Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.542
Filter
1.
Pathol Res Pract ; 263: 155620, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39357179

ABSTRACT

Insulin-like growth factor 1/Insulin-like growth factor 1-receptor (IGF-1/IGF-1R) pathway is highly breast cancer subtype context-dependent. Triple-negative breast cancer (TNBC) is an aggressive, highly metastatic cancer showing early recurrence and poor prognosis. High expression of IGF-1 and its receptor IGF-1R, their interaction, autophosphorylation, and activation of intracellular signaling cascades have been significantly associated with TNBC pathophysiology. In the last five to seven years, marvelous work has been done to explore the role of IGF-1/IGF-1R axis in TNBC. In the present review, starting from the general introduction to IGF-1/IGF-1R pathway an up-to-date discussion was focused on its role in TNBC pathophysiology. Further we discussed the up/down stream molecular events of IGF-1/IGF-1R axis, clinical relevance of IGF-1 and IGF-1R levels in TNBC patients, anti-TNBC therapy and possible way-out for IGF-1/IGF-1R axis mediate therapy resistance in TNBC. Combination therapy strategy has been researched to overcome direct IGF-1/IGF-1R pathway inhibition mediated therapy resistance and produced promising results in the management of TNBC. The understanding of up/downstream of the IGF-1/IGF-1R axis provide immense focus on the pathway as a therapeutic target. It is expected within the next decade to determine its potentiality, or lack thereof, for TNBC treatment.

2.
J Cell Physiol ; : e31451, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358905

ABSTRACT

Cancer stem cells (CSCs) are considered the major cause of the occurrence, progression, chemoresistance/radioresistance, recurrence, and metastasis of cancer. Increased interstitial fluid pressure (IFP) is a key feature of solid tumors. Our previous study showed that the distribution of liver cancer stem cells (LCSCs) correlated with the mechanical heterogeneity within liver cancer tissues. However, the regulation of liver cancer's mechanical microenvironment on the LCSC stemness is not fully understood. Here, we employed a cellular pressure-loading device to investigate the effects of normal IFP (5 mmHg), as well as increased IFP (40 and 200 mmHg) on the stemness of LCSCs. Compared to the control LCSCs (exposure to 5 mmHg pressure loading), the LCSCs exposed to 40 mmHg pressure loading exhibited significantly upregulated expression of CSC markers (CD44, EpCAM, Nanog), enhanced sphere and colony formation capacities, and tumorigenic potential, whereas continuously increased pressure to 200 mmHg suppressed the LCSC characteristics. Mechanistically, pressure loading regulated Yes-associated protein (YAP) activity and Bcl-2 modifying factor (BMF) expression. YAP transcriptionally regulated BMF expression to affect the stemness of LCSCs. Knockdown of YAP and overexpression of BMF attenuated pressure-mediated stemness and tumorgenicity, while YAP-deficient and BMF-deletion recused pressure-dependent stemness on LCSCs, suggesting the involvement of YAP/BMF signaling axis in this process. Together, our findings provide a potential target for overcoming the stemness of CSCs and elucidate the significance of increased IFP in cancer progression.

3.
J Gene Med ; 26(10): e3741, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39357835

ABSTRACT

This study explores the role of the transcription factor FOXM1 in the initiation and progression of oesophageal squamous cell carcinoma (ESCC). Our findings reveal that FOXM1 is highly expressed in ESCC and correlates with the prognosis of the disease. The relationship between FOXM1 and asparagine synthetase (ASNS) is investigated, and the study demonstrates that FOXM1 activates ASNS, impacting the tumour stemness of ESCC. In this study, we reveal the association between FOXM1 and ESCC development, as well as FOXM1's promotion of migration and proliferation in ESCC cells. The study also highlights FOXM1's regulation of ASNS transcription and the functional role of ASNS in ESCC metastasis and growth. Furthermore, the study explores the impact of FOXM1 and ASNS on ESCC stemness and their potential implications for chemotherapy resistance.


Subject(s)
Aspartate-Ammonia Ligase , Cell Movement , Cell Proliferation , Disease Progression , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Forkhead Box Protein M1 , Gene Expression Regulation, Neoplastic , Humans , Forkhead Box Protein M1/metabolism , Forkhead Box Protein M1/genetics , Aspartate-Ammonia Ligase/genetics , Aspartate-Ammonia Ligase/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cell Movement/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Prognosis , Animals , Mice , Male , Drug Resistance, Neoplasm/genetics , Female , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor
4.
Article in English | MEDLINE | ID: mdl-39363904

ABSTRACT

Most human cancers are heterogeneous consisting of cancer cells at different epigenetic and transcriptional states and with distinct phenotypes, functions, and drug sensitivities. This inherent cancer cell heterogeneity contributes to tumor resistance to clinical treatment, especially the molecularly targeted therapies such as tyrosine kinase inhibitors (TKIs) and androgen receptor signaling inhibitors (ARSIs). Therapeutic interventions, in turn, induce lineage plasticity (also called lineage infidelity) in cancer cells that also drives therapy resistance. In this Perspective, we focus our discussions on cancer cell lineage plasticity manifested as treatment-induced switching of epithelial cancer cells to basal/stem-like, mesenchymal, and neural lineages. We employ prostate cancer (PCa) as the prime example to highlight ARSI-induced lineage plasticity during and towards development of castration-resistant PCa (CRPC). We further discuss how the tumor microenvironment (TME) influences therapy-induced lineage plasticity. Finally, we offer an updated summary on the regulators and mechanisms driving cancer cell lineage infidelity, which should be therapeutically targeted to extend the therapeutic window and improve patients' survival.

5.
Biochem Biophys Res Commun ; 734: 150776, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39368367

ABSTRACT

The regulation of intracellular reactive oxygen species (ROS) levels is important for maintaining the self-renewal ability of neural stem/progenitor cells (NSCs). In this study, we demonstrate that 53BP1, a DNA damage response factor known to facilitate the repair of DNA double-strand breaks, supports the maintenance of NSC stemness. ReNcell VM human NSCs with depleted 53BP1 exhibited reduced self-renewal ability compared with control NSCs, as revealed by a decrease in neurosphere size and an increase in differentiation into neural or glial cells within an NSC culture. Furthermore, 53BP1 depletion elevated cellular ROS levels, accompanied by mitochondrial abnormalities. The reduced self-renewal ability and elevated ROS levels in 53BP1-deficient NSCs were restored with the treatment of a radical scavenger, N-acetyl-l-cysteine. In addition, we investigated the functional relationship in the NSC self-renewal ability between 53BP1 and ataxia-telangiectasia mutated (ATM) or forkhead box O3a (FOXO3a), factors required for mitochondrial homeostasis, and the maintenance of NSC stemness. We found that ATM inhibition or FOXO3a deficiency, in addition to 53BP1 deficiency, did not induce further NSC stemness impairment. Collectively, our findings show that 53BP1, by cooperatively functioning with ATM and FOXO3a, supports the maintenance of NSC stemness by modulating mitochondrial homeostasis.

6.
Cell Mol Life Sci ; 81(1): 420, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39367881

ABSTRACT

Certain immune cells, including neutrophils, macrophages, dendritic cells, B cells, Breg cells, CD4+ T cells, CD8+ T cells, and Treg cells, establish enduring residency within the bone marrow. Their distinctive interactions with hematopoiesis and the bone marrow microenvironment are becoming increasingly recognized alongside their multifaceted immune functions. These cells play a dual role in shaping hematopoiesis. They directly influence the quiescence, self-renewal, and multi-lineage differentiation of hematopoietic stem and progenitor cells through either direct cell-to-cell interactions or the secretion of various factors known for their immunological functions. Additionally, they actively engage with the cellular constituents of the bone marrow niche, particularly mesenchymal stem cells, endothelial cells, osteoblasts, and osteoclasts, to promote their survival and contribute to tissue repair, thereby fostering a supportive environment for hematopoietic stem and progenitor cells. Importantly, these bone marrow immune cells function synergistically, both locally and functionally, rather than in isolation. In summary, immune cells residing in the bone marrow are pivotal components of a sophisticated network of regulating hematopoiesis.


Subject(s)
Hematopoietic Stem Cells , Humans , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/metabolism , Animals , Bone Marrow/immunology , Bone Marrow/metabolism , Hematopoiesis , Cell Differentiation , Bone Marrow Cells/cytology , Bone Marrow Cells/immunology , Adult Stem Cells/cytology , Adult Stem Cells/immunology , Adult Stem Cells/metabolism , Macrophages/immunology , Macrophages/cytology , Macrophages/metabolism , Stem Cell Niche/immunology
7.
Cell Mol Life Sci ; 81(1): 417, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39367978

ABSTRACT

The existence of cancer stem cells (CSCs) in pancreatic ductal adenocarcinoma (PDAC) is considered to be the key factor for metastasis and chemoresistance. Thus, novel therapeutic strategies for eradicating CSCs are urgently needed. Here we aimed to explore the role of KLF15 in stemness and the feasibility of using KLF15 to inhibit CSCs and improve chemotherapy sensitivity in PDAC. In this study, we report that KLF15 is negatively associated with poor survival and advanced pathological staging of PDAC. Moreover, tumorous KLF15 suppresses the stemness of PDAC by promoting the degradation of Nanog, and KLF15 directly interacts with Nanog, inhibiting interaction between Nanog with USP21. We also demonstrate that the KLF15/Nanog complex inhibit the stemness in vivo and in PDX cells. Tazemetostat suppresses stemness and sensitizes PDAC cells to gemcitabine by promoting KLF15 expression in PDAC. In summary, the findings of our study confirm the value of KLF15 level in diagnosis and prognosis of PDAC, it is the first time to explore the inhibition role of KLF15 in stemness of PDAC and the regulation mechanism of Nanog, contributing to provide a new therapeutic strategy that using Tazemetostat sensitizes PDAC cells to gemcitabine by promoting KLF15 expression for PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Kruppel-Like Transcription Factors , Nanog Homeobox Protein , Neoplastic Stem Cells , Pancreatic Neoplasms , Ubiquitin Thiolesterase , Humans , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/drug therapy , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/drug effects , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Animals , Mice , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Cell Line, Tumor , Female , Male , Gene Expression Regulation, Neoplastic , Mice, Nude , Gemcitabine , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Prognosis
8.
Expert Rev Mol Med ; 26: e23, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39375840

ABSTRACT

Complex tumour ecosystem comprising tumour cells and its associated tumour microenvironment (TME) constantly influence the tumoural behaviour and ultimately impact therapy failure, disease progression, recurrence and poor overall survival of patients. Crosstalk between tumour cells and TME amplifies the complexity by creating metabolic changes such as hypoxic environment and nutrient fluctuations. These changes in TME initiate stem cell-like programmes in cancer cells, contribute to tumoural heterogeneity and increase tumour robustness. Recent studies demonstrate the multifaceted role of autophagy in promoting fibroblast production, stemness, cancer cell survival during longer periods of dormancy, eventual growth of metastatic disease and disease resistance. Recent ongoing studies examine autophagy/mitophagy as a powerful survival strategy in response to environmental stress including nutrient deprivation, hypoxia and environmental stress in TME. It prevents irreversible senescence, promotes dormant stem-like state, induces epithelial-mesenchymal transition and increases migratory and invasive potential of tumour cells. The present review discusses various theories and mechanisms behind the autophagy-dependent induction of cancer stem cell (CSC) phenotype. Given the role of autophagic functions in CSC aggressiveness and therapeutic resistance, various mechanisms and studies based on suppressing cellular plasticity by blocking autophagy as a powerful therapeutic strategy to kill tumour cells are discussed.


Subject(s)
Autophagy , Drug Resistance, Neoplasm , Neoplasms , Neoplastic Stem Cells , Tumor Microenvironment , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/therapy , Animals , Epithelial-Mesenchymal Transition
9.
Cell Oncol (Dordr) ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373858

ABSTRACT

PURPOSE: Taxol is the first-line chemo-drug for advanced non-small cell lung cancer (NSCLC), but it frequently causes acquired resistance, which leads to the failure of treatment. Therefore, it is critical to screen and characterize the mechanism of the taxol-resistance reversal agent that could re-sensitize the resistant cancer cells to chemo-drug. METHOD: The cell viability, sphere-forming and xenografts assay were used to evaluate the ability of ASIV to reverse taxol-resistance. Immunohistochemistry, cytokine application, small-interfering RNA, small molecule inhibitors, and RNA-seq approaches were applied to characterize the molecular mechanism of inhibition of epiregulin (EREG) and downstream signaling by ASIV to reverse taxol-resistance. RESULTS: ASIV reversed taxol resistance through suppression of the stemness-associated genes of spheres in NSCLC. The mechanism exploration revealed that ASIV promoted the K48-linked polyubiquitination of EREG along with degradation. Moreover, EREG could be triggered by chemo-drug treatment. Consequently, EREG bound to the ErbB receptor and activated the ERK signal to regulate the expression of the stemness-associated genes. Inhibition of EREG/ErbB/ERK could reverse the taxol-resistance by inhibiting the stemness-associated genes. Finally, it was observed that TGFß and Hedgehog signaling were downstream of EREG/ErbB/ERK, which could be targeted using inhibitors to reverse the taxol resistance of NSCLC. CONCLUSIONS: These findings revealed that inhibition of EREG by ASIV reversed taxol-resistance through suppression of the stemness of NSCLC via EREG/ErbB/ERK-TGFß, Hedgehog axis.

10.
Discov Oncol ; 15(1): 474, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39331193

ABSTRACT

BACKGROUND: Gastrointestinal mesenchymal stromal tumors (GISTs) are a group of intramural tumors that exhibit a wide range of morphologies. Dysfunction or loss of interstitial cells of Cajal (ICCs) is correlated with the disorders of gastrointestinal motility. At present, the characterization and molecular mechanisms underlying the role of ICCs in GIST are still not clear. METHODS: The GSE162115 dataset from Gene Expression Omnibus database was processed using Seurat package for quality control, data normalization, and cell clustering. Differential expression and functional enrichment analyses were performed using the FindAllMarkers function and clusterProfiler package. Cellular heterogeneity was assessed by CytoTRACE and potential regulatory mechanisms of ICCs in GISTs were investigated using SCENIC. Cellular communication was inferred and analyzed applying the CellChat package. RESULTS: Eight clusters were identified based on 34,861 cells. Intra-tumor samples had a higher proportion of ICCs than peri-tumor. ICCs were related to cell cycle and glycolytic activity in intra-tumor samples, while those in peri-tumor samples were involved in immune response. Further analysis identified four ICC subgroups (subcluster 1-4), of which subcluster 3 showed the most typical stem cell properties and interacted with the rest of the cells through the MIF-CD74 (CD44) protein. CONCLUSION: This study analyzed the heterogeneity and stem cell properties of ICCs in GISTs, revealing the molecular mechanisms and potential therapeutic targets for GISTs.

11.
Front Oncol ; 14: 1427663, 2024.
Article in English | MEDLINE | ID: mdl-39346740

ABSTRACT

Introduction: TP53 is one of the most frequently mutated genes among all cancers, and TP53 mutants occur more than 40% in colorectal cancers (CRCs). Accumulation of mutant p53 may augment colorectal cancer stem cells (CCSCs) phenotype and enhance colorectal tumorigenesis. Thus, reducing the level of mutant p53 protein is an attractive anticancer strategy. Methods: CSC-enriched cancer cells were obtained by tumor sphere formation assay. The effects of USP7 on the proliferation of cancer cells were determined by MTS and colony formation assays. Wound healing assay was used to test cell migratory abilities. qPCR and western blotting assays were performed to verify the mRNA and protein levels of CSC markers, USP7 and p53. Co-immunoprecipitation assay was used to test the interaction effects between USP7 and p53. Results: In this study, we found that USP7 and mutant p53 were dramatically elevated in CSC-enriched colorectal cancer cells and USP7 expression was positively associated with self-renewal and maintenance of CCSCs. USP7 regulated cell growth, stemness and migration of colorectal cancer cells. USP7 depletion significantly reduced proliferation of cancer cells and suppressed the self-renewal of CSC-enriched colorectal cancer cells. Further studies indicated that USP7 knockdown could significantly decrease mutant p53 protein levels both in CRCs and CSC-enriched colorectal cancer cells. Moreover, mutant p53 was stabilized by USP7 and they interacted with each other. Furthermore, USP7 inhibitor P5091 also diminished CCSCs self-renewal and reduced mutant p53 levels. Conclusion: Taken together, our findings demonstrated that USP7 involved in the modulation of CCSCs stemness, as well as a critical target for clinical treatment of cancers with different p53 mutations.

12.
Mol Cell Biol ; : 1-14, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39300912

ABSTRACT

Androgen receptor inhibitors are commonly used for prostate cancer treatment, but acquired resistance is a significant problem. Codeletion of RB and p53 is common in castration resistant prostate cancers, however they are difficult to target pharmacologically. To comprehensively identify gene loss events that contribute to enzalutamide response, we performed a genome-wide CRISPR knockout screen in LNCaP prostate cancer cells. This revealed novel genes implicated in resistance that are largely unstudied. Gene loss events that confer enzalutamide sensitivity are enriched for GSEA categories related to stem cell and epigenetic regulation. We investigated the myeloid lineage stem cell factor HOXA9 as a candidate gene whose loss promotes sensitivity to enzalutamide. Cancer genomic data reveals that HOXA9 overexpression correlates with poor prognosis and characteristics of advanced prostate cancer. In cell culture, HOXA9 depletion sensitizes cells to enzalutamide, whereas overexpression drives enzalutamide resistance. Combination of the HOXA9 inhibitor DB818 with enzalutamide demonstrates synergy. This demonstrates the utility of our CRISPR screen data in discovering new approaches for treating enzalutamide resistant prostate cancer.

13.
Phytomedicine ; 135: 156036, 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39277988

ABSTRACT

BACKGROUND: Casticin (CAS), a natural flavonoid found in Viticis Fructus, Viticis Cannabifoliae Fructus, and Semen Euphorbiae, shows anti-inflammatory activity and efficacy against various cancers. However, its effect on stemness associated with self-renewal in cervical cancer (CC) cells remains unclear, as well as the underlying mechanism. PURPOSE: The primary objective of this study was to examine the effect of CAS on CC stemness and to explore the underpinning regulatory mechanism. METHODS: HeLa cells underwent treatment with varying concentrations of CAS (0, 10, 30, 100 nM). To evaluate the impacts of CAS on CC stemness and tumorigenicity, sphere- and colony-formation assays and a xenograft model were employed. The study involved screening for changes in miRNAs and their target genes. The miRNA array identified an upregulation in miRNAs, whereas the mRNA array detected a downregulation of specific target genes. The latter genes were found to regulate stem cell-related genes through miR-342-3p in HeLa cells administered CAS. Next, whether miR-342-3p directly targets FOXM1 when upregulated by CAS was assessed by the luciferase reporter assay. qRT-PCR was performed to analyze miR-342-3p expression. Additionally, immunoblotting was conducted to assess the protein amounts of FoxM1 and stemness-related factors (CD133, CD49f, Nanog, and Sox2). Function rescue experiments were conducted to determine the mechanism of CAS in stemness regulation. These experiments involved utilizing a miR-342-3p inhibitor and overexpressing FOXM1 in HeLa cells. RESULTS: CAS decreased in vitro stemness, suppressing sphere- and colony-formation capabilities of CC. It also dose-dependently downregulated the expression of stemness-associated proteins, including CD133, CD49f, Nanog, and Sox2. Moreover, CAS inhibited in vivo carcinogenesis, remarkably reducing tumor growth in mice bearing HeLa cell xenografts. Analysis revealed downregulated FOXM1 expression in HeLa cells treated with CAS. In the luciferase reporter assay, miR-342-3p was found to directly target FOXM1 in CAS-treated HeLa cells. Additionally, miR-342-3p inhibitor transfection successfully rescued CAS' suppressive impact on stemness. Furthermore, overexpression of FOXM1 did not induce changes in miR-342-3p expression. However, it effectively rescued CAS' suppressive effects on stemness. Moreover, CAS also inhibited stemness, upregulated miR-342-3p, and lowered FOXM1 expression in the SiHa cell line. CONCLUSION: CAS suppresses self-renewal-associated stemness by targeting FOXM1 via miR-342-3p upregulation. These findings suggest CAS is promising as a novel therapeutic candidate in CC.

14.
J Gastrointest Oncol ; 15(4): 1613-1626, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39279956

ABSTRACT

Background: Cancer stem cells (CSCs) play a crucial role in tumor recurrence and metastasis, which are the primary causes of death in patients with hepatocellular carcinoma (HCC). Currently, no drug effectively blocks the recurrence and metastasis of liver cancer, leading to a poor prognosis for patients. To enhance treatment outcomes, there is an urgent need to investigate the molecular mechanisms behind the recurrence and progression of liver cancer, with the aim of identifying effective therapeutic targets. Targeting HCC stemness can improve the prognosis of patients with HCC. Abnormal spindle-like microcephaly-associated protein (ASPM) plays a pivotal role in regulating neurogenesis and brain size, which is a centrosome protein. ASPM has been implicated in tumorigenesis and tumor progression, but its regulatory role in HCC stemness is not well understood. This study aims to investigate the role of ASPM in liver cancer stemness and elucidate its potential molecular mechanisms. Methods: Bioinformatics analysis was used to study the expression of ASPM and its clinical significance in HCC. In vitro and in vivo assays were conducted to clarify the impact of ASPM knockdown on HCC cell stemness. The correlation between ASPM and the Wnt/ß-catenin pathway was examined through analysis of online databases and in vitro experiments. Results: The bioinformatics analysis revealed significant upregulation of ASPM was significantly upregulated in HCC samples, with expression correlating with poor prognosis. In vitro experimental data confirmed elevated ASPM expression in HCC cells compared to normal hepatocytes. Knockdown of ASPM suppressed HCC cell growth, clone formation, spheroid formation, migration, invasion, and the expression of CSC markers CD133 and CD44. This also inhibited the activation of the Wnt/ß-catenin pathway. Reactivation of this pathway partially reversed the biological changes induced by ASPM knockdown in HCC cells. Additionally, in vivo data demonstrated that ASPM downregulation reduced the size and weight of xenografts in BALB/c mice, along with decreased expression of CSC markers. Conclusions: These findings suggest that ASPM promotes HCC stemness and progression through the Wnt/ß-catenin pathway. Targeting ASPM or the Wnt/ß-catenin pathway may be a promising strategy to prevent HCC chemoresistance and recurrence, ultimately improving patient prognosis.

15.
Expert Rev Anticancer Ther ; 24(10): 1029-1040, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39254227

ABSTRACT

BACKGROUND: This study aimed to investigate the role of Jumonji AT Rich Interacting Domain 2 (JARID2) in regulating triple-negative breast cancer (TNBC) stemness and its mechanism. RESEARCH DESIGN AND METHODS: Bioinformatics analysis examined JARID2 expression, prognosis, and transcription factors. Quantitative polymerase chain reaction, western blot, and immunohistochemistry detected expression. Dual luciferase reporter gene and chromatin immunoprecipitation assays verified binding. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation assay detected viability and proliferation. Sphere formation assay detected the sphere formation efficiency. Flow cytometry detected CD44+/CD24- -marked stem cells. A xenograft tumor model verified the effect of JARID2 in vivo. RESULTS: JARID2 and nuclear transcription factor Y subunit α (NFYA) were upregulated in TNBC tissues and positively correlated. Knockdown of JARID2 or NFYA inhibited cell stemness by inhibiting the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) signaling pathway. Enforced JARID2 expression rescued the suppressive effect of NFYA knockdown on the PI3K/AKT signaling pathway and cell stemness. Knockdown of JARID2 inhibited tumor growth and cell stemness in mice but was alleviated by concurrent overexpression of NFYA. CONCLUSIONS: NFYA promotes TNBC cell stemness by upregulating JARID2 expression and regulating the PI3K/AKT signaling pathway, suggesting JARID2 as a potential target for innovating drugs that target TNBC stem cells.


Subject(s)
Cell Proliferation , Neoplastic Stem Cells , Proto-Oncogene Proteins c-akt , Signal Transduction , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Animals , Female , Proto-Oncogene Proteins c-akt/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Mice , Cell Line, Tumor , Xenograft Model Antitumor Assays , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics , Gene Expression Regulation, Neoplastic , Prognosis , Phosphatidylinositol 3-Kinases/metabolism , Mice, Nude , Up-Regulation , Gene Knockdown Techniques , Mice, Inbred BALB C
16.
J Cancer ; 15(17): 5636-5642, 2024.
Article in English | MEDLINE | ID: mdl-39308680

ABSTRACT

Actin, primarily a cytoplasmic cytoskeleton protein, is transported in and out of the nucleus with the help of actin-binding proteins (ABPs). Actin exists in two forms, i.e., monomeric globular (G-actin) and polymerized filamentous (F-actin). While G-actin promotes gene transcription by associating with RNA polymerases, F-actin can inhibit this effect in the nucleus. Unexpectedly, we found that lovastatin, an FDA-approved lipid-lowering drug, induces actin redistribution and its translocation into the nucleus in triple-negative breast cancer (TNBC) cancer stem cells. Lovastatin treatment also decreased levels of rRNAs and stemness markers, which are transcription products of RNA Pol I and Pol II, respectively. Bioinformatics analysis showed that actin genes were positively correlated with ABP genes involved in the translocation/polymerization and transcriptional regulation of nuclear actin in breast cancer. Similar correlations were found between actin genes and RNA Pol I genes and stemness-related genes. We propose a model to explain the roles of lovastatin in inducing nucleolar stress and inhibiting stemness in TNBC cancer stem cells. In our model, lovastatin induces translocation/accumulation of F-actin in the nucleus/nucleolus, which, in turn, induces nucleolar stress and stemness inhibition by suppressing the synthesis of rRNAs and decreasing the expression of stemness-related genes. Our model has opened up a new field of research on the roles of nuclear actin in cancer biology, offering potential therapeutic targets for the treatment of TNBC.

17.
MedComm (2020) ; 5(10): e710, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39309691

ABSTRACT

Cancer stem cells (CSCs) are widely acknowledged as the drivers of tumor initiation, epithelial-mesenchymal transition (EMT) progression, and metastasis. Originating from both hematologic and solid malignancies, CSCs exhibit quiescence, pluripotency, and self-renewal akin to normal stem cells, thus orchestrating tumor heterogeneity and growth. Through a dynamic interplay with the tumor microenvironment (TME) and intricate signaling cascades, CSCs undergo transitions from differentiated cancer cells, culminating in therapy resistance and disease recurrence. This review undertakes an in-depth analysis of the multifaceted mechanisms underlying cancer stemness and CSC-mediated resistance to therapy. Intrinsic factors encompassing the TME, hypoxic conditions, and oxidative stress, alongside extrinsic processes such as drug efflux mechanisms, collectively contribute to therapeutic resistance. An exploration into key signaling pathways, including JAK/STAT, WNT, NOTCH, and HEDGEHOG, sheds light on their pivotal roles in sustaining CSCs phenotypes. Insights gleaned from preclinical and clinical studies hold promise in refining drug discovery efforts and optimizing therapeutic interventions, especially chimeric antigen receptor (CAR)-T cell therapy, cytokine-induced killer (CIK) cell therapy, natural killer (NK) cell-mediated CSC-targeting and others. Ultimately use of cell sorting and single cell sequencing approaches for elucidating the fundamental characteristics and resistance mechanisms inherent in CSCs will enhance our comprehension of CSC and intratumor heterogeneity, which ultimately would inform about tailored and personalized interventions.

18.
Cancer Lett ; 602: 217214, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39218291

ABSTRACT

Protein arginine methylation is a common post-translational modification (PTM) catalyzed by nine protein arginine methyltransferases (PRMTs). As the major symmetric arginine methyltransferase that methylates both histone and non-histone substrates, PRMT5 plays key roles in a number of biological processes critical for development and tumorigenesis. PRMT5 overexpression has been reported in multiple cancer types including prostate cancer (PCa), but the exact biological and mechanistic understanding of PRMT5 in aggressive PCa remains ill-defined. Here, we show that PRMT5 is upregulated in PCa, correlates with worse patient survival, promotes corrupted RNA splicing, and functionally cooperates with an array of pro-tumorigenic pathways to enhance oncogenesis. PRMT5 inhibition via either genetic knockdown or pharmacological inhibition reduces stemness with paralleled differentiation and arrests cell cycle progression without causing appreciable apoptosis. Strikingly, the severity of antitumor effect of PRMT5 inhibition correlates with disease aggressiveness, with AR+ PCa being less affected. Molecular characterization pinpoints MYC, but not (or at least to a lesser degree) AR, as the main partner of PRMT5 to form a positive feedback loop to exacerbate malignancy in both AR+ and AR- PCa cells. Inspired by the surprising finding that PRMT5 negatively correlates with tumor immune infiltration and transcriptionally suppresses an immune-gene program, we further show that although PRMT5 inhibitor (PRMT5i) EPZ015666 or anti-PD-1 immunotherapy alone exhibits limited antitumor effects, combination of PRMT5i with anti-PD-1 displays superior efficacy in inhibiting castration-resistant PCa (CRPC) in vivo. Finally, to expand the potential use of PRMT5i through a synthetic lethality concept, we also perform a global CRISPR/Cas9 knockout screen to unravel that many clinical-grade drugs of known oncogenic pathways can be repurposed to target CRPC when used in combination with PRMT5i at low doses. Collectively, our findings establish a rationale to exploit PRMT5i in combination with immunotherapy or other targeted therapies to treat aggressive PCa.


Subject(s)
Prostatic Neoplasms , Protein-Arginine N-Methyltransferases , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Male , Humans , Animals , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/drug therapy , Cell Line, Tumor , Mice , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Immunotherapy/methods , Gene Expression Regulation, Neoplastic
19.
Sci Rep ; 14(1): 21489, 2024 09 14.
Article in English | MEDLINE | ID: mdl-39277663

ABSTRACT

Age-related osteoporosis is a prevalent bone metabolic disorder distinguished by an aberration in the equilibrium between bone formation and resorption. The reduction in the stemness of Bone Marrow Mesenchymal Stem Cells (BMSCs) plays a pivotal role in the onset of this ailment. Comprehending the molecular pathways that govern BMSCs stemness is imperative for delineating the etiology of age-related osteoporosis and devising efficacious treatment modalities. The study utilized single-cell RNA sequencing and miRNA sequencing to investigate the cellular heterogeneity and stemness of BMSCs. Through dual-luciferase reporter assays and functional experiments, the regulatory effect of miR-183 on CTNNB1 (ß-catenin) was confirmed. Overexpression and knockdown studies were conducted to explore the impact of miR-183 and ß-catenin on stemness-related transcription factors Oct4, Nanog, and Sox2. Cell proliferation assays and osteogenic differentiation experiments were carried out to validate the influence of miR-183 and ß-catenin on the stemness properties of BMSCs. Single-cell analysis revealed that ß-catenin is highly expressed in both high stemness clusters and terminal differentiation clusters of BMSCs. Overexpression of ß-catenin upregulated stemness transcription factors, while its suppression had the opposite effect, indicating a dual regulatory role of ß-catenin in maintaining BMSCs stemness and promoting bone differentiation. Furthermore, the confluence of miRNA sequencing analyses and predictions from online databases revealed miR-183 as a potential modulator of BMSCs stemness and a novel upstream regulator of ß-catenin. The overexpression of miR-183 effectively diminished the stemness characteristics of BMSCs by suppressing ß-catenin, whereas the inhibition of miR-183 augmented stemness. These outcomes align with the observed alterations in the expression levels and functional assessments of transcription factors associated with stemness. This study provides evidence for the essential involvement of ß-catenin in preserving the stemness of BMSCs, as well as elucidating the molecular mechanism through which miR-183 selectively targets ß-catenin to modulate stemness. These results underscore the potential of miR-183 and ß-catenin as molecular targets for augmenting the stemness of BMSCs. This strategy is anticipated to facilitate the restoration of bone microarchitecture and facilitate bone tissue regeneration by addressing potential cellular dysfunctions, thereby presenting novel targets and perspectives for the management of age-related osteoporosis.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells , MicroRNAs , Osteogenesis , Osteoporosis , beta Catenin , MicroRNAs/genetics , MicroRNAs/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Osteoporosis/genetics , Osteoporosis/metabolism , Osteoporosis/pathology , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Animals , Cell Differentiation/genetics , Humans , Cell Proliferation/genetics , Single-Cell Analysis , Gene Expression Regulation , Mice
20.
Mol Cell Biochem ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261409

ABSTRACT

Non-small cell lung cancer (NSCLC) is a frequent type of lung cancer. Transcription factor Yin Yang 1 (YY1), an endogenous transcription factor containing zinc finger structure, can accelerate NSCLC progression. However, the impact of YY1 on the stemness of NSCLC cells and the mechanism of promoting NSCLC cell progression is unclear. YY1 and Sonic hedgehog (Shh) expressions were monitored by RT-qPCR, western blot, and immunohistochemistry. Overall survival was tested through Kaplan-Meier analysis. The interaction between YY1 and Shh was confirmed. Then, cell migration, stemness, and epithelial-mesenchymal transition (EMT) were assessed with functional experiments in vitro and in vivo. YY1 and Shh were highly expressed in NSCLC tissues and positively correlated with the poor OS of NSCLC patients. Functional experiments denoted that YY1 or Shh overexpression could accelerate EMT, migration, and stemness of NSCLC cells, and YY1 or Shh knockdown played the opposite role to its overexpression. Mechanism analysis disclosed that Shh, as a target gene of YY1, was positively related to YY1. The rescued experiment manifested that Shh silencing could reverse the induction effect of YY1 overexpression on EMT, migration, and stemness of NSCLC cells. In vivo experiments also confirmed that YY1 could accelerate tumor growth and EMT and weaken apoptosis. YY1 promotes NSCLC EMT, migration, and stemness by Shh, which might be novel diagnostic markers and therapeutic targets for NSCLC therapy.

SELECTION OF CITATIONS
SEARCH DETAIL