Regarding molecular mechanisms, our study demonstrated that PF downregulated the expression of genes and proteins related to AGE-RAGE-mediated inflammatory signaling. Conclusion: In summary, PF exerts its renoprotective effects by decreasing inflammation and protecting against podocyte injury through the inhibition of the AGE/RAGE/NF-κB/NLRP3 pathway. Overall, these data support the clinical potential of PF as a renoprotective agent in DN.

11.
Bioorg Chem ; 151: 107647, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39024805

ABSTRACT

Brown rot of stone fruit, a disease caused by the ascomycete fungus Monilinia fructicola, has caused significant losses to the agricultural industry. In order to explore and discover potential fungicides against M. fructicola, thirty-one novel mandelic acid derivatives containing piperazine moieties were designed and synthesized based on the amide skeleton. Among them, target compound Z31 exhibited obvious in vitro antifungal activity with the EC50 value of 11.8 mg/L, and significant effects for the postharvest pears (79.4 % protective activity and 70.5 % curative activity) at a concentration of 200 mg/L. Antifungal activity for the target compounds was found to be significantly improved by the large steric hindrance of the R1 groups and the electronegative of the piperazines in the molecular structure, according to a three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis. Further mechanism studies have demonstrated that the compound Z31 can disrupt cell membrane integrity, resulting in increased membrane permeability, release of intracellular electrolytes, and affect the normal growth of hyphae. Additional, morphological study also indicated that Z31 may disrupt the integrity of the membrane by inducing generate excess endogenous reactive oxygen species (ROS) and resulting in the peroxidation of cellular lipids, which was further verified by the detection of malondialdehyde (MDA) content. These studies have provided the basis for the creation of novel fungicides to prevent brown rot in stone fruits.


Subject(s)
Ascomycota , Drug Design , Fungicides, Industrial , Mandelic Acids , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Ascomycota/drug effects , Dose-Response Relationship, Drug , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/chemistry , Mandelic Acids/pharmacology , Mandelic Acids/chemistry , Molecular Structure , Piperazines/pharmacology , Piperazines/chemistry , Piperazines/chemical synthesis , Quantitative Structure-Activity Relationship , Benzyl Compounds/chemical synthesis , Benzyl Compounds/chemistry , Benzyl Compounds/pharmacology
12.
Bioorg Med Chem Lett ; 110: 129884, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38996939

ABSTRACT

Both cyclopropyl amide and piperazine sulfonamide functional groups are known for their various biological properties used for drug development. Herein, we synthesized nine new derivatives with different substituent groups incorporating these moieties and screened them for their anti-osteoclast differentiation activity. After analyzing the structure-activity relationship (SAR), the inhibitory effect against osteoclastogenesis was determined to be dependent on the lipophilicity of the compound. Derivative 5b emerged as the most effective dose-dependent inhibitor after TRAP staining with an IC50 of 0.64 µM against RANKL-induced osteoclast cells. 5b was also able to suppress F-acting ring formation and bone resorption activity of osteoclasts in vitro. Finally, well-acknowledged gene and protein osteoclast-specific marker expression levels were decreased after 5b administration on primary murine osteoclast cells.


Subject(s)
Benzamides , Cell Differentiation , Osteoclasts , RANK Ligand , Osteoclasts/drug effects , Osteoclasts/metabolism , Cell Differentiation/drug effects , Animals , Structure-Activity Relationship , RANK Ligand/pharmacology , RANK Ligand/antagonists & inhibitors , Mice , Benzamides/pharmacology , Benzamides/chemical synthesis , Benzamides/chemistry , Molecular Structure , Dose-Response Relationship, Drug
13.
Article in English | MEDLINE | ID: mdl-39007228

ABSTRACT

New series of benzimidazole incorporating piperazine moieties in single molecular framework has been reported. The structures of the synthesized derivatives were assigned by 1H-NMR, 13C-NMR, and HR-MS techniques. The hybrid derivatives were evaluated for their acetylcholinesterase and butyrylcholinesterase inhibition effect. All the synthesized analogs showed good to moderate inhibitory effect ranging from IC50 value 0.20 ± 0.01 µM to 0.50 ± 0.10 µM for acetylcholinesterase and from IC50 value 0.25 ± 0.01 µM to 0.70 ± 0.10 µM for butyrylcholinesterase except one that showed least potency with IC50 value 1.05 ± 0.1 µM and 1.20 ± 0.1 µM. The differences in inhibitory potential of synthesized compounds were due to the nature and position of substitution attached to the main ring. Additionally, molecular docking study was carried out for most active in order to explore the binding interactions established by ligand (active compounds) with the active residues of targeted AChE & BuChE enzyme.

14.
Materials (Basel) ; 17(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38998228

ABSTRACT

The 1:1 resveratrol-piperazine cocrystal was successfully synthesized and scaled-up to 300 g scale with the mechanochemical method, as a result of investigating key process parameters, namely the solvent and the grinding time. The use of water, ethanol or ethanol-water mixtures and reaction times up to 50 min were evaluated relative to the dry grinding process. Cocrystal formation and purity were monitored through X-ray diffraction and calorimetry measurements. The dry grinding resulted in an incomplete cocrystal formation, while the use of water or water-ethanol mixture yielded a monohydrate solid phase. Pure ethanol was found to be the optimal solvent for large-scale cocrystallization, as it delivered cocrystals with high crystallinity and purity after 10-30 min grinding time at the laboratory scale. Notably, a relatively fast reaction time (30-60 min) was sufficient for the completion of cocrystallization at larger scales, using a planetary ball mill and a plant reactor. Also, the obtained cocrystal increases the aqueous solubility of resveratrol by 6%-16% at pH = 6.8. Overall, this study highlights the potential of solvent-assisted mechanochemical synthesis as a promising new approach for the efficient production of pure resveratrol-piperazine cocrystals.

15.
Molecules ; 29(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998996

ABSTRACT

Diabetes mellitus is a severe endocrine disease that affects more and more people every year. Modern medical chemistry sets itself the task of finding effective and safe drugs against diabetes. This review provides an overview of potential antidiabetic drugs based on three heterocyclic compounds, namely morpholine, piperazine, and piperidine. Studies have shown that compounds containing their moieties can be quite effective in vitro and in vivo for the treatment of diabetes and its consequences.


Subject(s)
Hypoglycemic Agents , Morpholines , Piperazine , Piperidines , Humans , Piperidines/chemistry , Piperidines/pharmacology , Piperidines/therapeutic use , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Morpholines/chemistry , Morpholines/pharmacology , Morpholines/therapeutic use , Piperazine/chemistry , Piperazine/pharmacology , Animals , Piperazines/chemistry , Piperazines/pharmacology , Piperazines/chemical synthesis , Piperazines/therapeutic use , Diabetes Mellitus/drug therapy , Structure-Activity Relationship
16.
Mol Divers ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990393

ABSTRACT

Multi-target directed ligands (MTDLs) have recently been popularized due to their outstanding efficacy in combating the complicated features of Alzheimer's disease. This study details the synthesis of piperazine-quinoline-based MTDLs through a multicomponent Petasis reaction, targeting multiple factors such as AChE, BuChE, metal chelation to restore metal dyshomeostasis, and antioxidant activity. Some of the synthesized compounds exhibited notable inhibitory activity against AChE and BuChE enzymes at specific concentrations. Among the synthesized compounds compound (95) containing a 4-chloroaniline moiety and a 4-methoxybenzyl group displayed the most promising inhibitory activities against AChE (IC50 3.013 µM) and BuChE (IC50 = 3.144 µM). Compound (83) featuring 2-methoxyaniline and 4-fluorobenzyl substituents, exhibited the highest BuChE inhibition (IC50 1.888 µM). Notably, compound (79) demonstrated 93-times higher selectivity for BuChE over AChE. Molecular docking and molecular dynamics simulations were also performed to explore the binding modes and stability of these compounds with the AChE amd BuChE proteins. Further, kinetics study was performed against AChE for comounds (83 and 95) which indicated mixed inhibition of the enzyme by these compounds, Amongs the synthesized compounds, nine compounds were assessed for their antioxidant activity, displaying significant antioxidant properties with IC50 values ranging from 156 µM to 310 µM. Moreover, all the compounds demonstrated metal chelating tendency with Cu+2, Zn+2, Fe+2, Fe+3 and Al+3. This study provides insights into the design of novel MTDLs, highlighting compound (95) as a potential candidate for combating Alzheimer's disease.

17.
Macromol Rapid Commun ; 45(16): e2400184, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38923196

ABSTRACT

Poly(ionic liquid)s combine the unique properties of ionic liquids (ILs) within ionic polymers holding significant promise for energy storage applications. It is reported here the synthesis and characterization of a new family of poly(ionic liquid)s synthesized from cationic piperazinium ionic liquid monomers. The cationic poly(acrylamide piperazinium) in combination with sulfonamide anions like bis(trifluoromethanesulfonyl) imide (TFSI) and bis(fluorosulfonyl) imide (FSI) are characterized as solid polymer electrolytes. The polymer electrolytes in combination with pyrrolidonium ILs and LiFSI show high ionic conductivity, 5×10-3 S cm-1 at 100 °C. Piperazinium polymer electrolytes show excellent compatibility with lithium metal reversible plating and stripping at high current density and low temperature 40 °C.


Subject(s)
Electric Power Supplies , Electrolytes , Ionic Liquids , Lithium , Polymers , Ionic Liquids/chemistry , Lithium/chemistry , Electrolytes/chemistry , Polymers/chemistry , Polymers/chemical synthesis , Piperazines/chemistry , Molecular Structure
18.
Chem Biol Drug Des ; 103(6): e14537, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888058

ABSTRACT

The versatile basic structure of piperazine allows for the development and production of newer bioactive molecules that can be used to treat a wide range of diseases. Piperazine derivatives are unique and can easily be modified for the desired pharmacological activity. The two opposing nitrogen atoms in a six-membered piperazine ring offer a large polar surface area, relative structural rigidity, and more acceptors and donors of hydrogen bonds. These properties frequently result in greater water solubility, oral bioavailability, and ADME characteristics, as well as improved target affinity and specificity. Various synthetic protocols have been reported for piperazine and its derivatives. In this review, we focused on recently published synthetic protocols for the synthesis of the piperazine and its derivatives. The structure-activity relationship concerning different biological activities of various piperazine-containing drugs has also been highlighted to provide a good understanding to researchers for future research on piperazines.


Subject(s)
Chemistry, Pharmaceutical , Piperazines , Piperazines/chemistry , Piperazines/chemical synthesis , Humans , Structure-Activity Relationship , Animals
19.
Mini Rev Med Chem ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38910275

ABSTRACT

Depression is a debilitating mental illness that has a significant impact on an individual's psychological, social, and physical life. Multiple factors, such as genetic factors and abnormalities in neurotransmitter levels, contribute to the development of depression. Monoamine oxidase inhibitors, tricyclic antidepressants, serotonin reuptake inhibitors (SSRIs), serotonin-noradrenaline reuptake inhibitors, and atypical and new-generation antidepressants are well-known drug classes. SSRIs are the commonly prescribed antidepressant medications in the clinic. Genetic variations impacting serotonergic activity in people can influence susceptibility to diseases and response to antidepressant therapy. Gene polymorphisms related to 5-hydroxytryptamine (5-HT) signaling and subtypes of 5-HT receptors may play a role in the development of depression and the response to antidepressants. SSRIs binding to 5-HT reuptake transporters help relieve depression symptoms. Research has been conducted to identify a biomarker for detecting depressive disorders to identify new treatment targets and maybe offer novel therapy approaches. The pharmacological potentials of the piperazine-based compounds led researchers to design new piperazine derivatives and to examine their pharmacological activities. Structure-activity relationships indicated that the first aspect is the flexibility in the molecules, where a linker of typically a 2-4 carbon chain joins two aromatic sides, one of which is attached to a piperazine/phenylpiperazine/benzyl piperazine moiety. Newly investigated compounds having a piperazine core show a superior antidepressant effect compared to SSRIs in vitro/in vivo.

20.
Article in English | MEDLINE | ID: mdl-38909275

ABSTRACT

Benzene sulfonamides are an important biological substituent for several activities. In this study, hybridization of benzene sulfonamide with piperazine derivatives were investigated for their antioxidant capacity and enzyme inhibitory potencies. Six molecules were synthesized and characterized. DPPH, ABTS, FRAP, CUPRAC, chelating and phosphomolybdemum assays were applied to evaluate antioxidant capacities. Results show that compounds have high antioxidant capacity and compound 4 has the best antioxidant activity among them. Compound 4 has higher antioxidant activity than references for FRAP (IC50: 0.08 mM), CUPRAC (IC50: 0.21 mM) and phosphomolybdenum (IC50: 0.22 mM) assays. Besides this, compound 4 has moderate DPPH and ABTS antioxidant capacity. Furthermore, enzyme inhibition activities of these molecules were investigated against AChE, BChE, tyrosinase, α-amylase and α-glucosidase enzymes. It was revealed that all compounds have good enzyme inhibitory potential except for α-amylase enzyme. The best inhibitory activities were observed for AChE with compound 5 the same value (IC50: 1.003 mM), for BChE with compounds 2 and 5 the same value (IC50: 1.008 mM), for tyrosinase compound 4 (IC50: 1.19 mM), and for α-glucosidase with compound 3 (IC50: 1.000 mM). Docking studies have been conducted with these molecules, and the results correlate well with the inhibitory assays.

SELECTION OF CITATIONS
SEARCH DETAIL