Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32882531

ABSTRACT

A simple and reliable method was developed and validated to determine the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in rat brain samples by micro salting-out assisted liquid-liquid extraction combined with ultra-high performance liquid chromatography tandem mass spectrometry (SALLLE/UHPLC-MS/MS). The SALLE parameters (brain homogenate volume, salting-out agent, salt concentration, salt solution volume, organic solvent, organic solvent volume, and centrifugation temperature) were optimized to improve sensitivity and selectivity of the method. The SALLE/UHPLC-MS/MS method presented linear ranges from 2.00 to 20.00 ng mL-1 for AEA and from 0.300 to 10.00 µg mL-1 for 2-AG, no significant matrix effect, and inter- and intra-assay precision and accuracy with CV and RSE values lower than 15%, respectively. This innovative method was successfully applied to determine AEA and 2-AG in brain hemispheres from a 6-OHDA animal model of Parkinson's disease (PD).


Subject(s)
Arachidonic Acids/analysis , Brain Chemistry/physiology , Endocannabinoids/analysis , Glycerides/analysis , Liquid-Liquid Extraction/methods , Polyunsaturated Alkamides/analysis , Animals , Arachidonic Acids/isolation & purification , Chromatography, High Pressure Liquid/methods , Disease Models, Animal , Endocannabinoids/isolation & purification , Glycerides/isolation & purification , Limit of Detection , Linear Models , Male , Parkinson Disease/metabolism , Polyunsaturated Alkamides/isolation & purification , Rats , Rats, Wistar , Reproducibility of Results , Tandem Mass Spectrometry/methods
2.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1130-1131: 121809, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31669634

ABSTRACT

This work describes the development and validation of an ultra-high performance liquid chromatography tandem mass spectrometry method that uses disposable pipette extraction (DPX-UHPLC-MS/MS) to determine the endocannabinoid anandamide (AEA) in cerebrospinal fluid samples (CSF). The DPX parameters sorption equilibrium time, sample volume, number of draw-eject cycles, washing solvent volume, and elution solvent volume were optimized by design of experiments (DOE) techniques. The simple DPX protocol proposed herein required a reduced amount of CSF sample and organic solvent. The DPX-UHPLC-MS/MS method presented linear range from 0.10 ng mL-1 (LLOQ) to 3.0 ng mL-1, inter- and intra-assay accuracy with EPR values varying from -8.2% to 9.6%, inter- and intra-assay precision with CV values ranging from 1.3% to 14.8% (except for the LLOQ), and no significant matrix effect. The innovative DPX-UHPLC-MS/MS method was successfully applied to determine AEA in CSF samples from Parkinson's disease (PD) patients and should therefore be used in clinical studies.


Subject(s)
Arachidonic Acids/cerebrospinal fluid , Chromatography, High Pressure Liquid/methods , Endocannabinoids/cerebrospinal fluid , Polyunsaturated Alkamides/cerebrospinal fluid , Tandem Mass Spectrometry/methods , Arachidonic Acids/isolation & purification , Endocannabinoids/isolation & purification , Humans , Linear Models , Polyunsaturated Alkamides/isolation & purification , Reproducibility of Results , Sensitivity and Specificity
3.
J Chromatogr A ; 1458: 46-53, 2016 Aug 05.
Article in English | MEDLINE | ID: mdl-27388659

ABSTRACT

This paper focuses on the development of a novel miniaturized molecularly imprinted solid-phase extraction (MISPE) and ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method to determine venlafaxine (VEN), O-desmethylvenlafaxine (ODV), and N-desmethylvenlafaxine (NDV) in plasma samples. The molecularly imprinted polymer (MIP) was prepared by the precipitation polymerization approach; VEN, metacrylic acid, ethylene glycol dimethacrylate, 2,2-azobisisobutyronitrile, and toluene were used as template, monomer, crosslinker, initiator, and porogen solvent, respectively. MIP and of the non-imprinted control polymer (NIP) sorbents were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. MIP phase presented higher extraction efficiency (MISPE, using plasma samples spiked with VEN) than the NIP phase (84 and 49% recovery rates, respectively). Analysis of other antidepressants with different chemical structures by MISPE-UHPLC-MS/MS attested to the selectivity of the developed MIP. The developed method presented precision assays with coefficients of variation (CV) smaller than 15%; accuracy assays with relative standard error (RSE%) values ranging from -12 to 16%, and linear ranges from 3 to 700ngmL(-1) for VEN, from 5 to 700ngmL(-1) for ODV, and from 3 to 500ngmL(-1) for NDV. The coefficients of determination (r(2)) were higher than 0.995. The lack-of-fit test also attested to the linearity of this method. This method was successfully applied to determine VEN, NDV, and ODV in plasma samples from depressed patients undergoing therapy with VEN.


Subject(s)
Cyclohexanols/blood , Desvenlafaxine Succinate/blood , Molecular Imprinting , Polymers/chemistry , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , Venlafaxine Hydrochloride/blood , Acrylates/chemistry , Antidepressive Agents/blood , Antidepressive Agents/chemistry , Antidepressive Agents/therapeutic use , Chromatography, High Pressure Liquid , Cyclohexanols/metabolism , Depression/blood , Depression/drug therapy , Desvenlafaxine Succinate/metabolism , Humans , Methacrylates/chemistry , Microscopy, Electron, Scanning , Nitriles/chemistry , Polymerization , Spectroscopy, Fourier Transform Infrared , Toluene/chemistry , Venlafaxine Hydrochloride/metabolism , Venlafaxine Hydrochloride/pharmacokinetics , Venlafaxine Hydrochloride/therapeutic use
4.
Anal Chim Acta ; 932: 49-59, 2016 Aug 17.
Article in English | MEDLINE | ID: mdl-27286769

ABSTRACT

A new molecularly imprinted polymer modified with restricted access material (a hydrophilic external layer), (MIP-RAM) was synthesized via polymerization in situ in an open fused silica capillary. This stationary phase was used as sorbent for in-tube solid phase microextraction (in-tube SPME) to determine parabens in breast milk samples by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Scanning electron micrographs (SEM) illustrate MIP surface modification after glycerol dimethacrylate (hydrophilic monomer) incorporation. The interaction between parabens and MIP-RAM was investigated by Fourier-transform infrared (FTIR) spectroscopy. The Scatchard plot for MIP-RAM presented two linear parts with different slopes, illustrating binding sites with high- and low-affinity. Endogenous compounds exclusion from the MIP-RAM capillary was demonstrated by in-tube SPME/LC-UV assays carried out with blank milk samples. The in-tube SPME/UHPLC-MS/MS method presented linear range from 10 ng mL(-1) (LLOQ) to 400 ng mL(-1) with coefficients of determination higher than 0.99, inter-assay precision with coefficient of variation (CV) values ranging from 2 to 15%, and inter-assay accuracy with relative standard deviation (RSD) values ranging from -1% to 19%. Analytical validation parameters attested that in-tube SPME/UHPLC-MS/MS is an appropriate method to determine parabens in human milk samples to assess human exposure to these compounds. Analysis of breast milk samples from lactating women demonstrated that the proposed method is effective.


Subject(s)
Chromatography, High Pressure Liquid/methods , Milk, Human/chemistry , Parabens/analysis , Parabens/isolation & purification , Polymers/chemical synthesis , Solid Phase Microextraction/methods , Tandem Mass Spectrometry/methods , Adsorption , Chromatography, High Pressure Liquid/instrumentation , Female , Humans , Hydrophobic and Hydrophilic Interactions , Lactation , Molecular Imprinting , Parabens/chemistry , Polymerization , Polymers/chemistry , Silicon Dioxide/chemistry , Solid Phase Microextraction/instrumentation , Tandem Mass Spectrometry/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL