Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 959
Filter
1.
Commun Biol ; 7(1): 855, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997419

ABSTRACT

Depending on their phosphorylation status, derivatives of phosphatidylinositol play important roles in vesicle identity, recognition and intracellular trafficking processes. In eukaryotic cells, phosphatidylinositol-4 phosphate pools generated by specific kinases are key determinants of the conventional secretion pathways. Earlier work in yeast has classified phosphatidylinositol-4 kinases in two types, Stt4p and Pik1p belonging to type III and Lsb6p to type II, with distinct cellular localizations and functions. Eurotiomycetes appear to lack Pik1p homologues. In Aspergillus nidulans, unlike homologues in other fungi, AnLsb6 is associated to late Golgi membranes and when heterologously overexpressed, it compensates for the thermosensitive phenotype in a Saccharomyces cerevisiae pik1 mutant, whereas its depletion leads to disorganization of Golgi-associated PHOSBP-labelled membranes, that tend to aggregate dependent on functional Rab5 GTPases. Evidence provided herein, indicates that the single type II phosphatidylinositol-4 kinase AnLsb6 is the main contributor for decorating secretory vesicles with relevant phosphatidylinositol-phosphate species, which navigate essential cargoes following the route of apical polarization via endocytic recycling.


Subject(s)
1-Phosphatidylinositol 4-Kinase , Endocytosis , Golgi Apparatus , Saccharomyces cerevisiae , 1-Phosphatidylinositol 4-Kinase/metabolism , 1-Phosphatidylinositol 4-Kinase/genetics , Aspergillus nidulans/metabolism , Aspergillus nidulans/genetics , Aspergillus nidulans/enzymology , Fungal Proteins/metabolism , Fungal Proteins/genetics , Golgi Apparatus/metabolism , Phosphatidylinositol Phosphates/metabolism , Protein Transport , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics
2.
J Med Chem ; 67(13): 11401-11420, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38918002

ABSTRACT

Structure-activity relationship studies of 2,8-disubstituted-1,5-naphthyridines, previously reported as potent inhibitors of Plasmodium falciparum (Pf) phosphatidylinositol-4-kinase ß (PI4K), identified 1,5-naphthyridines with basic groups at 8-position, which retained Plasmodium PI4K inhibitory activity but switched primary mode of action to the host hemoglobin degradation pathway through inhibition of hemozoin formation. These compounds showed minimal off-target inhibitory activity against the human phosphoinositide kinases and MINK1 and MAP4K kinases, which were associated with the teratogenicity and testicular toxicity observed in rats for the PfPI4K inhibitor clinical candidate MMV390048. A representative compound from the series retained activity against field isolates and lab-raised drug-resistant strains of Pf. It was efficacious in the humanized NSG mouse malaria infection model at a single oral dose of 32 mg/kg. This compound was nonteratogenic in the zebrafish embryo model of teratogenicity and has a low predicted human dose, indicating that this series has the potential to deliver a preclinical candidate for malaria.


Subject(s)
1-Phosphatidylinositol 4-Kinase , Antimalarials , Hemeproteins , Naphthyridines , Plasmodium falciparum , Zebrafish , Plasmodium falciparum/drug effects , Animals , Naphthyridines/pharmacology , Naphthyridines/chemistry , Naphthyridines/chemical synthesis , Naphthyridines/therapeutic use , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/chemical synthesis , 1-Phosphatidylinositol 4-Kinase/antagonists & inhibitors , 1-Phosphatidylinositol 4-Kinase/metabolism , Humans , Structure-Activity Relationship , Hemeproteins/antagonists & inhibitors , Hemeproteins/metabolism , Mice , Rats , Malaria, Falciparum/drug therapy , Male , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis
3.
J Cell Physiol ; 239(4): e31195, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38230579

ABSTRACT

Phosphatidylinositol 4-kinase beta (PI4KB) is a member of the PI4K family, which is mainly enriched and functions in the Golgi apparatus. The kinase domain of PI4KB catalyzes the phosphorylation of phosphatidylinositol to form phosphatidylinositol 4-phosphate, a process that regulates various sub-cellular events, such as non-vesicular cholesterol and ceramide transport, protein glycosylation, and vesicle transport, as well as cytoplasmic division. In this study, a strain of PI4KB knockout mouse, immunofluorescence, reverse transcription polymerase chain reaction and microinjection were used to characterize the cytological location and biological function of PI4KB in the mouse embryos. we found that knocking down Pi4kb in mouse embryos resulted in embryonic lethality at around embryonic day (E) 7.5. Additionally, we observed dramatic fluctuations in PI4KB expression during the development of preimplantation embryos, with high expression in the 4-cell and morula stages. PI4KB colocalized with the Golgi marker protein TGN46 in the perinuclear and cytoplasmic regions in early blastomeres. Postimplantation, PI4KB was highly expressed in the epiblast of E7.5 embryos. Treatment of embryos with PI4KB inhibitors was found to inhibit the development of the morula into a blastocyst and the normal progression of cytoplasmic division during the formation of a 4-cell embryo. These findings suggest that PI4KB plays an important role in mouse embryogenesis by regulating various intracellular vital functions of embryonic cells.


Subject(s)
1-Phosphatidylinositol 4-Kinase , Embryonic Development , Animals , Mice , 1-Phosphatidylinositol 4-Kinase/genetics , 1-Phosphatidylinositol 4-Kinase/metabolism , Blastocyst/physiology , Embryo, Mammalian , Embryonic Development/genetics , Mice, Knockout , Mice, Inbred C57BL
4.
J Virol ; 98(2): e0174923, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38189249

ABSTRACT

Enterovirus 71 (EV71) is one of the major pathogens causing hand, foot, and mouth disease in children under 5 years old, which can result in severe neurological complications and even death. Due to limited treatments for EV71 infection, the identification of novel host factors and elucidation of mechanisms involved will help to counter this viral infection. N-terminal acetyltransferase 6 (NAT6) was identified as an essential host factor for EV71 infection with genome-wide CRISPR/Cas9 screening. NAT6 facilitates EV71 viral replication depending on its acetyltransferase activity but has little effect on viral release. In addition, NAT6 is also required for Echovirus 7 and coxsackievirus B5 infection, suggesting it might be a pan-enterovirus host factor. We further demonstrated that NAT6 is required for Golgi integrity and viral replication organelle (RO) biogenesis. NAT6 knockout significantly inhibited phosphatidylinositol 4-kinase IIIß (PI4KB) expression and PI4P production, both of which are key host factors for enterovirus infection and RO biogenesis. Further mechanism studies confirmed that NAT6 formed a complex with its substrate actin and one of the PI4KB recruiters-acyl-coenzyme A binding domain containing 3 (ACBD3). Through modulating actin dynamics, NAT6 maintained the integrity of the Golgi and the stability of ACBD3, thereby enhancing EV71 infection. Collectively, these results uncovered a novel mechanism of N-acetyltransferase supporting EV71 infection.IMPORTANCEEnterovirus 71 (EV71) is an important pathogen for children under the age of five, and currently, no effective treatment is available. Elucidating the mechanism of novel host factors supporting viral infection will reveal potential antiviral targets and aid antiviral development. Here, we demonstrated that a novel N-acetyltransferase, NAT6, is an essential host factor for EV71 replication. NAT6 could promote viral replication organelle (RO) formation to enhance viral replication. The formation of enterovirus ROs requires numerous host factors, including acyl-coenzyme A binding domain containing 3 (ACBD3) and phosphatidylinositol 4-kinase IIIß (PI4KB). NAT6 could stabilize the PI4KB recruiter, ACBD3, by inhibiting the autophagy degradation pathway. This study provides a fresh insight into the relationship between N-acetyltransferase and viral infection.


Subject(s)
Enterovirus A, Human , Enterovirus Infections , N-Terminal Acetyltransferases , Phosphotransferases (Alcohol Group Acceptor) , Child , Child, Preschool , Humans , 1-Phosphatidylinositol 4-Kinase/metabolism , Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Antiviral Agents , Coenzyme A/metabolism , Coxsackievirus Infections , Enterovirus A, Human/physiology , Enterovirus Infections/metabolism , Enterovirus Infections/virology , Membrane Proteins/metabolism , N-Terminal Acetyltransferases/metabolism , Organelle Biogenesis , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Virus Replication/physiology
5.
Biochem Pharmacol ; 220: 115993, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38151075

ABSTRACT

Phosphatidylinositol 4-kinases (PI4Ks) could phosphorylate phosphatidylinositol (PI) to produce phosphatidylinositol 4-phosphate (PI4P) and maintain its metabolic balance and location. PI4P, the most abundant monophosphate inositol in eukaryotic cells, is a precursor of higher phosphoinositols and an essential substrate for the PLC/PKC and PI3K/Akt signaling pathways. PI4Ks regulate vesicle transport, signal transduction, cytokinesis, and cell unity, and are involved in various physiological and pathological processes, including infection and growth of parasites such as Plasmodium and Cryptosporidium, replication and survival of RNA viruses, and the development of tumors and nervous system diseases. The development of novel drugs targeting PI4Ks and PI4P has been the focus of the research and clinical application of drugs, especially in recent years. In particular, PI4K inhibitors have made great progress in the treatment of malaria and cryptosporidiosis. We describe the biological characteristics of PI4Ks; summarize the physiological functions and effector proteins of PI4P; and analyze the structural basis of selective PI4K inhibitors for the treatment of human diseases in this review. Herein, this review mainly summarizes the developments in the structure and enzyme activity of PI4K inhibitors.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Humans , 1-Phosphatidylinositol 4-Kinase , Phosphatidylinositol 3-Kinases/metabolism , Cryptosporidium/metabolism , Phosphatidylinositol Phosphates , Phosphatidylinositols/metabolism
6.
Cell Rep ; 42(12): 113528, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38041817

ABSTRACT

Apolipoproteins L1 and L3 (APOLs) are associated at the Golgi with the membrane fission factors phosphatidylinositol 4-kinase-IIIB (PI4KB) and non-muscular myosin 2A. Either APOL1 C-terminal truncation (APOL1Δ) or APOL3 deletion (APOL3-KO [knockout]) reduces PI4KB activity and triggers actomyosin reorganization. We report that APOL3, but not APOL1, controls PI4KB activity through interaction with PI4KB and neuronal calcium sensor-1 or calneuron-1. Both APOLs are present in Golgi-derived autophagy-related protein 9A vesicles, which are involved in PI4KB trafficking. Like APOL3-KO, APOL1Δ induces PI4KB dissociation from APOL3, linked to reduction of mitophagy flux and production of mitochondrial reactive oxygen species. APOL1 and APOL3, respectively, can interact with the mitophagy receptor prohibitin-2 and the mitophagosome membrane fusion factor vesicle-associated membrane protein-8 (VAMP8). While APOL1 conditions PI4KB and APOL3 involvement in mitochondrion fission and mitophagy, APOL3-VAMP8 interaction promotes fusion between mitophagosomal and endolysosomal membranes. We propose that APOL3 controls mitochondrial membrane dynamics through interactions with the fission factor PI4KB and the fusion factor VAMP8.


Subject(s)
Apolipoprotein L1 , Mitochondrial Membranes , Apolipoprotein L1/genetics , Mitochondrial Membranes/metabolism , Golgi Apparatus/metabolism , Mitochondria , 1-Phosphatidylinositol 4-Kinase/metabolism , Apolipoproteins/genetics , Apolipoproteins/metabolism , Mitochondrial Dynamics
7.
Mol Med ; 29(1): 154, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37936054

ABSTRACT

BACKGROUND: Tyrosine kinase and phosphoinositide kinase pathways play important roles in asthma formation. As a dual tyrosine and phosphoinositide kinase inhibitor, PP121 has shown anticancer efficacy in multiple tumors. However, the study of PP121 in pulmonary diseases is still limited. Herein, we investigated the therapeutic activities of PP121 in asthma treatment. METHODS: Tension measurements and patch clamp recordings were made to investigate the anticontractile characteristics of PP121 in vitro. Then, an asthma mouse model was established to further explore the therapeutic characteristics of PP121 via measurement of respiratory system resistance, histological analysis and western blotting. RESULTS: We discovered that PP121 could relax precontracted mouse tracheal rings (mTRs) by blocking certain ion channels, including L-type voltage-dependent Ca2+ channels (L-VDCCs), nonselective cation channels (NSCCs), transient receptor potential channels (TRPCs), Na+/Ca2+ exchangers (NCXs) and K+ channels, and accelerating calcium mobilization. Furthermore, PP121 relieved asthmatic pathological features, including airway hyperresponsiveness, systematic inflammation and mucus secretion, via downregulation of inflammatory factors, mucins and the mitogen-activated protein kinase (MAPK)/Akt signaling pathway in asthmatic mice. CONCLUSION: In summary, PP121 exerts dual anti-contractile and anti-inflammatory effects in asthma treatment, which suggests that PP121 might be a promising therapeutic compound and shed new light on asthma therapy.


Subject(s)
Asthma , Respiratory Hypersensitivity , Animals , Mice , 1-Phosphatidylinositol 4-Kinase/metabolism , Asthma/drug therapy , Respiratory Hypersensitivity/metabolism , Inflammation/metabolism , Mucus/metabolism , Disease Models, Animal , Mice, Inbred BALB C , Ovalbumin
8.
Cancer Sci ; 114(12): 4691-4705, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37840379

ABSTRACT

B-cell lymphomas (BCLs) are the most common disease entity among hematological malignancies and have various genetically and molecularly distinct subtypes. In this study, we revealed that the blockade of phosphoinositide-dependent kinase-1 (PDPK1), the master kinase of AGC kinases, induces a growth inhibition via cell cycle arrest and the induction of apoptosis in all eight BCL-derived cell lines examined, including those from activated B-cell-like diffuse large B-cell lymphoma (DLBCL), double expressor DLBCL, Burkitt lymphoma, and follicular lymphoma. We also demonstrated that, in these cell lines, RSK2, AKT, and S6K, but not PLK1, SGK, or PKC, are the major downstream therapeutic target molecules of PDPK1 and that RSK2 plays a central role and AKT and S6K play subsidiary functional roles as the downstream effectors of PDPK1 in cell survival and proliferation. Following these results, we confirmed the antilymphoma efficacy of TAS0612, a triple inhibitor for total RSK, including RSK2, AKT, and S6K, not only in these cell lines, regardless of disease subtypes, but also in all 25 patient-derived B lymphoma cells of various disease subtypes. At the molecular level, TAS0612 caused significant downregulation of MYC and mTOR target genes while inducing the tumor suppressor TP53INP1 protein in these cell lines. These results prove that the simultaneous blockade of RSK2, AKT, and S6K, which are the pivotal downstream substrates of PDPK1, is a novel therapeutic target for the various disease subtypes of BCLs and line up TAS0612 as an attractive candidate agent for BCLs for future clinical development.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , 1-Phosphatidylinositol 4-Kinase/metabolism , Cell Line , Protein Kinase Inhibitors/therapeutic use , Tumor Suppressor Proteins/metabolism , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Cell Line, Tumor , Carrier Proteins , Heat-Shock Proteins/metabolism , 3-Phosphoinositide-Dependent Protein Kinases/metabolism
9.
New Phytol ; 240(1): 354-371, 2023 10.
Article in English | MEDLINE | ID: mdl-37571862

ABSTRACT

The Tubby domain, named after the TUBBY protein in mice, binds to phosphatidylinositol 4,5-bisphosphate. Arabidopsis has 11 Tubby domain-containing proteins referred to as Tubby-Like Proteins (TLPs). Of the 11 TLPs, 10 possess the N-terminal F-box domain, which can interact with SKP-like proteins and form SKP1-Cullin-F-box E3 ligase complexes. Although mice TUBBY has been extensively studied, plant TLPs' functions are scarcely detailed. In this study, we show that the Arabidopsis Tubby-like protein 6 (TLP6) and its redundant homologs, TLP1, TLP2, TLP5, and TLP10, positively regulate Arabidopsis immune responses. Furthermore, in an immunoprecipitation mass spectrometry analysis to search for ubiquitination substrates of the TLPs, we identified two redundant phosphoinositide biosynthesis enzymes, phosphatidylinositol 4-kinase ß proteins (PI4Kßs), PI4Kß1 and PI4Kß2, as TLP interactors. Importantly, TLP6 overexpression lines fully phenocopy the phenotypes of the pi4kß1,2 mutant, while TLP6 overexpression also leads to increased PI4Kß2 ubiquitination and reduction in its protein level in a proteasome-dependent manner. Most significantly, TLP6 overexpression does not further enhance the autoimmunity of the pi4kß1,2 double mutant, supporting the hypothesis that TLP6 targets the PI4Kßs for ubiquitination and degradation. Thus, our study reveals a novel mechanism where TLPs promote plant immune responses by modulating the PI4Kßs protein levels.


Subject(s)
Arabidopsis Proteins , Arabidopsis , F-Box Proteins , Animals , Mice , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , F-Box Proteins/genetics , 1-Phosphatidylinositol 4-Kinase/metabolism , Cytoplasm/metabolism
10.
Am J Chin Med ; 51(6): 1431-1457, 2023.
Article in English | MEDLINE | ID: mdl-37530505

ABSTRACT

Chicoric acid (CA), a functional food ingredient, is a caffeic acid derivative that is mainly found in lettuce, pulsatilla, and other natural plants. However, the anti-inflammatory effects of CA in acute lung injury (ALI) remain poorly understood. This study was conducted to investigate potential drug usage of CA for ALI and the underlying molecular mechanisms of inflammation. C57BL/6 mice were given injections of liposaccharide (LPS) to establish the in vivo model. Meanwhile, BMDM cells were stimulated with LPS+ATP to build the in vitro model. CA significantly alleviated inflammation and oxidative stress in both the in vivo and in vitro models of ALI through the inhibition of NLR family pyrin domain-containing 3 (NLRP3)-mediated pyroptosis. In addition, CA attenuated mitochondrial damage to suppress NLRP3-mediated pyroptosis in the in vivo and in vitro models of ALI by suppressing the production of reactive oxygen species (ROS) via inhibiting the Akt/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. CA inhibited the interaction between Akt at T308 and phosphoinositide-dependent kinase-1 (PDPK1) at S549, thus promoting the phosphorylation of the Akt protein. Furthermore, CA directly targeted the PDPK1 protein and accelerated PDPK1 ubiquitination, indicating that 91-GLY, 111-LYS, 126-TYR, 162-ALA, 205-ASP, and 223-ASP might be responsible for the interaction between PDPK1 and CA. In conclusion, CA from Lettuce alleviated NLRP3-mediated pyroptosis in the ALI model through ROS-induced mitochondrial damage by activating Akt/Nrf2 pathway via PDPK1 ubiquitination. The present study suggests that CA might be a potential therapeutic drug to treat or prevent ALI in pneumonia or COVID-19.


Subject(s)
Acute Lung Injury , COVID-19 , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Proto-Oncogene Proteins c-akt , Pyroptosis , 1-Phosphatidylinositol 4-Kinase , Lipopolysaccharides/adverse effects , NF-E2-Related Factor 2/metabolism , Mice, Inbred C57BL , Acute Lung Injury/etiology , Acute Lung Injury/chemically induced , Inflammation/drug therapy
11.
Microbiol Spectr ; 11(4): e0055223, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37436162

ABSTRACT

Enteroviruses are one of the most abundant viruses causing mild to serious acute infections in humans and also contributing to chronic diseases like type 1 diabetes. Presently, there are no approved antiviral drugs against enteroviruses. Here, we studied the potency of vemurafenib, an FDA-approved RAF kinase inhibitor for treating BRAFV600E mutant-related melanoma, as an antiviral against enteroviruses. We showed that vemurafenib prevented enterovirus translation and replication at low micromolar dosage in an RAF/MEK/ERK-independent manner. Vemurafenib was effective against group A, B, and C enteroviruses, as well as rhinovirus, but not parechovirus or more remote viruses such as Semliki Forest virus, adenovirus, and respiratory syncytial virus. The inhibitory effect was related to a cellular phosphatidylinositol 4-kinase type IIIß (PI4KB), which has been shown to be important in the formation of enteroviral replication organelles. Vemurafenib prevented infection efficiently in acute cell models, eradicated infection in a chronic cell model, and lowered virus amounts in pancreas and heart in an acute mouse model. Altogether, instead of acting through the RAF/MEK/ERK pathway, vemurafenib affects the cellular PI4KB and, hence, enterovirus replication, opening new possibilities to evaluate further the potential of vemurafenib as a repurposed drug in clinical care. IMPORTANCE Despite the prevalence and medical threat of enteroviruses, presently, there are no antivirals against them. Here, we show that vemurafenib, an FDA-approved RAF kinase inhibitor for treating BRAFV600E mutant-related melanoma, prevents enterovirus translation and replication. Vemurafenib shows efficacy against group A, B, and C enteroviruses, as well as rhinovirus, but not parechovirus or more remote viruses such as Semliki Forest virus, adenovirus, and respiratory syncytial virus. The inhibitory effect acts through cellular phosphatidylinositol 4-kinase type IIIß (PI4KB), which has been shown to be important in the formation of enteroviral replication organelles. Vemurafenib prevents infection efficiently in acute cell models, eradicates infection in a chronic cell model, and lowers virus amounts in pancreas and heart in an acute mouse model. Our findings open new possibilities to develop drugs against enteroviruses and give hope for repurposing vemurafenib as an antiviral drug against enteroviruses.


Subject(s)
Enterovirus Infections , Enterovirus , Melanoma , Animals , Mice , Humans , Vemurafenib/pharmacology , Vemurafenib/therapeutic use , 1-Phosphatidylinositol 4-Kinase , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Melanoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Enterovirus Infections/drug therapy , Mitogen-Activated Protein Kinase Kinases , Mutation
12.
J Allergy Clin Immunol ; 152(4): 949-960, 2023 10.
Article in English | MEDLINE | ID: mdl-37390900

ABSTRACT

BACKGROUND: The actin cytoskeleton has a crucial role in the maintenance of the immune homeostasis by controlling various cellular processes, including cell migration. Mutations in TTC7A have been described as the cause of a primary immunodeficiency associated to different degrees of gut involvement and alterations in the actin cytoskeleton dynamics. OBJECTIVES: This study investigates the impact of TTC7A deficiency in immune homeostasis. In particular, the role of the TTC7A/phosphatidylinositol 4 kinase type III α pathway in the control of leukocyte migration and actin dynamics. METHODS: Microfabricated devices were leveraged to study cell migration and actin dynamics of murine and patient-derived leukocytes under confinement at the single-cell level. RESULTS: We show that TTC7A-deficient lymphocytes exhibit an altered cell migration and reduced capacity to deform through narrow gaps. Mechanistically, TTC7A-deficient phenotype resulted from impaired phosphoinositide signaling, leading to the downregulation of the phosphoinositide 3-kinase/AKT/RHOA regulatory axis and imbalanced actin cytoskeleton dynamics. TTC7A-associated phenotype resulted in impaired cell motility, accumulation of DNA damage, and increased cell death in dense 3-dimensional gels in the presence of chemokines. CONCLUSIONS: These results highlight a novel role of TTC7A as a critical regulator of lymphocyte migration. Impairment of this cellular function is likely to contribute to the pathophysiology underlying progressive immunodeficiency in patients.


Subject(s)
Actins , Phosphatidylinositol 3-Kinases , Humans , Animals , Mice , Cell Death , Mutation , Cell Movement/genetics , DNA Damage , Proteins , 1-Phosphatidylinositol 4-Kinase
13.
Autophagy ; 19(10): 2682-2701, 2023 10.
Article in English | MEDLINE | ID: mdl-37289040

ABSTRACT

Inter-organelle contacts enable crosstalk among organelles, facilitating the exchange of materials and coordination of cellular events. In this study, we demonstrated that, upon starvation, autolysosomes recruit Pi4KIIα (Phosphatidylinositol 4-kinase II α) to generate phosphatidylinositol-4-phosphate (PtdIns4P) on their surface and establish endoplasmic reticulum (ER)-autolysosome contacts through PtdIns4P binding proteins Osbp (Oxysterol binding protein) and cert (ceramide transfer protein). We found that the Sac1 (Sac1 phosphatase), Osbp, and cert proteins are required for the reduction of PtdIns4P on autolysosomes. Loss of any of these proteins leads to defective macroautophagy/autophagy and neurodegeneration. Osbp, cert, and Sac1 are required for ER-Golgi contacts in fed cells. Our data establishes a new mode of organelle contact formation - the ER-Golgi contact machinery can be reused by ER-autolysosome contacts by re-locating PtdIns4P from the Golgi apparatus to autolysosomes when faced with starvation.Abbreviations: Atg1: Autophagy-related 1; Atg8: Autophagy-related 8; Atg9: Autophagy-related 9; Atg12: Autophagy-related 12; cert: ceramide transfer protein; Cp1/CathL: cysteine proteinase-1; CTL: control; ER: endoplasmic reticulum; ERMCS: ER-mitochondria contact site; fwd: four wheel drive; GM130: Golgi matrix protein 130 kD; Osbp: Oxysterol binding protein; PG: phagophore; PtdIns4K: phosphatidylinositol 4-kinase; Pi4KIIα: Phosphatidylinositol 4-kinase II α; Pi4KIIIα: Phosphatidylinositol 4-kinase III α; PtdIns4P: phosphatidylinositol-4-phosphate; PR: photoreceptor cell; RT: room temperature; Sac1: Sac1 phosphatase; Stv: starvation; Syx17: Syntaxin 17; TEM: transmission electron microscopy; VAP: VAMP-associated protein.


Subject(s)
1-Phosphatidylinositol 4-Kinase , Autophagy , 1-Phosphatidylinositol 4-Kinase/metabolism , Endoplasmic Reticulum/metabolism , Lysosomes/metabolism , Carrier Proteins/metabolism , Homeostasis , Ceramides/metabolism , Phosphoric Monoester Hydrolases/metabolism
14.
Cell Rep ; 42(6): 112633, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37314927

ABSTRACT

Phosphatidylinositol 4-kinase IIα (PI4KIIα) generates essential phospholipids and is a cargo for endosomal adaptor proteins. Activity-dependent bulk endocytosis (ADBE) is the dominant synaptic vesicle endocytosis mode during high neuronal activity and is sustained by glycogen synthase kinase 3ß (GSK3ß) activity. We reveal the GSK3ß substrate PI4KIIα is essential for ADBE via its depletion in primary neuronal cultures. Kinase-dead PI4KIIα rescues ADBE in these neurons but not a phosphomimetic form mutated at the GSK3ß site, Ser-47. Ser-47 phosphomimetic peptides inhibit ADBE in a dominant-negative manner, confirming that Ser-47 phosphorylation is essential for ADBE. Phosphomimetic PI4KIIα interacts with a specific cohort of presynaptic molecules, two of which, AGAP2 and CAMKV, are also essential for ADBE when depleted in neurons. Thus, PI4KIIα is a GSK3ß-dependent interaction hub that silos essential ADBE molecules for liberation during neuronal activity.


Subject(s)
1-Phosphatidylinositol 4-Kinase , Glycogen Synthase Kinase 3 , Rats , Animals , Humans , 1-Phosphatidylinositol 4-Kinase/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3/metabolism , Rats, Sprague-Dawley , Synaptic Vesicles/metabolism , Endocytosis/physiology , Phosphorylation
15.
Mol Biol Rep ; 50(7): 5917-5930, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37248430

ABSTRACT

BACKGROUND: Melanosomes are lysosome-related organelles that contain melanogenic factors and synthesize melanin as they mature. FYVE finger-containing phosphoinositide kinase (PIKfyve) regulates late endosome and lysosome morphology, vesicle trafficking, and autophagy. In melanocytes, PIKfyve inhibition has been reported to induce hypopigmentation due to impairments in the metabolism of early-stage melanosomes. METHODS AND RESULTS: Here, we report a new type of melanosome metabolism: post-PIKfyve inhibition, which was found during the characterization of the endosome/lysosome fluoroprobe GIF-2250. In B16F10 mouse melanoma cells, GIF-2250 highlighted vesicles positive for lysosomal-associated membrane protein 1 (lysosome marker) and other endosome/lysosome markers (CD63 and Rab7/9). When cells were continuously treated with PIKfyve inhibitors, intracellular vacuoles formed, while GIF-2250 fluorescence signals diminished and were diffusely distributed in the vacuoles. After removal of the PIKfyve inhibitors, the GIF-2250 signal intensity was restored, and some GIF-2250-positive vesicles wrapped the melanosomes, which spun at high speed. In addition, intermittent PIKfyve inhibition caused melanin diffusion in the vacuoles and possible leakage into the cytoplasmic compartments, and melanosome degradation was detected by a transmission electron microscope. Melanosome degradation was accompanied by decreased levels of melanin synthesis enzymes and increased levels of the autophagosome maker LC3BII, which is also associated with early melanosomes. However, the protein levels of p62, which is degraded during autophagy, were increased, suggesting an impairment in autophagy flux during intermittent PIKfyve inhibition. Moreover, the autophagy inhibitor 3-methyladenine does not affect these protein levels, suggesting that the melanosome degradation by the intermittent inhibition of PIKfyve is not mediated by canonical autophagy. CONCLUSIONS: In conclusion, disturbance of PIKfyve activity induces melanosome degradation in a canonical autophagy-independent manner.


Subject(s)
Melanoma , Melanosomes , Animals , Mice , 1-Phosphatidylinositol 4-Kinase/metabolism , Melanins/metabolism , Melanocytes/metabolism , Melanoma/metabolism , Melanosomes/metabolism
16.
Immunity ; 56(3): 500-515.e6, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36921576

ABSTRACT

The cGAS-STING pathway mediates cytoplasmic DNA-triggered innate immunity. STING activation is initiated by cyclic-GMP-AMP (cGAMP)-induced translocation from the endoplasmic reticulum and sulfated glycosaminoglycans-induced polymerization at the Golgi. Here, we examine the mechanisms underlying STING transport and activation beyond the Golgi. A genome-wide CRISPR-Cas9 screen identified Armadillo-like helical domain-containing protein 3 (ARMH3) as critical for STING activation. Upon cGAMP-triggered translocation, ARMH3 interacted with STING at the Golgi and recruited phosphatidylinositol 4-kinase beta (PI4KB) to synthesize PI4P, which directed STING Golgi-to-endosome trafficking via PI4P-binding proteins AP-1 and GGA2. Disrupting PI4P-dependent lipid transport through RNAi of other PI4P-binding proteins impaired STING activation. Consistently, disturbed lipid composition inhibited STING activation, whereas aberrantly elevated cellular PI4P led to cGAS-independent STING activation. Armh3fl/fllLyzCre/Cre mice were susceptible to DNA virus challenge in vivo. Thus, ARMH3 bridges STING and PIK4B to generate PI4P for STING transportation and activation, an interaction conserved in all eukaryotes.


Subject(s)
Antiviral Restriction Factors , Armadillo Domain Proteins , Membrane Proteins , Animals , Mice , 1-Phosphatidylinositol 4-Kinase/metabolism , Carrier Proteins , Endosomes/metabolism , Immunity, Innate , Lipids , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Armadillo Domain Proteins/metabolism
17.
Nat Commun ; 14(1): 1432, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36918565

ABSTRACT

Phosphatidylinositol-5-phosphate (PtdIns5P)-4-kinases (PIP4Ks) are stress-regulated phosphoinositide kinases able to phosphorylate PtdIns5P to PtdIns(4,5)P2. In cancer patients their expression is typically associated with bad prognosis. Among the three PIP4K isoforms expressed in mammalian cells, PIP4K2B is the one with more prominent nuclear localisation. Here, we unveil the role of PIP4K2B as a mechanoresponsive enzyme. PIP4K2B protein level strongly decreases in cells growing on soft substrates. Its direct silencing or pharmacological inhibition, mimicking cell response to softness, triggers a concomitant reduction of the epigenetic regulator UHRF1 and induces changes in nuclear polarity, nuclear envelope tension and chromatin compaction. This substantial rewiring of the nucleus mechanical state drives YAP cytoplasmic retention and impairment of its activity as transcriptional regulator, finally leading to defects in cell spreading and motility. Since YAP signalling is essential for initiation and growth of human malignancies, our data suggest that potential therapeutic approaches targeting PIP4K2B could be beneficial in the control of the altered mechanical properties of cancer cells.


Subject(s)
Heterochromatin , Neoplasms , Humans , 1-Phosphatidylinositol 4-Kinase/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Nucleus/metabolism , Heterochromatin/genetics , Heterochromatin/metabolism , Neoplasms/metabolism , Phosphatidylinositol Phosphates/metabolism , Protein Isoforms/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
18.
Cells ; 12(5)2023 03 06.
Article in English | MEDLINE | ID: mdl-36899949

ABSTRACT

The master kinase LKB1 is a key regulator of se veral cellular processes, including cell proliferation, cell polarity and cellular metabolism. It phosphorylates and activates several downstream kinases, including AMP-dependent kinase, AMPK. Activation of AMPK by low energy supply and phosphorylation of LKB1 results in an inhibition of mTOR, thus decreasing energy-consuming processes, in particular translation and, thus, cell growth. LKB1 itself is a constitutively active kinase, which is regulated by posttranslational modifications and direct binding to phospholipids of the plasma membrane. Here, we report that LKB1 binds to Phosphoinositide-dependent kinase (PDK1) by a conserved binding motif. Furthermore, a PDK1-consensus motif is located within the kinase domain of LKB1 and LKB1 gets phosphorylated by PDK1 in vitro. In Drosophila, knockin of phosphorylation-deficient LKB1 results in normal survival of the flies, but an increased activation of LKB1, whereas a phospho-mimetic LKB1 variant displays decreased AMPK activation. As a functional consequence, cell growth as well as organism size is decreased in phosphorylation-deficient LKB1. Molecular dynamics simulations of PDK1-mediated LKB1 phosphorylation revealed changes in the ATP binding pocket, suggesting a conformational change upon phosphorylation, which in turn can alter LKB1's kinase activity. Thus, phosphorylation of LKB1 by PDK1 results in an inhibition of LKB1, decreased activation of AMPK and enhanced cell growth.


Subject(s)
AMP-Activated Protein Kinases , Protein Serine-Threonine Kinases , 1-Phosphatidylinositol 4-Kinase/metabolism , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases/metabolism , Cell Proliferation , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Animals , Drosophila melanogaster
19.
Autophagy ; 19(9): 2464-2484, 2023 09.
Article in English | MEDLINE | ID: mdl-36803256

ABSTRACT

Although PIKFYVE phosphoinositide kinase inhibitors can selectively eliminate PIKFYVE-dependent human cancer cells in vitro and in vivo, the basis for this selectivity has remained elusive. Here we show that the sensitivity of cells to the PIKFYVE inhibitor WX8 is not linked to PIKFYVE expression, macroautophagic/autophagic flux, the BRAFV600E mutation, or ambiguous inhibitor specificity. PIKFYVE dependence results from a deficiency in the PIP5K1C phosphoinositide kinase, an enzyme required for conversion of phosphatidylinositol-4-phosphate (PtdIns4P) into phosphatidylinositol-4,5-bisphosphate (PtdIns[4,5]P2/PIP2), a phosphoinositide associated with lysosome homeostasis, endosome trafficking, and autophagy. PtdIns(4,5)P2 is produced via two independent pathways. One requires PIP5K1C; the other requires PIKFYVE and PIP4K2C to convert PtdIns3P into PtdIns(4,5)P2. In PIKFYVE-dependent cells, low concentrations of WX8 specifically inhibit PIKFYVE in situ, thereby increasing the level of its substrate PtdIns3P while suppressing PtdIns(4,5)P2 synthesis and inhibiting lysosome function and cell proliferation. At higher concentrations, WX8 inhibits both PIKFYVE and PIP4K2C in situ, which amplifies these effects to further disrupt autophagy and induce cell death. WX8 did not alter PtdIns4P levels. Consequently, inhibition of PIP5K1C in WX8-resistant cells transformed them into sensitive cells, and overexpression of PIP5K1C in WX8-sensitive cells increased their resistance to WX8. This discovery suggests that PIKFYVE-dependent cancers could be identified clinically by low levels of PIP5K1C and treated with PIKFYVE inhibitors.Abbreviations: DMSO: dimethylsulfoxide; ELISA: enzyme-linked immunosorbent assay; LC3-I: microtubule associated protein light chain 3-I; LC3-II: microtubule associated protein light chain 3-II; MS: mass spectrometry; PtdIns: phosphatidylinositol; PtdIns3P: PtdIns-3-phosphate; PtdIns4P: PtdIns-4-phosphate; PtdIns5P: PtdIns-5-phosphate; PtdIns(3,5)P2: PtdIns-3,5-bisphosphate; PtdIns(4,5)P2/PIP2: PtdIns-4,5-bisphosphate; PtdIns(3,4,5)P3/PIP3: PtdIns-3,4,5-trisphosphate; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PI4KA: phosphatidylinositol 4-kinase alpha; PI4KB: phosphatidylinositol 4-kinase beta; PI4K2A: phosphatidylinositol 4-kinase type 2 alpha; PI4K2B: phosphatidylinositol 4-kinase type 2 beta; PIP4K2A: phosphatidylinositol-5-phosphate 4-kinase type 2 alpha; PIP4K2B: phosphatidylinositol-5-phosphate 4-kinase type 2 beta; PIP4K2C: phosphatidylinositol-5-phosphate 4-kinase type 2 gamma; PIP5K1A: phosphatidylinositol-4-phosphate 5-kinase type 1 alpha; PIP5K1B: phosphatidylinositol-4-phosphate 5-kinase type 1 beta; PIP5K1C: phosphatidylinositol-4-phosphate 5-kinase type 1 gamma; WX8: 1H-indole-3-carbaldehyde (4-anilino-6-[4-morpholinyl]-1,3,5-triazin-2-yl)hydrazone.


Subject(s)
1-Phosphatidylinositol 4-Kinase , Neoplasms , Humans , Autophagy/physiology , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphatidylinositols , Microtubule-Associated Proteins , Phosphotransferases (Alcohol Group Acceptor)
20.
Autophagy ; 19(4): 1365-1367, 2023 04.
Article in English | MEDLINE | ID: mdl-36103410

ABSTRACT

Macroautophagy/autophagy occurs basally under nutrient-rich conditions in most mammalian cells, contributing to protein and organelle quality control, and protection against aging and neurodegeneration. During autophagy, lysosomes are heavily utilized via their fusion with autophagosomes and must be repopulated to maintain autophagic degradative capacity. During starvation-induced autophagy, lysosomes are generated via de novo biogenesis under the control of TFEB (transcription factor EB), or by the recycling of autolysosome membranes via autophagic lysosome reformation (ALR). However, these lysosome repopulation processes do not operate under nutrient-rich conditions. In our recent study, we identify a sequential phosphoinositide conversion pathway that enables lysosome repopulation under nutrient-rich conditions to facilitate basal autophagy. Phosphatidylinositol-3,4-bisphosphate (PtdIns[3,4]P2) signals generated downstream of phosphoinositide 3-kinase alpha (PI3Kα) during growth factor stimulation are converted to phosphatidylinositol-3-phosphate (PtdIns3P) on endosomes by INPP4B (inositol polyphosphate-4-phosphatase type II B). We show that PtdIns3P is retained as endosomes mature into endolysosomes, and serves as a substrate for PIKFYVE (phosphoinositide kinase, FYVE-type zinc finger containing) to generate phosphatidylinositol-3,5-bisphosphate (PtdIns[3,5]P2) to promote SNX2-dependent lysosome reformation, basal autophagic flux and protein aggregate degradation. Therefore, endosome maturation couples nutrient signaling to lysosome repopulation during basal autophagy by delivering PI3Kα-derived PtdIns3P to endolysosomes for PtdIns(3,5)P2-dependent lysosome reformation.Abbreviations: ALR: autophagic lysosome reformation; INPP4B: inositol polyphosphate-4-phosphatase type II B; PI3Kα: phosphoinositide 3-kinase alpha; PIKFYVE: phosphoinositide kinase FYVE-type zinc finger containing; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns(3,4)P2: phosphatidylinositol-3,4-bisphosphate; PtdIns(3,5)P2 phosphatidylinositol-3,5-bisphosphate; SNX2 sorting nexin 2; PIK3C3/VPS34 phosphatidylinositol 3-kinase catalytic subunit type 3.


Subject(s)
Autophagy , Phosphatidylinositols , Animals , Phosphatidylinositols/metabolism , Autophagy/physiology , Phosphatidylinositol 3-Kinases/metabolism , 1-Phosphatidylinositol 4-Kinase/metabolism , Phosphatidylinositol Phosphates/metabolism , Lysosomes/metabolism , Endosomes/metabolism , Phosphoric Monoester Hydrolases/metabolism , Nutrients , Phosphatidylinositol 3-Kinase/metabolism , Polyphosphates/metabolism , Inositol/metabolism , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL