Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Methods Mol Biol ; 2514: 75-84, 2022.
Article in English | MEDLINE | ID: mdl-35771420

ABSTRACT

The vasculogenic mimicry (VM) in vivo evaluation is challenging, and new models have been proposed to evaluate antitumor effect of different compounds using in vivo models. However, there is no gold standard in vivo models established for VM evaluation. As occurs for other in vivo tumor analysis, the use of immunodeficient mouse model and cell line with in vivo tumorigenicity and ability to induce vasculogenic mimicry is the most used model.


Subject(s)
Antineoplastic Agents , Neovascularization, Pathologic , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Mice , Mice, Inbred BALB C , Neovascularization, Pathologic/pathology , Xenograft Model Antitumor Assays
2.
Oncotarget ; 13: 307-318, 2022.
Article in English | MEDLINE | ID: mdl-35145607

ABSTRACT

Tumor cells trigger angiogenesis through the expression of angiogenic factors. Vasohibins (VASHs) are a family of peptides that regulate angiogenesis. Flavonoids have antiproliferative antitumor properties; however, few studies have highlighted their antiangiogenic potential. This study evaluated the flavonoid isoquercetin (Q3G) as an antitumor compound related to colon cancer vascularization and regulation of VASH1 and 2. Mice bearing xenogeneic colon cancer (n = 15) were divided into 3 groups: Q3G-treated (gavage, daily over a week), bevacizumab-treated (intraperitoneal, single dose), or untreated animals. Tumor growth, histological characteristics, blood vessel volume, and VASH1 and 2 expressions were analyzed. Q3G impaired tumor growth and vascularization, upregulated VASH1, and downregulated VASH2 in comparison to untreated animals. Mice treated with Q3G showed approximately 65% fewer blood vessels than untreated animals and 50% fewer blood vessels than mice treated with bevacizumab. Thus, we show that Q3G has antitumor activity, impairs vascularization, and differentially modulates VASH1 and 2 expressions in colon cancer.


Subject(s)
Colonic Neoplasms , Neovascularization, Pathologic , Angiogenic Proteins/metabolism , Animals , Bevacizumab/pharmacology , Cell Cycle Proteins/metabolism , Colonic Neoplasms/drug therapy , Mice , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Quercetin/analogs & derivatives , Quercetin/pharmacology , Xenograft Model Antitumor Assays
3.
Braz. J. Pharm. Sci. (Online) ; 58: e20954, 2022. tab, graf
Article in English | LILACS | ID: biblio-1420502

ABSTRACT

Abstract Cisplatin is the primary anti-cancer agent for the treatment of most solid tumors. However, platinum-based anti-cancer chemotherapy produces severe side effects due to its poor specificity. There are a broad interest and literature base for a novel mechanism of action on platinum derivatives. Additionally, combining cisplatin with histone deacetylase inhibitors (HDACi) such as 4-hydroxybenzoic acid derivatives showed promising results in treating solid tumors. Here we aimed to conjugate 4-hydroxybenzoic acid with platinum to obtain a novel platinum derivative that can overcome cisplatin resistance. Cis-4-hydroxyphenylplatinum(II)diamine compound was synthesized under mild conditions and characterized. Cytotoxicity assay was performed on SKOV3-Luc and A549-Luc cells. Hemocompatibility and serum protein binding analysis were performed. Treatment potential was evaluated in xenograft tumor models. Biodistribution was tested on tumor-bearing mice via Pt analysis in organs with ICP-MS, ex vivo. In this study, cis-4-hydroxyphenylplatinum (II) diamine was synthesized with a yield of 62%. The MTT assay on A549-Luc and SKOV3-Luc cell lines resulted in IC50 values of 17.82 and 7.81 µM, respectively. While tumor growth was continued in the control group, the tumor volume decreased in the treatment group. All results point to the conclusion that the new compound has the potential to treat solid tumors


Subject(s)
Platinum/pharmacology , Anticarcinogenic Agents/classification , Histone Deacetylase Inhibitors/adverse effects , Lung Neoplasms/pathology
4.
Cancers (Basel) ; 13(12)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201040

ABSTRACT

Breast cancer metastasis is the most common cause of cancer death in women worldwide. Triple-negative breast cancers (TNBC) form a heterogeneous group of tumors that have higher relapse rates and poorer survival compared to other breast cancer subtypes. Thus, this work reports the antitumor and antimetastatic activities of a [6]-gingerol-derived semi-synthetic compound named SSi6 on MDA-MB-231 TNBC cells using xenograft models. SSi6 did not cause toxic effects in vivo as demonstrated by body weight and hematological and histological evaluations. From the orthotopic xenograft model, we demonstrated that SSi6 slows and inhibits the growth of the primary tumor, as well as prevents metastatic spontaneous progression from lymph nodes to the lungs. Moreover, a second xenograft model with resection of the primary tumor showed that SSi6 also blocks the progression of metastases from the lymph nodes to other visceral organs. Taken together, our results demonstrate that SSi6 is a promising compound to be investigated in other preclinical and clinical models to be applied as a complementary therapy for TNBC.

5.
Crit Rev Oncol Hematol ; 155: 103087, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32992152

ABSTRACT

BACKGROUND: Patient-derived xenograft (PDX) involve the direct surgical transfer of fresh human tumor samples to immunodeficient mice. This systematic review aimed to identify publications of head and neck cancer PDX (HNC-PDX) models, describing the main methodological characteristics and outcomes. METHODS: An electronic search was undertaken in four databases, including publications having used HNC-PDX. Data were analyzed descriptively. RESULTS: 63 articles were yielded. The nude mouse was one most commonly animal model used (38.8 %), and squamous cell carcinoma accounted for the majority of HNC-PDX (80.6 %). Tumors were mostly implanted in the flank (86.3 %), and the latency period ranged from 30 to 401 days. The successful rate ranged from 17 % to 100 %. Different drugs and pathways were identified. CONCLUSION: HNC-PDX appears to significantly recapitulate the morphology of the original HNC and represents a valuable method in translational research for the assessment of the in vivo effect of novel therapies for HNC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Animals , Disease Models, Animal , Heterografts , Humans , Mice , Xenograft Model Antitumor Assays
6.
Hematol., Transfus. Cell Ther. (Impr.) ; 42(2): 150-158, Apr.-June 2020. tab, graf
Article in English | LILACS | ID: biblio-1134018

ABSTRACT

ABSTRACT Introduction: Adoptive transfer of T cells expressing a CD19-specific chimeric antigen receptor (CAR) has shown impressive response rates for the treatment of CD19 + B-cell malignancies in numerous clinical trials. The CAR molecule, which recognizes cell-surface tumor-associated antigen independently of human leukocyte antigen (HLA), is composed by one or more signaling molecules to activate genetically modified T cells for killing, proliferation, and cytokine production. Objectives: In order to make this treatment available for a larger number of patients, we developed a simple and efficient platform to generate and expand CAR-T cells. Methods: Our approach is based on a lentiviral vector composed by a second-generation CAR that signals through a 41BB and CD3-ζ endodomain. Conclusions: In this work, we show a high-level production of the lentiviral vector, which was successfully used to generate CAR-T cells. The CAR-T cells produced were highly cytotoxic and specific against CD19+ cells in vitro and in vivo, being able to fully control disease progression in a xenograft B-cell lymphoma mouse model. Our work demonstrates the feasibility of producing CAR-T cells in an academic context and can serve as a paradigm for similar institutions. Nevertheless, the results presented may contribute favoring the translation of the research to the clinical practice.


Subject(s)
Humans , In Vitro Techniques , Immunotherapy, Adoptive , Antigens, CD19 , Cytotoxicity, Immunologic , Heterografts
7.
Hematol Transfus Cell Ther ; 42(2): 150-158, 2020.
Article in English | MEDLINE | ID: mdl-31676276

ABSTRACT

INTRODUCTION: Adoptive transfer of T cells expressing a CD19-specific chimeric antigen receptor (CAR) has shown impressive response rates for the treatment of CD19 + B-cell malignancies in numerous clinical trials. The CAR molecule, which recognizes cell-surface tumor-associated antigen independently of human leukocyte antigen (HLA), is composed by one or more signaling molecules to activate genetically modified T cells for killing, proliferation, and cytokine production. OBJECTIVES: In order to make this treatment available for a larger number of patients, we developed a simple and efficient platform to generate and expand CAR-T cells. METHODS: Our approach is based on a lentiviral vector composed by a second-generation CAR that signals through a 41BB and CD3-ζ endodomain. CONCLUSIONS: In this work, we show a high-level production of the lentiviral vector, which was successfully used to generate CAR-T cells. The CAR-T cells produced were highly cytotoxic and specific against CD19+ cells in vitro and in vivo, being able to fully control disease progression in a xenograft B-cell lymphoma mouse model. Our work demonstrates the feasibility of producing CAR-T cells in an academic context and can serve as a paradigm for similar institutions. Nevertheless, the results presented may contribute favoring the translation of the research to the clinical practice.

8.
Microrna ; 8(3): 237-247, 2019.
Article in English | MEDLINE | ID: mdl-30806335

ABSTRACT

BACKGROUND: The high mortality rate of breast cancer is related to the occurrence of metastasis, a process that is promoted by tumor angiogenesis. MicroRNAs are small molecules of noncoding mRNA that play a key role in gene regulation and are directly involved in the progression and angiogenesis of various tumor types, including breast cancer. Several miRNAs have been described as promoters or suppressors angiogenesis and may be associated with tumor growth and metastasis. Melatonin is an oncostatic agent with a capacity of modifying the expression of innumerable genes and miRNAs related to cancer. OBJECTIVE: The aim of this study was to evaluate the role of melatonin and the tumor suppressor miR- 148a-3p on angiogenesis of breast cancer. METHOD: MDA-MB-231 cells were treated with melatonin and modified with the overexpression of miR-148a-3p. The relative quantification in real-time of miR-148a-3p, IGF-IR and VEGF was performed by real-time PCR. The protein expression of these targets was performed by immunocytochemistry and immunohistochemistry. Survival, migration and invasion rates of tumor cells were evaluated. Finally, the xenograft model of breast cancer was performed to confirm the role of melatonin in the tumor. RESULTS: The melatonin was able to increase the gene level of miR-148a-3p and decreased the gene and protein expression of IGF-1R and VEGF, both in vitro and in vivo. In addition, it also had an inhibitory effect on the survival, migration and invasion of breast tumor cells. CONCLUSION: Our results confirm the role of melatonin in the regulation of miR-148a-3p and decrease of angiogenic factors.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/blood supply , Breast Neoplasms/drug therapy , Melatonin/pharmacology , MicroRNAs/genetics , Neovascularization, Pathologic/drug therapy , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Female , Humans , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Nude , MicroRNAs/metabolism , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Tumor Cells, Cultured
9.
Life Sci ; 208: 131-138, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29990486

ABSTRACT

AIMS: Breast cancer represents the second most prevalent tumor-related cause of death among women. Although studies have already been published regarding the association between breast tumors and miRNAs, this field remains unclear. MicroRNAs (miRNAs) are defined as non-coding RNA molecules, and are known to be involved in cell pathways through the regulation of gene expression. Melatonin can regulate miRNAs and genes related with angiogenesis. This hormone is produced naturally by the pineal gland and presents several antitumor effects. The aim of this study was to understand the action of melatonin in the regulation of miRNA-152-3p in vivo and in vitro. MAIN METHODS: In order to standardize the melatonin treatment in the MDA-MB-468 cells, we carried out the cell viability assay at different concentrations. PCR Array plates were used to identify the differentiated expression of miRNAs after the treatment with melatonin. The relative quantification of the target gene expression (IGF-IR, HIF-1α and VEGF) was performed by real-time PCR. For the tumor development, MDA-MB-468 cells were implanted in female BALB/c mice, and treated or not treated with melatonin. Moreover, the quantification of the target genes protein expression was performed by immunocytochemistry and immunohistochemistry. KEY FINDINGS: Relative quantification shows that the melatonin treatment increases the gene expression of miR-152-3p and the target genes, and decreased protein levels of the genes both in vitro and in vivo. SIGNIFICANCE: Our results confirm the action of melatonin on the miR-152-3p regulation known to be involved in the progression of breast cancer.


Subject(s)
Angiogenesis Inducing Agents/chemistry , Antioxidants/pharmacology , Biomarkers, Tumor/genetics , Melatonin/pharmacology , MicroRNAs/genetics , Neovascularization, Pathologic/prevention & control , Triple Negative Breast Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , In Vitro Techniques , Mice , Mice, Inbred BALB C , Mice, Nude , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
10.
Photodiagnosis Photodyn Ther ; 21: 79-85, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29175213

ABSTRACT

BACKGROUND: Osteosarcoma, a malignant tumor characterized by bone or osteoid formation, is the second most common primary bone neoplasm. Clinical symptoms include local and surrounding pain, unrelieved by rest or anesthesia. Osteosarcoma has a poor chemotherapeutic response with prognosis dependent on complete tumor excision. Therefore, for inoperable osteosarcoma new therapeutic strategies are needed. The present study aimed to develop murine models of cranial and vertebral osteosarcoma that facilitate simple clinical monitoring and real-time imaging to evaluate the outcome of photodynamic therapy based on a previously developed photosensitizer. METHODS: Balb/c nude mice were divided into two groups: the cranial and vertebral osteosarcoma groups. Each group was further subdivided into the photodynamic therapy-treated and untreated groups. Images were obtained by scintigraphy with 99mTc-MIBI and radiography. Tumor growth, necrotic area, osteoid matrix area, and inflammatory infiltration were analyzed. RESULTS: Cranial and vertebral tumors could be macroscopically observed and measured. Radiographic and scintigraphic images showed tumor cells present at the inoculation sites. After photodynamic therapy, scintigraphy showed lower tumoral radiopharmaceutical uptake, which correlated histologically with increased necrosis. Osteoid matrix volume increased, and tumor size decreased in all photodynamic therapy-treated animals. CONCLUSION: Cranial and vertebral osteosarcoma models in athymic mice are feasible and facilitate in vivo monitoring for the development of new therapies. Photodynamic therapy is a potential antitumoral treatment for surgically inoperable osteosarcoma.


Subject(s)
Bone Neoplasms/drug therapy , Osteosarcoma/drug therapy , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Porphyrins/therapeutic use , Animals , Bone Neoplasms/pathology , Cell Line, Tumor , Mice , Mice, Inbred BALB C , Mice, Nude , Osteosarcoma/pathology , Radionuclide Imaging , Skull/pathology , Spine/pathology
11.
Acta cir. bras ; Acta cir. bras;27(6): 355-360, June 2012. ilus
Article in English | LILACS | ID: lil-626252

ABSTRACT

PURPOSE: The present a novel adenocarcinoma model in athymic mice. METHODS: Seven athymic mice were used. Colon diversion and distal fistula were made. Adenocarcinoma cells were inoculated in the submucosa of fistula. Tumor growth was monitored daily. Scintigraphy with 99mTc-MIBI was performed to identify the tumor. RESULTS: The model of distal colon cancer is feasible. Tumor detection was possible by both, macroscopically and molecular imaging. All resections demonstrated poorly differentiated tumors. Colon obstruction occurred in one case, similarly to evolution in human tumors of distal colon. CONCLUSION: The proposed model of distal colon cancer is feasible, allows for easy monitoring of tumoral growth by both, macroscopically and molecular imaging, and is suitable for studying the evolution of tumor with implementation of cytotoxic therapy in vivo.


OBJETIVO: Apresentar novo modelo de adenocarcinoma distal em camundongos atímicos. MÉTODOS: Foram utilizados sete camundongos atímicos. Desvio do cólon distal e fístula foram feitas. Células de adenocarcinoma foram inoculadas na submucosa da fístula. O crescimento do tumor foi monitorado diariamente. Cintilografia com 99mTc-MIBI foi realizada para identificar o tumor. RESULTADOS: O modelo de câncer de cólon distal é viável. Detecção do tumor foi possível macroscopicamente e por imagem molecular. Todas as ressecções demonstraram tumores pouco diferenciados. Obstrução do cólon ocorreu em um caso, de forma semelhante à evolução em tumores humanos do cólon distal. CONCLUSÃO: O modelo de câncer do cólon distal proposto é viável, permite a monitorização fácil do crescimento tumoral macroscopicamente e por imagem molecular, sendo adequado para o estudo da evolução de tumor com aplicação de terapia citotóxica in vivo.


Subject(s)
Animals , Mice , Adenocarcinoma , Colonic Neoplasms , Adenocarcinoma/pathology , Adenocarcinoma , Colonic Neoplasms/pathology , Colonic Neoplasms , Mice, Nude , Radiopharmaceuticals , Tumor Cells, Cultured
12.
Acta cir. bras. ; 27(6): 355-360, 2012. ilus
Article in English | VETINDEX | ID: vti-4284

ABSTRACT

PURPOSE: The present a novel adenocarcinoma model in athymic mice. METHODS: Seven athymic mice were used. Colon diversion and distal fistula were made. Adenocarcinoma cells were inoculated in the submucosa of fistula. Tumor growth was monitored daily. Scintigraphy with 99mTc-MIBI was performed to identify the tumor. RESULTS: The model of distal colon cancer is feasible. Tumor detection was possible by both, macroscopically and molecular imaging. All resections demonstrated poorly differentiated tumors. Colon obstruction occurred in one case, similarly to evolution in human tumors of distal colon. CONCLUSION: The proposed model of distal colon cancer is feasible, allows for easy monitoring of tumoral growth by both, macroscopically and molecular imaging, and is suitable for studying the evolution of tumor with implementation of cytotoxic therapy in vivo.(AU)


OBJETIVO: Apresentar novo modelo de adenocarcinoma distal em camundongos atímicos. MÉTODOS: Foram utilizados sete camundongos atímicos. Desvio do cólon distal e fístula foram feitas. Células de adenocarcinoma foram inoculadas na submucosa da fístula. O crescimento do tumor foi monitorado diariamente. Cintilografia com 99mTc-MIBI foi realizada para identificar o tumor. RESULTADOS: O modelo de câncer de cólon distal é viável. Detecção do tumor foi possível macroscopicamente e por imagem molecular. Todas as ressecções demonstraram tumores pouco diferenciados. Obstrução do cólon ocorreu em um caso, de forma semelhante à evolução em tumores humanos do cólon distal. CONCLUSÃO: O modelo de câncer do cólon distal proposto é viável, permite a monitorização fácil do crescimento tumoral macroscopicamente e por imagem molecular, sendo adequado para o estudo da evolução de tumor com aplicação de terapia citotóxica in vivo.(AU)


Subject(s)
Animals , Colonic Neoplasms/pathology , Mice, Nude/classification , Fistula
13.
Viruses ; 3(7): 1041-1058, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21994769

ABSTRACT

Adult T-cell leukemia/lymphoma (ATLL) is a highly aggressive disease that occurs in individuals infected with the human T lymphotropic virus type 1 (HTLV-1). Patients with aggressive ATLL have a poor prognosis because the leukemic cells are resistant to conventional chemotherapy. We have investigated the therapeutic efficacy of a biphosphinic cyclopalladated complex {Pd(2) [S(-)C(2), N-dmpa](2) (µ-dppe)Cl(2)}, termed C7a, in a patient-derived xenograft model of ATLL, and investigated the mechanism of C7a action in HTLV-1-positive and negative transformed T cell lines in vitro. In vivo survival studies in immunocompromised mice inoculated with human RV-ATL cells and intraperitoneally treated with C7a led to significantly increased survival of the treated mice. We investigated the mechanism of C7a activity in vitro and found that it induced mitochondrial release of cytochrome c, caspase activation, nuclear condensation and DNA degradation. These results suggest that C7a triggers apoptotic cell death in both HTLV-1 infected and uninfected human transformed T-cell lines. Significantly, C7a was not cytotoxic to peripheral blood mononuclear cells (PBMC) from healthy donors and HTLV-1-infected individuals. C7a inhibited more than 60% of the ex vivo spontaneous proliferation of PBMC from HTLV-1-infected individuals. These results support a potential therapeutic role for C7a in both ATLL and HTLV-1-negative T-cell lymphomas.


Subject(s)
Apoptosis/drug effects , Coordination Complexes/pharmacology , Human T-lymphotropic virus 1/growth & development , Leukemia-Lymphoma, Adult T-Cell/drug therapy , Palladium/pharmacology , Pheniramine/analogs & derivatives , Animals , Cell Line, Transformed , Cell Survival/drug effects , Cytochromes c/metabolism , Flow Cytometry , Humans , Leukemia-Lymphoma, Adult T-Cell/virology , Mice , Mice, SCID , Pheniramine/pharmacology , Specific Pathogen-Free Organisms , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL