Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 907
1.
Glycobiology ; 34(6)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38690785

Cellulose is an abundant component of plant cell wall matrices, and this para-crystalline polysaccharide is synthesized at the plasma membrane by motile Cellulose Synthase Complexes (CSCs). However, the factors that control CSC activity and motility are not fully resolved. In a targeted chemical screen, we identified the alkylated nojirimycin analog N-Dodecyl Deoxynojirimycin (ND-DNJ) as a small molecule that severely impacts Arabidopsis seedling growth. Previous work suggests that ND-DNJ-related compounds inhibit the biosynthesis of glucosylceramides (GlcCers), a class of glycosphingolipid associated with plant membranes. Our work uncovered major changes in the sphingolipidome of plants treated with ND-DNJ, including reductions in GlcCer abundance and altered acyl chain length distributions. Crystalline cellulose content was also reduced in ND-DNJ-treated plants as well as plants treated with the known GlcCer biosynthesis inhibitor N-[2-hydroxy-1-(4-morpholinylmethyl)-2-phenyl ethyl]-decanamide (PDMP) or plants containing a genetic disruption in GLUCOSYLCERAMIDE SYNTHASE (GCS), the enzyme responsible for sphingolipid glucosylation that results in GlcCer synthesis. Live-cell imaging revealed that CSC speed distributions were reduced upon treatment with ND-DNJ or PDMP, further suggesting an important relationship between glycosylated sphingolipid composition and CSC motility across the plasma membrane. These results indicate that multiple interventions compromising GlcCer biosynthesis disrupt cellulose deposition and CSC motility, suggesting that GlcCers regulate cellulose biosynthesis in plants.


Arabidopsis , Cellulose , Glucosylceramides , Glucosyltransferases , Arabidopsis/metabolism , Glucosyltransferases/metabolism , Glucosyltransferases/genetics , Cellulose/metabolism , Cellulose/biosynthesis , Glucosylceramides/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/analogs & derivatives , Cell Wall/metabolism
3.
J Pharmacol Exp Ther ; 389(3): 313-314, 2024 May 21.
Article En | MEDLINE | ID: mdl-38772716

We thank Dr. Weimer and her colleagues for their comments related to our recent work (Anding et al., 2023) and are grateful for the opportunity to further discuss the importance of efficient lysosomal targeting of enzyme-replacement therapies (ERT) for the treatment of Pompe disease. Patients with Pompe disease have mutations in the gene that encodes for acid α glucosidase (GAA), a lysosomal enzyme necessary for the breakdown of glycogen. The first-generation ERT, alglucosidase alfa, provides a lifesaving therapy for the severe form of the disease (infantile onset Pompe disease) and improves or stabilizes respiratory and motor function in patients with less severe disease (late onset Pompe disease). Despite these gains, significant unmet need remains, particularly in patients who display respiratory and motor decline following years of treatment. Poor tissue uptake and lysosomal targeting via inefficient binding of the cation-independent mannose-6-phosphate (M6P) receptor (CIMPR) in skeletal muscle contributed to this suboptimal treatment response, prompting the development of new ERTs with increased levels of M6P.


1-Deoxynojirimycin , Enzyme Replacement Therapy , Glycogen Storage Disease Type II , Mannosephosphates , alpha-Glucosidases , Glycogen Storage Disease Type II/drug therapy , Animals , Enzyme Replacement Therapy/methods , Mannosephosphates/metabolism , Mice , alpha-Glucosidases/therapeutic use , alpha-Glucosidases/metabolism , alpha-Glucosidases/administration & dosage , 1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/administration & dosage , 1-Deoxynojirimycin/therapeutic use , Humans , Lysosomes/drug effects , Lysosomes/metabolism
4.
Biomolecules ; 14(5)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38785944

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mainly targets the upper respiratory tract. It gains entry by interacting with the host cell receptor angiotensin-converting enzyme 2 (ACE2) via its heavily glycosylated spike glycoprotein. SARS-CoV-2 can also affect the gastrointestinal tract. Given the significant role of glycosylation in the life cycle of proteins and the multisystem target of SARS-CoV-2, the role of glycosylation in the interaction of S1 with ACE2 in Caco-2 cells was investigated after modulation of their glycosylation patterns using N-butyldeoxynojirimycin (NB-DNJ) and 1-deoxymannojirimycin (dMM), in addition to mutant CHO cells harboring mutations at different stages of glycosylation. The data show a substantial reduction in the interactions between the altered glycosylation forms of S1 and ACE2 in the presence of NB-DNJ, while varied outcomes resulted from dMM treatment. These results highlight the promising effects of NB-DNJ and its potential use as an off-label drug to treat SARS-CoV-2 infections.


Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Caco-2 Cells , Angiotensin-Converting Enzyme 2/metabolism , Glycosylation , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/drug effects , Animals , CHO Cells , Cricetulus , Protein Transport , COVID-19/metabolism , COVID-19/virology , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/analogs & derivatives , Protein Binding , Intestinal Mucosa/metabolism , Intestinal Mucosa/virology
5.
Expert Opin Pharmacother ; 25(6): 769-782, 2024 Apr.
Article En | MEDLINE | ID: mdl-38753367

INTRODUCTION: Fabry's disease (FD) is a genetic lysosomal storage disorder characterized by α-galactosidase A (α-Gal A) lost/reduced activity. We aim to systematically assess the safety and efficacy of Migalastat, an oral pharmacological chaperone, that has been approved for the treatment of FD in patients with amenable mutations. METHODS: We conducted literature search following the PRISMA guidelines in major databases up to 4 February 2024, for studies that assessed the clinical outcomes of migalastat in patients with FD. The New Castle Ottawa Scale was used to evaluate the quality of the included studies. RESULTS: A total of 2141 records were identified through database searches and register searches, amongst which 26 records were screened, and 12 of these were excluded. The remaining 14 reports were sought for retrieval. The 12 retrieved articles were assessed for eligibility and their quality was assessed after their inclusion. Amongst the included studies, 5 were of high quality, 6 were of medium quality, and 1 was of low quality. CONCLUSION: Migalastat showed varied effects on enzyme activity and substrate levels, with gender-specific differences noted in GL-3 substrate activity and eGFR. Overall, it improved cardiac and renal outcomes similarly to enzyme replacement therapy, with a comparable safety profile.


1-Deoxynojirimycin , Fabry Disease , alpha-Galactosidase , Fabry Disease/drug therapy , Humans , 1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/therapeutic use , 1-Deoxynojirimycin/adverse effects , alpha-Galactosidase/therapeutic use , Enzyme Inhibitors/therapeutic use , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/administration & dosage , Treatment Outcome
6.
Cells ; 13(8)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38667321

BACKGROUND: Fabry disease is a progressive, X chromosome-linked lysosomal storage disorder with multiple organ dysfunction. Due to the absence or reduced activity of alpha-galactosidase A (AGAL), glycosphingolipids, primarily globotriaosyl-ceramide (Gb3), concentrate in cells. In heterozygous women, symptomatology is heterogenous and currently routinely used fluorometry-based assays measuring mean activity mostly fail to uncover AGAL dysfunction. The aim was the development of a flow cytometry assay to measure AGAL activity in individual cells. METHODS: Conventional and multispectral imaging flow cytometry was used to detect AGAL activity. Specificity was validated using the GLA knockout (KO) Jurkat cell line and AGAL inhibitor 1-deoxygalactonojirimycin. The GLA KO cell line was generated via CRISPR-Cas9-based transfection, validated with exome sequencing, gene expression and substrate accumulation. RESULTS: Flow cytometric detection of specific AGAL activity is feasible with fluorescently labelled Gb3. In the case of Jurkat cells, a substrate concentration of 2.83 nmol/mL and 6 h of incubation are required. Quenching of the aspecific exofacial binding of Gb3 with 20% trypan blue solution is necessary for the specific detection of lysosomal substrate accumulation. CONCLUSION: A flow cytometry-based assay was developed for the quantitative detection of AGAL activity at the single-cell level, which may contribute to the diagnosis of Fabry patients.


Flow Cytometry , alpha-Galactosidase , Humans , Flow Cytometry/methods , Jurkat Cells , alpha-Galactosidase/metabolism , alpha-Galactosidase/genetics , Fabry Disease/metabolism , Fabry Disease/enzymology , Fabry Disease/diagnosis , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/analogs & derivatives
7.
J Neurol ; 271(5): 2810-2823, 2024 May.
Article En | MEDLINE | ID: mdl-38418563

The phase III double-blind PROPEL study compared the novel two-component therapy cipaglucosidase alfa + miglustat (cipa + mig) with alglucosidase alfa + placebo (alg + pbo) in adults with late-onset Pompe disease (LOPD). This ongoing open-label extension (OLE; NCT04138277) evaluates long-term safety and efficacy of cipa + mig. Outcomes include 6-min walk distance (6MWD), forced vital capacity (FVC), creatine kinase (CK) and hexose tetrasaccharide (Hex4) levels, patient-reported outcomes and safety. Data are reported as change from PROPEL baseline to OLE week 52 (104 weeks post-PROPEL baseline). Of 118 patients treated in the OLE, 81 continued cipa + mig treatment from PROPEL (cipa + mig group; 61 enzyme replacement therapy [ERT] experienced prior to PROPEL; 20 ERT naïve) and 37 switched from alg + pbo to cipa + mig (switch group; 29 ERT experienced; 8 ERT naive). Mean (standard deviation [SD]) change in % predicted 6MWD from baseline to week 104 was + 3.1 (8.1) for cipa + mig and - 0.5 (7.8) for the ERT-experienced switch group, and + 8.6 (8.6) for cipa + mig and + 8.9 (11.7) for the ERT-naïve switch group. Mean (SD) change in % predicted FVC was - 0.6 (7.5) for cipa + mig and - 3.8 (6.2) for the ERT-experienced switch group, and - 4.8 (6.5) and - 3.1 (6.7), respectively, in ERT-naïve patients. CK and Hex4 levels improved in both treatment groups by week 104 with cipa + mig treatment. Three patients discontinued the OLE due to infusion-associated reactions. No new safety signals were identified. Cipa + mig treatment up to 104 weeks was associated with overall maintained improvements (6MWD, biomarkers) or stabilization (FVC) from baseline with continued durability, and was well tolerated, supporting long-term benefits for patients with LOPD.Trial registration number: NCT04138277; trial start date: December 18, 2019.


1-Deoxynojirimycin , 1-Deoxynojirimycin/analogs & derivatives , Enzyme Replacement Therapy , Glycogen Storage Disease Type II , Humans , Male , Female , Glycogen Storage Disease Type II/drug therapy , Middle Aged , Adult , 1-Deoxynojirimycin/administration & dosage , 1-Deoxynojirimycin/adverse effects , 1-Deoxynojirimycin/therapeutic use , Double-Blind Method , Enzyme Replacement Therapy/methods , alpha-Glucosidases/adverse effects , alpha-Glucosidases/administration & dosage , alpha-Glucosidases/therapeutic use , Drug Therapy, Combination , Treatment Outcome , Aged , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/adverse effects
8.
Glob Health Epidemiol Genom ; 2024: 9293896, 2024.
Article En | MEDLINE | ID: mdl-38410281

Fabry disease (FD) is a multisystem lysosomal storage disorder induced by genetic variants in the alpha-galactosidase A (αGalA) gene. Some FD patients have GLA variants with a reduction in overall αGalA enzymatic activity due to mutated proteins with reduced stability, caused by protein misfolding and premature degradation, but the αGalA catalytic activity remains conserved ("amenable" genetic variants). To correct this misfolding and to prevent premature degradation, migalastat, a small iminosugar molecule was developed. We report the clinical characteristics of FD "amenable" cohort patients from Argentina, prior to starting treatment with migalastat. Seventeen Fabry adult patients were recruited from 13 Argentinian Centers; 8 males (47.1%) and 9 females (52.9%) were included. All genotypes included were missense-type "amenables" mutations. Some classic FD typical early manifestations were more frequent in patients with "classic" versus "late-onset" FD phenotype (pain, p=0.002; cornea verticillata, p=0.019). There was a statistically significant difference in estimated glomerular filtration rate in the "classic" versus "late-onset" phenotype (p=0.026) but no difference between genders (p=0.695). Left ventricular mass was similar between genders (p=0.145) and phenotypes (p=0.303). Cardiovascular risk factors were present among "late-onset" females (obesity 50% and smoke 25%). In patients who started "de novo" migalastat, the main indications were (i) heart disease, (ii) kidney damage, and (iii) pain, while in "switched from prior enzyme replacement therapy" patients, the most frequent indication was "patient decision;" this coincides with publications by other authors.


1-Deoxynojirimycin/analogs & derivatives , Fabry Disease , Adult , Humans , Male , Female , Fabry Disease/epidemiology , Fabry Disease/genetics , Fabry Disease/drug therapy , 1-Deoxynojirimycin/therapeutic use , alpha-Galactosidase/genetics , alpha-Galactosidase/metabolism , alpha-Galactosidase/therapeutic use , Pain/chemically induced , Pain/drug therapy
9.
J Clin Lipidol ; 18(2): e285-e289, 2024.
Article En | MEDLINE | ID: mdl-38172008

Polyneuropathy is a frequently encountered clinical presentation where peripheral nerves are affected due to the same cause and physiopathological processes. We report a case of acute sensorimotor polyneuropathy in a patient with Tangier disease (TD) who was treated with miglustat which is a glycosphingolipid synthesis inhibitor. TD is a very rare genetic disorder caused by mutations in the ATP-binding cassette transporter A1 (ABCA1) gene which encodes the cholesterol efflux regulatory protein. It leads to accumulation of cholesterol esters within various tissues and affects lipid metabolism by deficiency of high-density lipoprotein (HDL) in the blood. Due to the accumulation of cholesterol esters in Schwann cells, it could provoke polyneuropathy in TD. Our case presented to our clinic with quadriparesis and after treated with miglustat therapy his weakness regressed.


1-Deoxynojirimycin , 1-Deoxynojirimycin/analogs & derivatives , Polyneuropathies , Tangier Disease , Humans , Tangier Disease/genetics , Tangier Disease/drug therapy , Tangier Disease/complications , Male , Polyneuropathies/drug therapy , Polyneuropathies/diagnosis , 1-Deoxynojirimycin/therapeutic use , Middle Aged , Acute Disease , ATP Binding Cassette Transporter 1/genetics
10.
J Neurol ; 271(4): 1787-1801, 2024 Apr.
Article En | MEDLINE | ID: mdl-38057636

Cipaglucosidase alfa plus miglustat (cipa + mig) is a novel, two-component therapy for Pompe disease. We report data from the Phase I/II ATB200-02 study for up to 48 months of treatment. Four adult cohorts, including one non-ambulatory ERT-experienced (n = 6) and three ambulatory cohorts, (two enzyme replacement therapy [ERT]-experienced cohorts [2-6 years (n = 11) and ≥ 7 years (n = 6)]), one ERT-naïve cohort (n = 6), received 20 mg/kg intravenous-infused cipa plus 260 mg oral mig biweekly. Change from baseline (CFBL) for multiple efficacy endpoints at 12, 24, 36, and 48 months, pharmacodynamics, pharmacokinetics, safety, and immunogenicity data were assessed. Six-minute walking distance (% predicted) improved at 12, 24, 36, and 48 months: pooled ambulatory ERT-experienced cohorts, mean(± standard deviation [SD]) CFBL: 6.1(± 7.84), n = 16; 5.4(± 10.56), n = 13; 3.4(± 14.66), n = 12; 5.9(± 17.36), n = 9, respectively; ERT-naïve cohort: 10.7(± 3.93), n = 6; 11.0(± 5.06), n = 6; 9.0(± 7.98), n = 5; 11.7(± 7.69), n = 4, respectively. Percent predicted forced vital capacity was generally stable in ERT-experienced cohorts, mean(± SD) CFBL - 1.2(± 5.95), n = 16; 1.0(± 7.96), n = 13; - 0.3(± 6.68), n = 10; 1.0(± 6.42), n = 6, respectively, and improved in the ERT-naïve cohort: 3.2(± 8.42), n = 6; 4.7(± 5.09), n = 6; 6.2(± 3.35), n = 5; 8.3(± 4.50), n = 4, respectively. Over 48 months, CK and Hex4 biomarkers improved in ambulatory cohorts. Overall, cipa + mig was well tolerated with a safety profile like alglucosidase alfa. ATB200-02 results show the potential benefits of cipa + mig as a long-term treatment option for Pompe disease. Trial registration number: NCT02675465 January 26, 2016.


1-Deoxynojirimycin/analogs & derivatives , Glycogen Storage Disease Type II , Propionates , Adult , Humans , Glycogen Storage Disease Type II/therapy , Treatment Outcome , alpha-Glucosidases/therapeutic use , Indoles , Enzyme Replacement Therapy/methods
11.
Clin Pharmacol Drug Dev ; 12(11): 1089-1098, 2023 11.
Article En | MEDLINE | ID: mdl-37300344

To investigate the bioequivalence of miglitol orally disintegrating tablets in healthy Chinese volunteers based on pharmacodynamic (PD) and pharmacokinetic (PK) parameters. Additionally, the safety profile was estimated. Two randomized, open-label, single-dose, crossover trials were conducted under fasting conditions. In the PD trial (CTR20191811), 45 healthy volunteers were randomly divided into 3 groups in a 1:1:1 ratio and administered sucrose alone or coadministered with 50 mg of miglitol orally disintegrating tablet test or reference formulation/sucrose. In the PK trial (CTR20191696), 24 healthy volunteers were randomized (1:1) to receive the test or reference formulation (50 mg). Blood samples were collected at 15 and 17 sampling points per cycle in the PD and PK trials, respectively. Plasma miglitol and serum glucose concentrations were analyzed using a validated liquid chromatography-tandem mass spectrometry method. Serum insulin concentrations were measured using electrochemiluminescent immunoassay. Statistical analyses for the PD and PK parameters were subsequently performed. The volunteers' physical indicators were monitored and documented during the entire study to estimate drug safety. The PD and PK parameters of the two formulations were similar. The main PD and PK end points were both within the prespecified range of 80%-125%. The incidences of treatment-emergent adverse events (TEAEs) and drug-related TEAEs were similar between the test and reference formulation groups, and no serious TEAEs or deaths occurred during the 2 trials. These 2 formulations were demonstrated to be bioequivalent and well tolerated in healthy Chinese volunteers under fasting condition.


1-Deoxynojirimycin , Humans , Area Under Curve , East Asian People , Fasting , Healthy Volunteers , Sucrose , Tablets , Tandem Mass Spectrometry , Therapeutic Equivalency , 1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/pharmacokinetics
12.
Int J Mol Sci ; 23(18)2022 Sep 08.
Article En | MEDLINE | ID: mdl-36142296

Alterations in the levels of serum sphingolipids and phospholipids have been reported in Gaucher disease and in Parkinson's disease, suggesting a potential role of these lipids as biomarkers. This project's objective is to detect novel associations and novel candidate biomarkers in the largest Spanish Gaucher and Parkinson diseases of the Iberian Peninsula. For that, 278 participants were included: 100 sporadic Parkinson's patients, 70 Gaucher patients, 15 GBA1-mutation-carrier Parkinson's patients and 93 controls. A serum lipidomics array including 10 phospholipid groups, 368 species, was performed using high-performance liquid chromatography-mass spectrometry. Lipid levels were compared between groups via multiple-regression analyses controlling for clinical and demographic parameters. Additionally, lipid levels were compared within the Gaucher and Parkinson's groups controlling for medication and/or disease severity. Results were controlled for robustness by filtering of non-detectable lipid values. There was an increase in the levels of phosphatidylcholine, with a simultaneous decrease in lyso-phosphatidylcholine, in the Gaucher, Parkinson's and GBA1-mutation-carrier Parkinson's patients vs. controls. Phosphatidylethanolamine, lyso- and plasmalogen-phosphatidylethanolamine were also increased in Gaucher and Parkinson's. Gaucher patients also showed an increase in lyso-phosphatidylserine and phosphatidylglycerol. While in the Gaucher and Parkinson's groups, velaglucerase alpha and dopamine agonists, respectively, showed positive associations with the lipid changes, miglustat treatment in Gaucher patients normalized the altered phosphatidylcholine/lyso-phosphatidylcholine ratio. In conclusion, Gaucher and Parkinson's patients showed changes in various serum phospholipid levels when compared with healthy controls, further supporting the role of such lipids in disease development and, possibly, as putative biomarkers. This hypothesis was reinforced by the normalizing effect of miglustat, and by controlling for data robustness, even though the limited number of participants, especially in the sub-distribution by treatment groups in GD requires validation in a larger number of patients.


Gaucher Disease , Parkinson Disease , 1-Deoxynojirimycin/analogs & derivatives , Biomarkers , Dopamine Agonists , Gaucher Disease/complications , Gaucher Disease/drug therapy , Gaucher Disease/genetics , Humans , Mutation , Parkinson Disease/complications , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Phosphatidylcholines , Phosphatidylethanolamines , Phosphatidylglycerols , Phosphatidylserines , Plasmalogens , Sphingolipids
13.
Clin Neuropharmacol ; 45(4): 107-109, 2022.
Article En | MEDLINE | ID: mdl-35696615

BACKGROUND: Niemann-Pick disease type C (NP-C) is a neurodegenerative lysosomal disease in which psychiatric symptoms, such as psychosis, can also be observed. Miglustat is indicated in cases with progressive neurological manifestations, and although there have been studies reporting that miglustat completely cures psychosis, it has been recently observed that miglustat may also trigger psychosis. We report on a rare case of probable miglustat-induced psychosis in a patient with NP-C. CASE: A 21-year-old female patient presented with a complaint of social isolation that started at the age of 6 years. During clinical follow-up, the patient's clinical progress deteriorated, and ocular apraxia, ataxia, seizures, and dementia developed at the age of 15 years. A genetic investigation was performed, and a homozygous p.P120S (c.358C > T) variant was detected in the NPC2 gene. Miglustat was initiated at the age of 15 years, and during the 6 months of treatment, psychotic symptoms such as unwarranted anger, suspiciousness, and delusions developed. Consequently, the miglustat was discontinued by the parents of the patient, and the psychosis completely disappeared. The patient has experienced no further psychotic episodes in the approximately 5.5 years following the discontinuation of therapy. CONCLUSION: Although a positive effect of miglustat on neurological and psychiatric symptoms has been reported, there exists a risk of psychosis being triggered. To the best of our knowledge, this is the first case of pediatric NP-C to develop psychosis after miglustat to be reported in literature. Further studies of such cases are needed to understand the impact of miglustat on psychiatric symptoms in NP-C.


Niemann-Pick Disease, Type C , Psychotic Disorders , 1-Deoxynojirimycin/adverse effects , 1-Deoxynojirimycin/analogs & derivatives , Adolescent , Adult , Child , Enzyme Inhibitors/therapeutic use , Female , Humans , Niemann-Pick Disease, Type C/complications , Niemann-Pick Disease, Type C/diagnosis , Niemann-Pick Disease, Type C/drug therapy , Psychotic Disorders/diagnosis , Psychotic Disorders/drug therapy , Young Adult
14.
Eur Heart J Cardiovasc Pharmacother ; 8(3): 272-281, 2022 05 05.
Article En | MEDLINE | ID: mdl-35512362

AIMS: Fabry disease (FD) is an X-linked lysosomal storage disorder caused by a deficiency of the lysosomal enzyme α-galactosidase A (GLA/AGAL), resulting in the lysosomal accumulation of globotriaosylceramide (Gb3). Patients with amenable GLA mutations can be treated with migalastat, an oral pharmacological chaperone increasing endogenous AGAL activity. In this prospective observational multicentre study, safety as well as cardiovascular, renal, and patient-reported outcomes and disease biomarkers were assessed after 12 and 24 months of migalastat treatment under 'real-world' conditions. METHODS AND RESULTS: A total of 54 patients (26 females) (33 of these [61.1%] pre-treated with enzyme replacement therapy) with amenable mutations were analysed. Treatment was generally safe and well tolerated. A total of 153 events per 1000 patient-years were detected. Overall left ventricular mass index decreased after 24 months (all: -7.5 ± 17.4 g/m2, P = 0.0118; females: -4.6 ± 9.1 g/m2, P = 0.0554; males: -9.9 ± 22.2 g/m2, P = 0.0699). After 24 months, females and males presented with a moderate yearly loss of estimated glomerular filtration rate (-2.6 and -4.4 mL/min/1.73 m2 per year; P = 0.0317 and P = 0.0028, respectively). FD-specific manifestations/symptoms remained stable (all P > 0.05). A total of 76.9% of females and 50% of males suffered from pain, which has not improved under treatment. FD-specific disease scores (Disease Severity Scoring System and Mainz Severity Score Index) remained stable during treatment. AGAL activities and plasma lyso-Gb3 values remained stable, although some male patients presented with increasing lyso-Gb3 levels over time. CONCLUSIONS: Treatment with migalastat was generally safe and resulted in most patients in an amelioration of left ventricular mass. However, due to the heterogeneity of FD phenotypes, it is advisable that the treating physician monitors the clinical response regularly.


Fabry Disease , 1-Deoxynojirimycin/adverse effects , 1-Deoxynojirimycin/analogs & derivatives , Disease Management , Fabry Disease/diagnosis , Fabry Disease/drug therapy , Fabry Disease/genetics , Female , Humans , Male , Prospective Studies
15.
Exp Cell Res ; 416(2): 113175, 2022 07 15.
Article En | MEDLINE | ID: mdl-35487270

Niemann Pick type C is an inborn error of metabolism (IEM), classified as a lysosomal storage disease (LSD) caused by a dysfunction in NPC transport protein, that leads to intracellular accumulation of non-esterified cholesterol and other lipids. Clinical manifestations are ample, with visceral and neurological symptoms. Miglustat, a molecule that reversibly inhibits glucosylceramide synthase is used as treatment for this disorder. Studies demonstrated the influence of oxidative stress and inflammation in IEM, as well in animal model of NP-C disease. Nonetheless, literature lacks data on patients, so our work aimed to investigate if there is influence of chronic inflammation in the pathophysiology of NP-C disease, and the effect of miglustat, N-acetylcysteine (NAC) and Coenzyme Q10 (CoQ10). We evaluated the plasmatic cytokines in NPC patients at diagnosis and during the treatment with miglustat. Additionally, we performed an in vitro study with antioxidants NAC (1 mM and 2.5 mM) and CoQ10 (5 µM and 10 µM), where we could verify its effect on inflammatory parameters, as well as in cholesterol accumulation. Our results showed that NP-C patients have higher plasmatic levels of pro and anti-inflammatory cytokines (IL-6, IL-8, and IL-10) at diagnosis and the treatment with miglustat was able to restore it. In vitro study showed that treatment with antioxidants in higher concentrations significantly decrease cholesterol accumulation, and NAC at 2.5 mM normalized the level of pro-inflammatory cytokines. Although the mechanism is not completely clear, it can be related to restoration in lipid traffic and decrease in oxidative stress caused by antioxidants.


Niemann-Pick Disease, Type C , 1-Deoxynojirimycin/analogs & derivatives , Acetylcysteine/pharmacology , Antioxidants/pharmacology , Cholesterol , Cytokines , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Humans , Inflammation/drug therapy , Niemann-Pick Disease, Type C/drug therapy , Ubiquinone/analogs & derivatives
16.
Diabetes ; 71(5): 1063-1072, 2022 05 01.
Article En | MEDLINE | ID: mdl-35179550

Antecedent hypoglycemia suppresses the counterregulatory responses to subsequent hypoglycemic episodes, which can be prevented by normalizing portal-mesenteric vein (PMV) glycemia alone during the antecedent bout. Since the sodium-glucose transporter 3 receptor has been implicated in PMV glucosensing, we hypothesized that PMV infusion of the sodium-glucose cotransporter 3 receptor agonist N-hydroxyethyl-1-deoxynojirimycin (miglitol) would rescue the sympathoadrenal response to subsequent hypoglycemia. Rats underwent hyperinsulinemic-hypoglycemic clamps on 2 consecutive days without miglitol infusion (antecedent hypoglycemia without miglitol [HYPO]) or with miglitol infused upstream in the PMV, perfusing the glucosensors, or adjacent to the liver, bypassing PMV glucosensors, on day 1 or day 2. Control animals underwent day 1 euglycemic clamps, followed by hypoglycemic clamps on day 2. Peak epinephrine (EPI) responses for HYPO on day 2 were significantly blunted when compared with controls. Miglitol infusion on day 1 proved ineffective in restoring the EPI response following antecedent hypoglycemia, but day 2 miglitol infusion restored EPI responses to control levels. As norepinephrine and glucagon demonstrated similar responses, day 2 administration of miglitol effectively restored the counterregulatory response following antecedent hypoglycemia. In subsequent experiments, we demonstrate similar results with reduced miglitol infusion doses, approaching those currently prescribed for type 2 diabetes (correcting for rodent size), as well as the efficacy of oral miglitol administration in restoring the counterregulatory responses following antecedent hypoglycemia.


Diabetes Mellitus, Type 2 , Hypoglycemia , 1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/therapeutic use , Animals , Blood Glucose , Epinephrine , Glucose Clamp Technique , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Insulin , Norepinephrine , Rats , Sodium
17.
Int J Mol Sci ; 23(3)2022 Feb 08.
Article En | MEDLINE | ID: mdl-35163813

Fabry disease is an X-linked lysosomal multisystem storage disorder induced by a mutation in the alpha-galactosidase A (GLA) gene. Reduced activity or deficiency of alpha-galactosidase A (AGAL) leads to escalating storage of intracellular globotriaosylceramide (GL-3) in numerous organs, including the kidneys, heart and nerve system. The established treatment for 20 years is intravenous enzyme replacement therapy. Lately, oral chaperone therapy was introduced and is a therapeutic alternative in patients with amenable mutations. Early starting of therapy is essential for long-term improvement. This review describes chaperone therapy in Fabry disease.


1-Deoxynojirimycin/analogs & derivatives , Fabry Disease/drug therapy , alpha-Galactosidase/genetics , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/therapeutic use , Fabry Disease/genetics , Fabry Disease/metabolism , Humans , Male , Mutation , Time-to-Treatment , Trihexosylceramides/metabolism , alpha-Galactosidase/metabolism
18.
J Med Chem ; 65(3): 2329-2341, 2022 02 10.
Article En | MEDLINE | ID: mdl-35072486

In recent years, the function of pharmacological chaperones as a "thermodynamic stabilizer" has been attracting attention in combination therapy. The coadministration of a pharmacological chaperone and recombinant human acid α-glucosidase (rhGAA) leads to improved stability and maturation by binding to the folded state of the rhGAA and thereby promotes enzyme delivery. This study provides the first example of a strategy to design a high-affinity ligand toward lysosomal acid α-glucosidase (GAA) focusing on alkyl branches on 1-deoxynojirimycin (DNJ); 5-C-heptyl-DNJ produced a nanomolar affinity for GAA with a Ki value of 0.0047 µM, which is 13-fold more potent than DNJ. The protein thermal shift assay revealed that 10 µM 5-C-heptyl-DNJ increased the midpoint of the protein denaturation temperature (Tm) to 73.6 °C from 58.6 °C in the absence of the ligand, significantly improving the thermal stability of rhGAA. Furthermore, 5-C-heptyl-DNJ dose dependency increased intracellular GAA activities in Pompe patient's fibroblasts with the M519V mutation. The introduction of C5 alkyl branches on DNJ provides a new molecular strategy for pharmacological chaperone therapy for Pompe disease, which may lead to the development of higher-affinity and practically useful chaperones.


1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/pharmacology , Enzyme Inhibitors/pharmacology , alpha-Glucosidases/metabolism , Alkylation , Enzyme Inhibitors/chemical synthesis , Fibroblasts/metabolism , Glycogen Storage Disease Type II , Humans , Molecular Dynamics Simulation , Molecular Structure , Mutation , Protein Conformation/drug effects , Protein Stability/drug effects , Recombinant Proteins/drug effects , Recombinant Proteins/metabolism , alpha-Glucosidases/drug effects , alpha-Glucosidases/genetics
19.
Carbohydr Res ; 511: 108479, 2022 Jan.
Article En | MEDLINE | ID: mdl-34798489

Three new classes of nojirimycin analogues viz. N-alkyl with C1-substituent (4-phenylbutyl), N-substituted 1-deoxynojirimycin and its congener δ-lactam, and a 4-phenylbutyl-ß-C-glycoside were designed and synthesized for immunological studies. The resulting diverse compound library exhibited proliferation of B Cells and T cells induced by LPS and Con A, respectively. The majority of the analogues augmented the secretion of IL-12 in dendritic cells and TNF-α secretion in murine peritoneal macrophages compared to LPS (10 µg/ml). A deoxynojirimycin-triazole conjugate of phytosphingosine analogue was superior in the responses mentioned above and exhibited nitric oxide response equal to LPS. In comparison to findings on its congeners with immunosuppressive action, early immunological tests show that the novel nojirimycin analogues have immunopotentiating effect. Hence, nojirimycin analogues offer tremendous potential in tuning the immunomodulatory activity of iminosugars by subtle to substantial structural variations.


1-Deoxynojirimycin , Tumor Necrosis Factor-alpha , 1-Deoxynojirimycin/analogs & derivatives , Animals , Mice
20.
Carbohydr Res ; 511: 108491, 2022 Jan.
Article En | MEDLINE | ID: mdl-34953389

A set of bicyclic iminosugar C-glycosides, based on an octahydrofuro[3,2-b]pyridine motif, has been synthesized from a C-allyl iminosugar exploiting a debenzylative iodocycloetherification and an iodine nucleophilic displacement as the key steps. The halogen allowed the introduction of a range of aglycon moieties of different sizes bearing several functionalities such as alcohol, amine, amide and triazole. In these carbohydrate mimics the fused THF ring forces the piperidine to adopt a flattened 4C1 conformation according to NMR and DFT calculations studies. In their deprotected form, these bicycles were assayed on a panel of 23 glycosidases. The iminosugars displaying hydrophobic aglycon moieties proved to be superior glycosidase inhibitors, leading to a low micromolar inhibition of human lysosome ß-glucosidase (compound 11; IC50 = 2.7 µM) and rice α-glucosidase (compound 10; IC50 = 7.7 µM). Finally, the loose structural analogy of these derivatives with Thiamet G, a potent OGA bicyclic inhibitor, was illustrated by the weak OGA inhibitory activity (Ki = 140 µM) of iminosugar 5.


Glycoside Hydrolases , Imino Sugars , 1-Deoxynojirimycin/analogs & derivatives , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glycoside Hydrolases/chemistry , Glycosides/pharmacology , Humans , Imino Sugars/chemistry , Imino Sugars/pharmacology , Pyridines
...