Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Acta Vet Hung ; 72(1): 51-55, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38573775

ABSTRACT

Placental abnormalities more frequently occur during pregnancy of somatic cell clones and may lead to pregnancy loss or dystocia. Adventitious placentation, or diffuse semi-placenta, is determined by the development of areas of accessory placentation between the cotyledons due to the abnormal growth of placentomes.After a full-term pregnancy, a 3-year-old Jersey heifer was referred for dystocia which resulted in the delivery of a dead calf. The cause of dystocia was found to be foetal malposition, while the placenta was physiologically expelled after dystocia resolution.Grossly, cotyledons appeared reduced in size and number in one placental horn, while the surface of the other horn was covered with microplacentomes. Numerous villous structures without trophoblastic coating were highlighted after histopathology. The dominant sign was an inflammatory reaction. The findings were consistent with inter-cotyledonal placentitis, which led to adventitial placentation.Diffuse semi-placenta compensates for the inadequate development of placentomes and may occur as a congenital or acquired defect. The outcome depends on its severity: in the worst scenario, pregnancy may not proceed beyond midterm and may be complicated by hydrallantois. In the case under examination, the dimensions of the cotyledons (from 2 to 10 cm) allowed for the natural course of pregnancy.


Subject(s)
Cattle Diseases , Dystocia , Cattle , Pregnancy , Animals , Female , Placenta/pathology , Placenta/physiology , Placentation , Pelvis , Dystocia/veterinary , Cattle Diseases/diagnosis , Cattle Diseases/pathology
2.
BMC Vet Res ; 15(1): 189, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31174528

ABSTRACT

BACKGROUND: Perinatal mortality may vary between herds, but the cost of deaths are always higher than value of the calf. When diagnosing the cause of a calf's death it is important to determine when it occurred, before or after calving. Metabolomics is widely used to identify many human diseases, but quite rarely applied in veterinary science. The aim of this study was to compare the metabolic profiles of calves with different times of death and those of calves born alive. Into the study, twenty one healthy controls (singleton, normal assisted calving, born alive) and 75 stillborn (SB) calves (with a gestation length of ≥260 days, SB, or dead within 6 h of birth) were enrolled. Plasma and urine from SB and control calves were investigated by proton nuclear magnetic resonance based metabolomic methods. SB calves were divided into four PMI groups. One PMI group included calves that died after calving and the other groups - three comprised in utero deaths, based on pathophysiological changes (lung inflation, autolysis in internal organs, hemoglobin imbibition in the pleura and aortic arch). Partial Least Squares - Discriminant Analysis models based on plasma metabolites were calculated, reflecting assumed data clustering. RESULTS: Twenty six metabolites in plasma and 29 in urine changed significantly with PMI according to one way analysis of variance. Half the metabolites in plasma and the majority in urine increased with PMI. Six metabolites increased simultaneously in plasma and urine: acetate, sn-glycero-3-phosphocholine (GPC), leucine, valine, creatine, and alanine. CONCLUSIONS: Post-mortem changes in calves were associated with molecular variations in blood plasma and urine, showing the greatest differences for the group in which the post-mortem pathological changes were the most advanced. The results of the study show that evaluation of calf plasma or urine may be used as a diagnostic method for the determination of the PMI. Moreover, the metabolites, which unambiguously increased or decreased, can be used as potential biomarkers of PMI.


Subject(s)
Cattle/blood , Cattle/urine , Metabolome , Stillbirth/veterinary , Animals , Animals, Newborn/blood , Animals, Newborn/urine , Biomarkers/blood , Biomarkers/urine , Female , Male , Pregnancy , Pregnancy Outcome/veterinary , Proton Magnetic Resonance Spectroscopy/methods , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL