ABSTRACT
Background: Advanced cell therapies emerged as promising candidates for treatment of knee articular diseases, but robust evidence regarding their clinical applicability is still lacking. Objective: To assess the efficacy and safety of advanced mesenchymal stromal cells (MSC) therapy for knee osteoarthritis (OA) and chondral lesions. Methods: Systematic review of randomized controlled trials conducted in accordance with Cochrane Handbook and reported following PRISMA checklist. GRADE approach was used for assessing the evidence certainty. Results: 25 randomized controlled trials that enrolled 1048 participants were included. Meta-analyses data showed that, compared to viscosupplementation (VS), advanced MSC therapy resulted in a 1.91 lower pain VAS score (95 % CI -3.23 to -0.59; p < 0.00001) for the treatment of knee OA after 12 months. Compared to placebo, the difference was 0.99 lower pain VAS points (95 % CI -1.94 to -0.03; p = 0.76). According to the GRADE approach, the evidence was very uncertain for both comparisons. By excluding studies with high risk of bias, there was a similar size of effect (VAS MD -1.54, 95 % CI -2.09 to -0.98; p = 0.70) with improved (moderate) certainty of evidence, suggesting that MSC therapy probably reduces pain slightly better than VS. Regarding serious adverse events, there was no difference from advanced MSC therapy to placebo or to VS, with very uncertain evidence. Conclusion: Advanced MSC therapy resulted in lower pain compared to placebo or VS for the treatment of knee OA after 12 months, with no difference in adverse events. However, the evidence was considered uncertain. The Translational Potential of this Article: Currently, there is a lack of studies with good methodological structure aiming to evaluate the real clinical impact of advanced cell therapy for knee OA. The present study was well structured and conducted, with Risk of Bias, GRADE certainty assessment and sensitivity analysis. It explores the translational aspect of the benefits and safety of MSC compared with placebo and gold-standard therapy to give practitioners and researchers support to expand this therapy in their practice. PROSPERO registration number: CRD42020158173. Access at https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=158173.
ABSTRACT
The Zika virus (ZIKV) epidemic declared in Brazil between 2015 and 2016 was associated with an increased prevalence of severe congenital malformations, including microcephaly. The distribution of microcephaly cases was not uniform across the country, with a disproportionately higher incidence in the Northeast region (NE). Our previous work demonstrated that saxitoxin (STX), a toxin present in the drinking water reservoirs of the NE, exacerbated the damaging effects of ZIKV on the developing brain. We hypothesized that the impact of STX might vary among different neural cell types. While ZIKV infection caused severe damages on astrocytes and neural stem cells (NSCs), the addition of STX did not exacerbate these effects. We observed that neurons subjected to STX exposure were more prone to apoptosis and displayed higher ZIKV infection rate. These findings suggest that STX exacerbates the harmful effects of ZIKV on neurons, thereby providing a plausible explanation for the heightened severity of ZIKV-induced congenital malformations observed in Brazil's NE. This study highlights the importance of understanding the interactive effects of environmental toxins and infectious pathogens on neural development, with potential implications for public health policies.
Subject(s)
Astrocytes , Neural Stem Cells , Neurons , Saxitoxin , Zika Virus Infection , Zika Virus , Neural Stem Cells/virology , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Humans , Zika Virus/physiology , Astrocytes/virology , Astrocytes/drug effects , Astrocytes/metabolism , Neurons/virology , Neurons/drug effects , Neurons/metabolism , Zika Virus Infection/virology , Zika Virus Infection/pathology , Saxitoxin/toxicity , Apoptosis/drug effects , Microcephaly/virology , Cell Death/drug effects , Brazil , Cells, CulturedABSTRACT
STUDY DESIGN: Experimental study utilizing with a standardized model (MASCIS Impactor) of Spinal Cord Injury (SCI) in Balb C mouse model with implantation of mononuclear stem cells derived from the human umbilical cord and placenta blood in the early chronic phase of SCI. OBJECTIVES: The aim of this study was to evaluate the nerve regeneration and motor functional recovery in Balb C mice with surgically induced paraplegia in response to the use of mononuclear stem cells, in early chronic phase (> 2 weeks and < 6 months), because there is yet potential of neuronal and functional recovery as the neuronal scar is not still completely established. METHODS: Forty-eight mice were randomly assigned to 6 groups of 8 animals. Group 1 received the stem cells 3 weeks after the trauma, and Group 2 received them six weeks later. In Group 3, saline solution was injected at the site of the lesion 3 weeks after the trauma, and in Group 4, 6 weeks later. Group 5 underwent only spinal cord injury and Group 6 underwent laminectomy only. The scales used for motor assessment were BMS and MFS for 12 weeks. RESULTS: The intervention groups showed statistically significant motor improvement. In the histopathological analysis, the intervention groups had a lower degree of injury (p < 0.05). Regarding axonal budding, the intervention groups showed increasing in axonal budding in the caudal portion (p < 0.05). CONCLUSIONS: The use of stem cells in mice in the chronic phase after 3 and 6 weeks of SCI brings functional and histopathological benefits to them.
Subject(s)
Disease Models, Animal , Mice, Inbred BALB C , Nerve Regeneration , Placenta , Random Allocation , Recovery of Function , Spinal Cord Injuries , Animals , Spinal Cord Injuries/physiopathology , Female , Mice , Humans , Pregnancy , Time Factors , Nerve Regeneration/physiology , Paraplegia/physiopathology , Cord Blood Stem Cell Transplantation/methods , Motor Activity/physiology , Umbilical Cord/cytology , MaleABSTRACT
INTRODUCTION: Degloving soft tissue injuries (DSTIs) involve skin and tissue detachment from muscle or fascia. Surgical treatments exist, but they cannot prevent necrosis. OBJECTIVE: Our aim was to investigate the effects of hyperbaric oxygen therapy (HOT) and adipocyte stem cell (ASC) treatment on tissue viability in degloving injuries in a murine model. METHODS: 32 animals were submitted to a degloving flap surgery in the dorsal region and were allocated in four groups (n=8/group): Control: suture only; HOT: 2-hour daily therapy in 100% oxygen at 2.0 ATA for 7 days; ASC: injected with 1x106 stem cells; ASC+HOT: stem cells injection plus HOT therapy. We performed macroscopic measurements, blood flow, histology, and expression of inflammation genes. RESULTS: After 7 days, HOT, ASC, and ASC+HOT groups had significantly more viable tissue compared to Control (97%, 90%, 81% vs. 6%). Viable area ratios were higher in HOT and ASC than Control. Blood flow in the injury's distal region was higher in HOT, ASC, and ASC+HOT compared to Control. Vascular density was higher in HOT and ASC+HOT than Control. Inflammatory cells decreased by 40% in HOT, 50% in ASC+HOT, and 75% in ASC. Gene Cd68 expression was lower in HOT than Control. Il10 expression was lower in HOT but higher in ASC and ASC+HOT than Control. CONCLUSION: This study suggests that the HOT can benefit the degloving injury flap model in the early phase of wound healing, and the association of ASC with HOT could benefit the wound healing in a later phase. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which evidence-based medicine rankings are applicable. This excludes review articles, book reviews, and manuscripts that concern basic science, animal studies, cadaver studies, and experimental studies. For a full description of these evidence-based medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
ABSTRACT
Meningiomas (MGs), which arise from meningothelial cells of the dura mater, represent a significant proportion of primary tumours of the central nervous system (CNS). Despite advances in treatment, the management of malignant meningioma (MMG) remains challenging due to diagnostic, surgical, and resection limitations. Cancer stem cells (CSCs), a subpopulation within tumours capable of self-renewal and differentiation, are highlighted as key markers of tumour growth, metastasis, and treatment resistance. Identifying additional CSC-related markers enhances the precision of malignancy evaluations, enabling advancements in personalised medicine. The review discusses key CSC biomarkers that are associated with high levels of expression, aggressive tumour behaviour, and poor outcomes. Recent molecular research has identified CSC-related biomarkers, including Oct-4, Sox2, NANOG, and CD133, which help maintain cellular renewal, proliferation, and drug resistance in MGs. This study highlights new therapeutic strategies that could improve patient prognosis with more durable tumour regression. The use of combination therapies, such as hydroxyurea alongside diltiazem, suggests more efficient and effective MG management compared to monotherapy. Signalling pathways such as NOTCH and hedgehog also offer additional avenues for therapeutic development. CRISPR/Cas9 technology has also been employed to create meningioma models, uncovering pathways related to cell growth and proliferation. Since the efficacy of traditional therapies is limited in most cases due to resistance mechanisms in CSCs, further studies on the biology of CSCs are warranted to develop therapeutic interventions that are likely to be effective in MG. Consequently, improved diagnostic approaches may lead to personalised treatment plans tailored to the specific needs of each patient.
ABSTRACT
BACKGROUND: Apoptosis, a form of programmed cell death, is critical for the development and homeostasis of the immune system. Chimeric antigen receptor T (CAR-T) cell therapy, approved for hematologic cancers, retains several limitations and challenges associated with ex vivo manipulation, including CAR T-cell susceptibility to apoptosis. Therefore, strategies to improve T-cell survival and persistence are required. Mesenchymal stem/stromal cells (MSCs) exhibit immunoregulatory and tissue-restoring potential. We have previously shown that the transfer of umbilical cord MSC (UC-MSC)-derived mitochondrial (MitoT) prompts the genetic reprogramming of CD3+ T cells towards a Treg cell lineage. The potency of T cells plays an important role in effective immunotherapy, underscoring the need for improving their metabolic fitness. In the present work, we evaluate the effect of MitoT on apoptotis of native T lymphocytes and engineered CAR-T cells. METHODS: We used a cell-free approach using artificial MitoT (Mitoception) of UC-MSC derived MT to peripheral blood mononuclear cells (PBMCs) followed by RNA-seq analysis of CD3+ MitoTpos and MitoTneg sorted cells. Target cell apoptosis was induced with Staurosporine (STS), and cell viability was evaluated with Annexin V/7AAD and TUNEL assays. Changes in apoptotic regulators were assessed by flow cytometry, western blot, and qRT-PCR. The effect of MitoT on 19BBz CAR T-cell apoptosis in response to electroporation with a non-viral transposon-based vector was assessed with Annexin V/7AAD. RESULTS: Gene expression related to apoptosis, cell death and/or responses to different stimuli was modified in CD3+ T cells after Mitoception. CD3+MitoTpos cells were resistant to STS-induced apoptosis compared to MitoTneg cells, showing a decreased percentage in apoptotic T cells as well as in TUNEL+ cells. Additionally, MitoT prevented the STS-induced collapse of the mitochondrial membrane potential (MMP) levels, decreased caspase-3 cleavage, increased BCL2 transcript levels and BCL-2-related BARD1 expression in FACS-sorted CD3+ T cells. Furthermore, UC-MSC-derived MitoT reduced both early and late apoptosis in CAR-T cells following electroporation, and exhibited an increasing trend in cytotoxic activity levels. CONCLUSIONS: Artificial MitoT prevents STS-induced apoptosis of human CD3+ T cells by interfering with the caspase pathway. Furthermore, we observed that MitoT confers protection to apoptosis induced by electroporation in MitoTpos CAR T-engineered cells, potentially improving their metabolic fitness and resistance to environmental stress. These results widen the physiological perspective of organelle-based therapies in immune conditions while offering potential avenues to enhance CAR-T treatment outcomes where their viability is compromised.
Subject(s)
Apoptosis , Cell Survival , Mesenchymal Stem Cells , Mitochondria , T-Lymphocytes , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mitochondria/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/cytology , Receptors, Chimeric Antigen/metabolism , Cell Engineering , Umbilical Cord/cytologyABSTRACT
Graphene nanoplatelets (UGZ-1004) are emerging as a promising biomaterial in regenerative medicine. This study comprehensively evaluates UGZ-1004, focusing on its physical properties, cytotoxicity, intracellular interactions, and, notably, its effects on mesenchymal stem cells (MSCs). UGZ-1004 was characterized by lateral dimensions and layer counts consistent with ISO standards and demonstrated a high carbon purity of 0.08%. Cytotoxicity assessments revealed that UGZ-1004 is non-toxic to various cell lines, including 3T3 fibroblasts, VERO kidney epithelial cells, BV-2 microglia, and MSCs, in accordance with ISO 10993-5:2020/2023 guidelines. The study focused on MSCs and revealed that UGZ-1004 supports their gene expression alterations related to self-renewal and proliferation. MSCs exposed to UGZ-1004 maintained their characteristic surface markers. Importantly, UGZ-1004 promoted significant upregulation of genes crucial for cell cycle regulation and DNA repair, such as CDK1, CDK2, and MDM2. This gene expression profile suggests that UGZ-1004 can enhance MSC self-renewal capabilities, ensuring robust cellular function and longevity. Moreover, UGZ-1004 exposure led to the downregulation of genes associated with tumor development, including CCND1 and TFDP1, mitigating potential tumorigenic risks. These findings underscore the potential of UGZ-1004 to not only bolster MSC proliferation but also enhance their self-renewal processes, which are critical for effective regenerative therapies. The study highlights the need for continued research into the long-term impacts of graphene nanoplatelets and their application in MSC-based regenerative medicine.
Subject(s)
Cell Proliferation , Graphite , Mesenchymal Stem Cells , Cell Proliferation/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Animals , Graphite/chemistry , Graphite/pharmacology , Mice , Chlorocebus aethiops , Cell Self Renewal/drug effects , Cell Self Renewal/genetics , Vero Cells , Gene Expression Regulation/drug effects , Nanoparticles/chemistry , Cell Line , Nanostructures/chemistryABSTRACT
Mesenchymal stem/stromal cells (MSCs) have emerged as a promising tool in the field of regenerative medicine due to their unique therapeutic properties as they can differentiate into multiple cell types and exert paracrine effects. However, despite encouraging results obtained in preclinical studies, clinical trials have not achieved the same levels of efficacy. To improve the therapeutic properties of MSCs, several strategies have been explored. Therefore, in this review, the therapeutic properties of MSCs will be analyzed, and an update and overview of the most prominent approaches used to enhance their therapeutic capabilities will be provided. These approaches include using drugs, molecules, strategies based on biomaterials, and modification parameters in culture. The strategy described shows several common factors among those affected by these strategies that lead to an enhancement of the MSCs therapeutic properties such as the activation of the PI3K/AKT pathway and the increased expression of Heat Shock Proteins and Hypoxia-Inducible Factor. The combined effect of these elements shift MSCs towards a glycolytic state, suggesting this shift is essential for their enhancement.
Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cell Transplantation/methods , Animals , Phosphatidylinositol 3-Kinases/metabolism , Cell Differentiation , Signal Transduction , Proto-Oncogene Proteins c-akt/metabolism , Regenerative Medicine/methodsABSTRACT
INTRODUCTION AND OBJECTIVES: This meta-analysis aims to evaluate the efficacy of stem cell therapy (SCT) for liver failure. MATERIALS AND METHODS: The study adhered to the recommended guidelines of the PRISMA statement. Eligible studies published prior to May 13, 2023, were comprehensively searched in databases including PubMed, Web of Science, and Embase. Quality assessment was conducted using the Cochrane risk-of-bias tool, and the standard mean differences were calculated for the clinical parameters. The hazard ratios were determined by extracting individual patient data from the Kaplan-Meier curve. RESULTS: A total of 2,937 articles were retrieved, and eight studies were included in the final analysis. Most of the studies focused on HBV-related liver failure and were randomized controlled trials. All studies utilized mesenchymal stem cells (MSCs), with the majority (62.5%) being allogeneic. The analysis revealed that combining stem cell therapy with standard medical treatment or plasma exchange significantly enhanced patient survival and reduced MELD scores. Specifically, allogeneic stem cells showed superior efficacy in improving survival outcomes compared to autologous stem cells. Furthermore, deep vessel injection plus a single injection demonstrated better effectiveness than peripheral vessel injection plus multiple injections in reducing MELD scores. CONCLUSIONS: This comprehensive analysis underscores the potential of MSC therapy in significantly improving survival and clinical outcomes in patients with liver failure, highlighting the superior benefits of allogeneic MSCs and deep vessel plus single injection administration.
ABSTRACT
Cortical organoids derived from human induced pluripotent stem cells (hiPSCs) represent a powerful in vitro experimental system to investigate human brain development and disease, often inaccessible to direct experimentation. However, despite steady progress in organoid technology, several limitations remain, including high cost and variability, use of hiPSCs derived from tissues harvested invasively, unexplored three-dimensional (3D) structural features and neuronal connectivity. Here, using a cost-effective and reproducible protocol as well as conventional two-dimensional (2D) immunostaining, we show that cortical organoids generated from hiPSCs obtained by reprogramming stem cells from human exfoliated deciduous teeth (SHED) recapitulate key aspects of human corticogenesis, such as polarized organization of neural progenitor zones with the presence of outer radial glial stem cells, and differentiation of superficial- and deep-layer cortical neurons and glial cells. We also show that 3D bioprinting and magnetic resonance imaging of intact cortical organoids are alternative and complementary approaches to unravel critical features of the 3D architecture of organoids. Finally, extracellular electrical recordings in whole organoids showed functional neuronal networks. Together, our findings suggest that SHED-derived cortical organoids constitute an attractive model of human neurodevelopment, and support the notion that a combination of 2D and 3D techniques to analyze organoid structure and function may help improve this promising technology.
ABSTRACT
BACKGROUND: Spermatogonial stem cells (SSCs) are essential for the maintenance and initiation of male spermatogenesis. Despite the advances in understanding SSC biology in mouse models, the mechanisms underlying human SSC development remain elusive. RESULTS: Here, we analyzed the signaling pathways involved in SSC regulation by testicular somatic cells using single-cell sequencing data (GEO datasets: GSE149512 and GSE112013) and identified that Leydig cells communicate with SSCs through pleiotrophin (PTN) and its receptor syndecan-2 (SDC2). Immunofluorescence, STRING prediction, and protein immunoprecipitation assays confirmed the interaction between PTN and SDC2 in spermatogonia, but their co-localization was observed only in approximately 50% of the cells. The knockdown of SDC2 in human SSC lines impaired cell proliferation, DNA synthesis, and the expression of PLZF, a key marker for SSC self-renewal. Transcriptome analysis revealed that SDC2 knockdown downregulated the expression of GFRA1, a crucial factor for SSC proliferation and self-renewal, and inhibited the HIF-1 signaling pathway. Exogenous PTN rescued the proliferation and GFRA1 expression in SDC2 knockdown SSC lines. In addition, we found downregulation of PTN and SDC2 as well as altered localization in non-obstructive azoospermia (NOA) patients, suggesting that downregulation of PTN and SDC2 may be associated with impaired spermatogenesis. CONCLUSIONS: Our results uncover a novel mechanism of human SSC regulation by the testicular microenvironment and suggest a potential therapeutic target for male infertility.
Subject(s)
Carrier Proteins , Cell Proliferation , Cytokines , Glial Cell Line-Derived Neurotrophic Factor Receptors , Leydig Cells , Syndecan-2 , Male , Humans , Cell Proliferation/physiology , Leydig Cells/metabolism , Cytokines/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Syndecan-2/metabolism , Syndecan-2/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Cell Survival/physiology , Spermatogonia/metabolism , Signal Transduction/physiology , Adult Germline Stem Cells/metabolism , Adult Germline Stem Cells/physiologyABSTRACT
BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressive motoneuron degenerative disorder. There are still no drugs capable of slowing disease evolution or improving life quality of ALS patients. Thus, autologous stem cell therapy has emerged as an alternative treatment regime to be investigated in clinical ALS. METHOD: Using Proteomics and Protein-Protein Interaction Network analyses combined with bioinformatics, the possible cellular mechanisms and molecular targets related to mesenchymal stem cells (MSCs, 1 × 106 cells/kg, intrathecally in the lumbar region of the spine) were investigated in cerebrospinal fluid (CSF) of ALS patients who received intrathecal infusions of autologous bone marrow-derived MSCs thirty days after cell therapy. Data are available via ProteomeXchange with identifier PXD053129. RESULTS: Proteomics revealed 220 deregulated proteins in CSF of ALS subjects treated with MSCs compared to CSF collected from the same patients prior to MSCs infusion. Bioinformatics enriched analyses highlighted events of Extracellular matrix and Cell adhesion molecules as well as related key targets APOA1, APOE, APP, C4A, C5, FGA, FGB, FGG and PLG in the CSF of cell treated ALS subjects. CONCLUSIONS: Extracellular matrix and cell adhesion molecules as well as their related highlighted components have emerged as key targets of autologous MSCs in CSF of ALS patients. TRIAL REGISTRATION: Clinicaltrial.gov identifier NCT0291768. Registered 28 September 2016.
Subject(s)
Amyotrophic Lateral Sclerosis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Proteomics , Transplantation, Autologous , Humans , Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Amyotrophic Lateral Sclerosis/therapy , Amyotrophic Lateral Sclerosis/metabolism , Mesenchymal Stem Cells/metabolism , Proteomics/methods , Mesenchymal Stem Cell Transplantation/methods , Male , Female , Middle Aged , Apolipoproteins E/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/cerebrospinal fluid , Aged , Apolipoprotein A-I/cerebrospinal fluid , Apolipoprotein A-I/metabolism , Adult , Bone Marrow Cells/metabolism , Protein Interaction MapsABSTRACT
It is well known that oocytes are produced during fetal development and that the total number of primary follicles is determined at birth. In humans, there is a constant loss of follicles after birth until about two years of age. The number of follicles is preserved until the resumption of meiosis at puberty and there is no renewal of the oocytes; this dogma was maintained in the last century because there were no suitable techniques to detect and obtain stem cells. However, following stem cell markers, several scientists have detected them in developing and adult human ovarian tissues, especially in the ovarian surface epithelial cells. Furthermore, many authors using different methodological strategies have indicated this possibility. This evidence has led many scientists to explore this hypothesis; there is no definitive consensus to accept this idea. Interestingly, oocyte retrieval from mature ovaries and other tissue sources of stem cells has contributed to the development of strategies for the retrieval of mature oocytes, useful for assisted reproductive technology. Here, we review the evidence and controversies on oocyte neooogenesis in adult women; in addition, we agree with the idea that this process may occur in adulthood and that its alteration may be related to various pathologies in women, such as polycystic ovary syndrome, premature ovarian insufficiency, diminished ovarian reserve and several infertility and genetic disorders.
ABSTRACT
Diabetes mellitus-related morbidity and mortality are primarily caused by long-term complications such as retinopathy, nephropathy, cardiomyopathy, and neuropathy. Diabetic neuropathy (DN) involves the progressive degeneration of axons and nerve fibers due to chronic exposure to hyperglycemia. This metabolic disturbance leads to excessive activation of the glycolytic pathway, inducing oxidative stress and mitochondrial dysfunction, ultimately resulting in nerve damage. There is no specific treatment for painful DN, and new approaches should aim not only to relieve pain but also to prevent oxidative stress and reduce inflammation. Given that existing therapies for painful DN are not effective for diabetic patients, mesenchymal stromal cells (MSCs)-based therapy shows promise for providing immunomodulatory and paracrine regulatory functions. MSCs from various sources can improve neuronal dysfunction associated with DN. Transplantation of MSCs has led to a reduction in hyperalgesia and allodynia, along with the recovery of nerve function in diabetic rats. While the pathogenesis of diabetic neuropathic pain is complex, clinical trials have demonstrated the importance of MSCs in modulating the immune response in diabetic patients. MSCs reduce the levels of inflammatory factors and increase anti-inflammatory cytokines, thereby interfering with the progression of DM. Further investigation is necessary to ensure the safety and efficacy of MSCs in preventing or treating neuropathic pain in diabetic patients.
ABSTRACT
Chronic respiratory diseases often necessitate lung transplantation due to irreversible damage. Organ engineering offers hope through stem cell-based organ generation. However, the crucial sterilization step in scaffold preparation poses challenges. This study conducted a systematic review of studies that analysed the extracellular matrix (ECM) conditions of decellularised lungs subjected to different sterilisation processes. A search was performed for articles published in the PubMed, Web of Sciences, Scopus, and SciELO databases according to the PRISMA guidelines. Overall, five articles that presented positive results regarding the effectiveness of the sterilisation process were selected, some of which identified functional damage in the ECM. Was possible concluded that regardless of the type of agent used, physical or chemical, all of them demonstrated that sterilisation somehow harms the ECM. An ideal protocol has not been found to be fully effective in the sterilisation of pulmonary scaffolds for use in tissue and/or organ engineering.
Subject(s)
Extracellular Matrix , Lung , Sterilization , Tissue Scaffolds , Sterilization/methods , Humans , Tissue Engineering/methods , AnimalsABSTRACT
Revealing unknown cues that regulate oligodendrocyte progenitor cell (OPC) function in remyelination is important to optimise the development of regenerative therapies for multiple sclerosis (MS). Platelets are present in chronic non-remyelinated lesions of MS and an increase in circulating platelets has been described in experimental autoimmune encephalomyelitis (EAE) mice, an animal model for MS. However, the contribution of platelets to remyelination remains unexplored. Here we show platelet aggregation in proximity to OPCs in areas of experimental demyelination. Partial depletion of circulating platelets impaired OPC differentiation and remyelination, without altering blood-brain barrier stability and neuroinflammation. Transient exposure to platelets enhanced OPC differentiation in vitro, whereas sustained exposure suppressed this effect. In a mouse model of thrombocytosis (Calr+/-), there was a sustained increase in platelet aggregation together with a reduction of newly-generated oligodendrocytes following toxin-induced demyelination. These findings reveal a complex bimodal contribution of platelet to remyelination and provide insights into remyelination failure in MS.
Subject(s)
Blood Platelets , Cell Differentiation , Oligodendrocyte Precursor Cells , Remyelination , Animals , Oligodendrocyte Precursor Cells/physiology , Remyelination/physiology , Mice , Blood Platelets/physiology , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice, Inbred C57BL , Multiple Sclerosis/pathology , Disease Models, Animal , Oligodendroglia/physiology , FemaleABSTRACT
Mesenchymal stem cells can differentiate into specific cell lineages in the tissue repair process. Photobiomodulation with laser and LED is used to treat several comorbidities, can interfere in cell proliferation and viability, in addition to promoting responses related to the physical parameters adopted. Evaluate and compare the effects of laser and LED on mesenchymal cells, with different energy doses and different wavelengths, in addition to viability and wound closure. Mesenchymal stem cells derived from human adipocytes were irradiated with laser (energy of 0.5 J, 2 J and 4 J, wavelength of 660 nm and 830 nm), and LED (energy of 0.5 J, 2 J and 4 J, where lengths are 630 nm and 850 nm). The wound closure process was evaluated through monitoring the reduction of the lesion area in vitro. Viability was determined by analysis with Hoechst and Propidium Iodide markers, and quantification of viable and non-viable cells respectively Data distributions were analyzed using the Shapiro-Wilk test. Homogeneity was analyzed using Levene's test. The comparison between the parameters used was analyzed using the Two-way ANOVA test. The T test was applied to data relating to viability and lesion area. For LED photobiomodulation, only the 630 nm wavelength obtained a significant result in 24, 48 and 72 h (p = 0,027; p = 0,024; p = 0,009). The results related to the in vitro wound closure test indicate that both photobiomodulation with laser and LED demonstrated significant results considering the time it takes to approach the edges (p < 0.05). Considering the in vitro experimental conditions of the study, it is possible to conclude that the physical parameters of photobiomodulation, such as energy and wavelength, with laser or LED in mesenchymal stem cells, can play a potential role in cell viability and wound closure.
Subject(s)
Cell Survival , Low-Level Light Therapy , Mesenchymal Stem Cells , Wound Healing , Mesenchymal Stem Cells/radiation effects , Humans , Cell Survival/radiation effects , Low-Level Light Therapy/methods , Wound Healing/radiation effects , Cells, Cultured , Lasers, Semiconductor/therapeutic use , Cell Proliferation/radiation effects , Adipocytes/radiation effects , Adipocytes/cytologyABSTRACT
Mesenchymal stem-cell-derived extracellular vesicles (MSC-EVs) have been increasingly investigated for cancer therapy and drug delivery, and they offer an advanced cell-free therapeutic option. However, their overall effects and efficacy depend on various factors, including the MSC source and cargo content. In this study, we isolated EVs from the conditioned medium of human immature dental pulp stem cells (hIDPSC-EVs) and investigated their effects on two papillary thyroid cancer (PTC) cell lines (BCPAP and TPC1). We observed efficient uptake of hIDPSC-EVs by both PTC cell lines, with a notable impact on gene regulation, particularly in the Wnt signaling pathway in BCPAP cells. However, no significant effects on cell proliferation were observed. Conversely, hIDPSC-EVs significantly reduced the invasive capacity of both PTC cell lines after 120 h of treatment. These in vitro findings suggest the therapeutic potential of hIDPSC-EVs in cancer management and emphasize the need for further research to develop novel and effective treatment strategies. Furthermore, the successful internalization of hIDPSC-EVs by PTC cell lines underscores their potential use as nanocarriers for anti-cancer agents.
Subject(s)
Cell Proliferation , Dental Pulp , Extracellular Vesicles , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Dental Pulp/cytology , Extracellular Vesicles/metabolism , Thyroid Cancer, Papillary/therapy , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/metabolism , Thyroid Neoplasms/therapy , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology , Cell Line, Tumor , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Wnt Signaling Pathway , Culture Media, Conditioned/pharmacologyABSTRACT
Arthritis, defined as a chronic inflammation often accompanied by swelling of one or more joints, encompasses more than 100 conditions that affect the joints, tissues around them as well as other connective tissues. This condition causes severe discomfort compromising the quality of life drastically, and thereby inflicts severe financial and social impact on the people affected. The incidence rate of arthritis is increasing all around the globe including the United States every year. In general, osteoarthritis (OA) affects more people in comparison to rheumatoid arthritis (RA). In the USA itself, more than 14 million people are affected by OA in comparison to 1.4 million people suffering from RA. In both conditions, elevated levels of proinflammatory cytokines have been recorded, this incidence generally precedes the cartilage degradation observed in the patients. The use of mesenchymal stem cells (MSCs) has proven to be a safe and efficient therapeutic option for treating many inflammation-rooted pathological conditions. Evidence suggests that MSCs down-regulate the effects of proinflammatory cytokines including tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-1B, IL-2, and IL-17, and help restore the functions of immune cells. In addition, these cells promote the polarization of M2 phenotype macrophages, thus contributing to the suppression of the inflammatory process and consequentially to cartilage regeneration. Preclinical and clinical trials have proven the safety and effectiveness of this therapy, supported by the fact that these do not provoke any host immune response, and their influence on the cytokine profiles. An attempt to survey the results of stem cell therapy for treating arthritis has been carried out in this review.
ABSTRACT
BACKGROUND: The preclinical efficacy of mesenchymal stem cell (MSC) therapy after intravenous infusion has been promising, but clinical studies have yielded only modest results. Although most preclinical studies have focused solely on the ischemic lung, it is crucial to evaluate both lungs after ischemia-reperfusion injury, considering the various mechanisms involved. This study aimed to bridge this gap by assessing the acute effects of bone marrow MSC(BM) infusion before ischemic insult and evaluating both ischemic and non-ischemic lungs after reperfusion. METHODS: Eighteen male Wistar rats (403 ± 23 g) were anesthetized and mechanically ventilated using a protective strategy. After baseline data collection, the animals were randomized to 3 groups (n = 6/group): (1) SHAM; (2) ischemia-reperfusion (IR), and (3) intravenous MSC(BM) infusion followed by IR. Ischemia was induced by complete clamping of the left hilum, followed by 1 h of reperfusion after clamp removal. At the end of the experiment, the right and left lungs (non-ischemic and ischemic, respectively) were collected for immunohistochemistry and molecular biology analysis. RESULTS: MSC(BM)s reduced endothelial cell damage and apoptosis markers and improved markers associated with endothelial cell integrity in both lungs. In addition, gene expression of catalase and nuclear factor erythroid 2-related factor 2 increased after MSC(BM) therapy. In the ischemic lung, MSC(BM) therapy mitigated endothelial cell damage and apoptosis and increased gene expression associated with endothelial cell integrity. Conversely, in the non-ischemic lung, apoptosis gene expression increased in the IR group but not after MSC(BM) therapy. CONCLUSION: This study demonstrates distinct effects of MSC(BM) therapy on ischemic and non-ischemic lungs after ischemia-reperfusion injury. The findings underscore the importance of evaluating both lung types in ischemia-reperfusion studies, offering insights into the therapeutic potential of MSC(BM) therapy in the context of lung injury.