ABSTRACT
Fleshy fruit metabolism is intricately influenced by environmental changes, yet the hormonal regulations underlying these responses remain poorly elucidated. ABA and ethylene, pivotal in stress responses across plant vegetative tissues, play crucial roles in triggering fleshy fruit ripening. Their actions are intricately governed by complex mechanisms, influencing key aspects such as nutraceutical compound accumulation, sugar content, and softening parameters. Both hormones are essential orchestrators of significant alterations in fruit development in response to stressors like drought, salt, and temperature fluctuations. These alterations encompass colour development, sugar accumulation, injury mitigation, and changes in cell-wall degradation and ripening progression. This review provides a comprehensive overview of recent research progress on the roles of ABA and ethylene in responding to drought, salt, and temperature stress, as well as the molecular mechanisms controlling ripening in environmental cues. Additionally, we propose further studies aimed at genetic manipulation of ABA and ethylene signalling, offering potential strategies to enhance fleshy fruit resilience in the face of future climate change scenarios.
Subject(s)
Abscisic Acid , Ethylenes , Fruit , Plant Growth Regulators , Stress, Physiological , Ethylenes/metabolism , Abscisic Acid/metabolism , Fruit/growth & development , Fruit/physiology , Fruit/metabolism , Fruit/genetics , Plant Growth Regulators/metabolism , Plant Growth Regulators/physiology , DroughtsABSTRACT
Abscisic acid (ABA) is crucial for plant water deficit (WD) acclimation, but how the interplay between ABA and guard cell (GC) metabolism aids plant WD acclimation remains unclear. Here, we investigated how ABA regulates GC metabolism and how this contributes to plant WD acclimation using tomato wild type (WT) and the ABA-deficient sitiens mutant. These genotypes were characterized at physiological, metabolic, and transcriptional levels under recurring WD periods and were used to perform a13C-glucose labelling experiment using isolated guard cells following exogenously applied ABA. ABA deficiency altered the level of sugars and organic acids in GCs in both irrigated and WD plants and the dynamic of accumulation/degradation of these compounds in GCs during the dark-to-light transition. WD-induced metabolic changes were more pronounced in sitiens than WT GCs. Results from the 13C-labelling experiment indicate that ABA is required for the glycolytic fluxes toward malate and acts as a negative regulator of a putative sucrose substrate cycle. The expression of key ABA-biosynthetic genes was higher in WT than in sitiens GCs after two cycles of WD. Additionally, the intrinsic leaf water use efficiency increased only in WT after the second WD cycle, compared to sitiens. Our results highlight that ABA deficiency disrupts the homeostasis of GC primary metabolism and the WD memory, negatively affecting plant WD acclimation. Our study demonstrates which metabolic pathways are activated by WD and/or regulated by ABA in GCs, which improves our understanding of plant WD acclimation, with clear consequences for plant metabolic engineering in the future.
Subject(s)
Abscisic Acid , Solanum lycopersicum , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Solanum lycopersicum/metabolism , Solanum lycopersicum/genetics , Plant Stomata/metabolism , Plant Stomata/drug effects , Gene Expression Regulation, Plant/drug effectsABSTRACT
Arabidopsis (Arabidopsis thaliana) PROTEIN ARGININE METHYLTRANSFERASE5 (PRMT5) post-translationally modifies RNA-binding proteins by arginine (R) methylation. However, the impact of this modification on the regulation of RNA processing is largely unknown. We used the spliceosome component, SM-LIKE PROTEIN 4 (LSM4), as a paradigm to study the role of R-methylation in RNA processing. We found that LSM4 regulates alternative splicing (AS) of a suite of its in vivo targets identified here. The lsm4 and prmt5 mutants show a considerable overlap of genes with altered AS raising the possibility that splicing of those genes could be regulated by PRMT5-dependent LSM4 methylation. Indeed, LSM4 methylation impacts AS, particularly of genes linked with stress response. Wild-type LSM4 and an unmethylable version complement the lsm4-1 mutant, suggesting that methylation is not critical for growth in normal environments. However, LSM4 methylation increases with abscisic acid and is necessary for plants to grow under abiotic stress. Conversely, bacterial infection reduces LSM4 methylation, and plants that express unmethylable-LSM4 are more resistant to Pseudomonas than those expressing wild-type LSM4. This tolerance correlates with decreased intron retention of immune-response genes upon infection. Taken together, this provides direct evidence that R-methylation adjusts LSM4 function on pre-mRNA splicing in an antagonistic manner in response to biotic and abiotic stress.
Subject(s)
Alternative Splicing , Arabidopsis Proteins , Arabidopsis , Arginine , Gene Expression Regulation, Plant , Protein-Arginine N-Methyltransferases , Stress, Physiological , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Alternative Splicing/genetics , Methylation , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Stress, Physiological/genetics , Arginine/metabolism , Abscisic Acid/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Mutation/geneticsABSTRACT
Drought and the availability of nitrate, the predominant source of nitrogen (N) in agriculture, are major factors limiting plant growth and crop productivity. The dissection of the transcriptional networks' components integrating droght stress and nitrate responses provides valuable insights into how plants effectively balance stress response with growth programs. Recent evidence in Arabidopsis thaliana indicates that transcription factors (TFs) involved in abscisic acid (ABA) signaling affect N metabolism and nitrate responses, and reciprocally, components of nitrate signaling might affect ABA and drought gene responses. Advances in understanding regulatory circuits of nitrate and drought crosstalk in plant tissues empower targeted genetic modifications to enhance plant development and stress resistance, critical traits for optimizing crop yield and promoting sustainable agriculture.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid/metabolism , Droughts , Nitrates/metabolism , Gene Regulatory Networks , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plants/metabolism , Gene Expression Regulation, Plant , Stress, Physiological/geneticsABSTRACT
Age affects the production of secondary metabolites, but how developmental cues regulate secondary metabolism remains poorly understood. The achiote tree (Bixa orellana L.) is a source of bixin, an apocarotenoid used in diverse industries worldwide. Understanding how age-dependent mechanisms control bixin biosynthesis is of great interest for plant biology and for economic reasons. Here we overexpressed miRNA156 (miR156) in B. orellana to comprehensively study the effects of the miR156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) module on age-dependent bixin biosynthesis in leaves. Overexpression of miR156 in annatto plants (miR156ox) reduced BoSPL transcript levels, impacted leaf ontogeny, lessened bixin production, and increased abscisic acid levels. Modulation of expression of BoCCD4-4 and BoCCD1, key genes in carotenoid biosynthesis, was associated with diverting the carbon flux from bixin to abscisic acid in miR156ox leaves. Proteomic analyses revealed an overall low accumulation of most secondary metabolite-related enzymes in miR156ox leaves, suggesting that miR156-targeted BoSPLs may be required to activate several secondary metabolic pathways. Our findings suggest that the conserved BomiR156-BoSPL module is deployed to regulate leaf dynamics of bixin biosynthesis, and may create novel opportunities to fine-tune bixin output in B. orellana breeding programs.
Subject(s)
Abscisic Acid , Bixaceae , Plant Extracts , Bixaceae/genetics , Bixaceae/metabolism , Abscisic Acid/metabolism , Proteomics , Plant Breeding , Carotenoids/metabolismABSTRACT
Abscisic acid (ABA) signaling in plants is essential to several aspects of plant development, such as tolerance to environmental stresses and growth. ABA signaling is also important for storage organ formation in crops, such as sweet potato. However, the repertoire of I. batatas ABA signaling gene families has not yet been fully characterized, so that it is unclear which members of these families are necessary for tuberization. Therefore, genome-wide identification of the sweet potato ABF/ AREB/ ABI5, SnRK2, and PYL gene families was performed, along with phylogenetic, motif, cis-regulatory element (CRE), and expression analyses. Nine ABF, eight SnRK2, and eleven PYL gene family members were identified, and there was high sequence conservation among these proteins that were revealed by phylogenetic and motif analyses. The promoter sequences of these genes had multiple CREs that were involved in hormone responses and stress responses. In silico and qRT-PCR expression analyses revealed that these genes were expressed in various tissues and that IbABF3, IbABF4, IbDPBF3, IbDPBF4, IbPYL4, IbSnRK2.1, and IbSnRK2.2 were significantly expressed during storage root development. These results are an important reference that can be used for functional validation studies to better understand how ABA signaling elicits storage root formation at the molecular level.
Subject(s)
Abscisic Acid , Ipomoea batatas , Abscisic Acid/metabolism , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Phylogeny , Plants/metabolism , Plant Development , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolismABSTRACT
BACKGROUND: Rubber plant (Hevea brasiliensis) is one of the major sources of latex. Somatic embryogenesis (SE) is a promising alterative to its propagation by grafting and seed. Phytohormones have been shown to influence SE in different plant species. However, limited knowledge is available on the role of phytohormones in SE in Hevea. The anther cultures of two Hevea genotypes (Yunyan 73477-YT and Reken 628-RT) with contrasting SE rate were established and four stages i.e., anthers (h), anther induced callus (y), callus differentiation state (f), and somatic embryos (p) were studied. UPLC-ESI-MS/MS and transcriptome analyses were used to study phytohormone accumulation and related expression changes in biosynthesis and signaling genes. RESULTS: YT showed higher callus induction rate than RT. Of the two genotypes, only YT exhibited successful SE. Auxins, cytokinins (CKs), abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), gibberellins (GAs), and ethylene (ETH) were detected in the two genotypes. Indole-3-acetic acid (IAA), CKs, ABA, and ETH had notable differences in the studied stages of the two genotypes. The differentially expressed genes identified in treatment comparisons were majorly enriched in MAPK and phytohormone signaling, biosynthesis of secondary metabolites, and metabolic pathways. The expression changes in IAA, CK, ABA, and ETH biosynthesis and signaling genes confirmed the differential accumulation of respective phytohormones in the two genotypes. CONCLUSION: These results suggest potential roles of phytohormones in SE in Hevea.
Subject(s)
Hevea , Plant Growth Regulators , Plant Growth Regulators/metabolism , Hevea/genetics , Hevea/metabolism , Tandem Mass Spectrometry , Gene Expression Profiling , Abscisic Acid/metabolism , Cytokinins/metabolism , Genotype , Embryonic DevelopmentABSTRACT
Carotenoid cleavage dioxygenase (CCD) gene family is organized in two subfamilies: (i) 9-cis epoxycarotenoid dioxygenase (NCED) genes and (ii) CCD genes. NCED genes are essential for catalyzing the first step of the abscisic-acid (ABA) biosynthesis, while CCD genes produce precursors of the strigolactones hormone. The functional characterization of these gene subfamilies has not been yet performed in chickpea and lentil. Herein, were identified and systematically characterized two NCED and five CCD genes in the chickpea and two NCED and six CCD genes in lentil. After in silico sequence analysis and phylogeny, the expression profile of the NCED/CCD genes was determined by meta-analysis and real-time PCR in plants under different stress conditions. Sequence data revealed that NCED/CCD genes are highly conserved between chickpea and lentil. This conservation was observed both at gene and protein sequence levels and phylogenetic relationships. Analysis of the promoter sequences revealed that all NCED/CCD genes have a considerable number of cis-regulatory elements responsive to biotic and abiotic stress. Protein sequence analysis evidenced that NCED/CCD genes share several conserved motifs and that they have a highly interconnected interaction network. Furthermore, the three-dimensional structure of these proteins was determined and indicated that some proteins have structures with considerable similarity. The meta-analysis revealed that NCED/CCD genes are dynamically modulated in different organs and under different stress conditions, but they have a positive correlation with plant tolerance. In accordance, real-time PCR data showed that both NCED and CCD genes are differentially modulated in plants under drought stress. In particular, CaNCED2, CaCCD5, LcNCED2, LcCCD1, and LcCCD2 genes have a positive correlation with improved plant tolerance to drought stress. Therefore, this study presented a detailed characterization of the chickpea and lentil NCED/CCD genes and provided new insights to improve abiotic stress tolerance in these two important crops.
Subject(s)
Cicer , Dioxygenases , Lens Plant , Cicer/genetics , Lens Plant/genetics , Lens Plant/metabolism , Phylogeny , Dioxygenases/genetics , Dioxygenases/metabolism , Plants/metabolism , Plant Proteins/metabolism , Carotenoids/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Abscisic Acid/metabolismABSTRACT
Castor bean (Ricinus communis L.) can withstand long periods of water deficit and high temperatures, and therefore has been recognized as a drought-resistant plant species, allowing the study of gene networks involved in drought response and tolerance. The identification of genes networks related to drought response in this plant may yield important information in the characterization of molecular mechanisms correlating changes in the gene expression with the physiological adaptation processes. In this context, gene families related to abscisic acid (ABA) signaling play a crucial role in developmental and environmental adaptation processes of plants to drought stress. However, the families that function as the core components of ABA signaling, as well as genes networks related to drought response, are not well understood in castor bean. In this study 7 RcPYL, 63 RcPP2C, and 6 RcSnRK2 genes were identified in castor bean genome, which was further supported by chromosomal distribution, gene structure, evolutionary relationships, and conserved motif analyses. The castor bean general expression profile was investigated by RNAseq in root and leaf tissues in response to drought stress. These analyses allowed the identification of genes differentially expressed, including genes from the ABA signaling core, genes related to photosynthesis, cell wall, energy transduction, antioxidant response, and transcription factors. These analyses provide new insights into the core components of ABA signaling in castor bean, allow the identification of several molecular responses associated with the high physiological adaptation of castor bean to drought stress, and contribute to the identification of candidate genes for genetic improvement.
Subject(s)
Ricinus communis , Ricinus communis/genetics , Ricinus communis/metabolism , Ricinus/genetics , Ricinus/metabolism , Gene Regulatory Networks , Droughts , Gene Expression Profiling , Gene Expression Regulation, Plant , Transcriptome , Plant Proteins/genetics , Plant Proteins/metabolism , Abscisic Acid/metabolismABSTRACT
Hormones act as master ripening regulators. In non-climacteric fruit, ABA plays a key role in ripening. Recently, we confirmed in Fragaria chiloensis fruit that in response to ABA treatment the fruit induces ripening-associated changes such as softening and color development. In consequence of these phenotypic changes, transcriptional variations associated with cell wall disassembly and anthocyanins biosynthesis were reported. As ABA stimulates the ripening of F. chiloensis fruit, the molecular network involved in ABA metabolism was analyzed. Therefore, the expression level of genes involved in ABA biosynthesis and ABA perception was quantified during the development of the fruit. Four NCED/CCDs and six PYR/PYLs family members were identified in F. chiloensis. Bioinformatics analyses confirmed the existence of key domains related to functional properties. Through RT-qPCR analyses, the level of transcripts was quantified. FcNCED1 codifies a protein that displays crucial functional domains, and the level of transcripts increases as the fruit develops and ripens, in parallel with the increment in ABA. In addition, FcPYL4 codifies for a functional ABA receptor, and its expression follows an incremental pattern during ripening. The study concludes that FcNCED1 is involved in ABA biosynthesis; meanwhile, FcPYL4 participates in ABA perception during the ripening of F. chiloensis fruit.
Subject(s)
Fragaria , Fragaria/metabolism , Fruit/metabolism , Chile , Anthocyanins/metabolism , Perception , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Abscisic Acid/metabolismABSTRACT
MAIN CONCLUSION: Blue light exposure delays tomato seed germination by decreasing endosperm-degrading hydrolase activities, a process regulated by CRY1a-dependent signaling and the hormonal balance between ABA and GA. The germination of tomato seeds (Solanum lycopersicum L.) is tightly controlled by an internal hormonal balance, which is also influenced by environmental factors such as light. In this study, we investigated the blue light (BL)-mediated impacts on physiological, biochemical, and molecular processes during the germination of the blue light photoreceptor CRYPTOCHROME 1a loss-of-function mutant (cry1a) and of the hormonal tomato mutants notabilis (not, deficient in ABA) and procera (pro, displaying a GA-constitutive response). Seeds were germinated in a controlled chamber in the dark and under different intensities of continuous BL (ranging from 1 to 25 µmol m-2 s-1). In general, exposure to BL delayed tomato seed germination in a fluency rate-dependent way due to negative impacts on the activities of endosperm-degrading hydrolases, such as endo-ß-mannanase, ß-mannosidase, and α-galactosidase. However, not and pro mutants presented higher germination speed index (GSI) compared to WT despite the BL influence, associated with higher hydrolase activities, especially evident in pro, indicating that the ABA/GA hormonal balance is important to diminish BL inhibition over tomato germination. The cry1a germination percentage was higher than in WT in the dark but its GSI was lower under BL exposure, suggesting that functional CRY1a is required for BL-dependent germination. BL inhibits the expression of GA-biosynthetic genes, and induces GA-deactivating and ABA-biosynthetic genes. The magnitude of the BL influence over the hormone-related transcriptional profile is also dependent upon CRY1a, highlighting the complex interplay between light and hormonal pathways. These results contribute to a better understanding of BL-induced events behind the photoregulation of tomato seed germination.
Subject(s)
Endosperm , Solanum lycopersicum , Endosperm/genetics , Endosperm/metabolism , Solanum lycopersicum/genetics , Germination , Seeds/physiology , Cryptochromes/genetics , Cryptochromes/metabolism , beta-Mannosidase/genetics , beta-Mannosidase/metabolism , Perception , Abscisic Acid/metabolism , Gibberellins/metabolism , Gene Expression Regulation, PlantABSTRACT
Abscisic acid (ABA) is a classical hormone involved in the plant defense against abiotic stresses, especially drought. However, its role in the defense response against biotic stresses is controversial: it can induce resistance to some pathogens but can also increase the susceptibility to other pathogens. Information regarding the effect of ABA on the relationship between plants and sedentary phytonematodes, such as Meloidogyne paranaensis, is scarce. In this study, we found that ABA changed the susceptibility level of Arabidopsis thaliana against M. paranaensis. The population of M. paranaensis was reduced by 58.3% with the exogenous application of ABA 24 h before the nematode inoculation, which demonstrated that ABA plays an important role in the preinfectional defense of A. thaliana against M. paranaensis. The increase in the nematode population density in the ABA biosynthesis mutant, aba2-1, corroborated the results observed with the exogenous application of ABA. The phytohormone did not show nematicide or nematostatic effects on M. paranaensis juveniles in in vitro tests, indicating that the response is linked to intrinsic plant factors, which was corroborated by the decrease in the number of nematodes in the abi4-1 mutant. This reduction indicates that the gene expression regulation by transcript factors is possibly related to regulatory cascades mediated by ABA in the response of A. thaliana against M. paranaensis.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Tylenchoidea , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/pharmacology , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolismABSTRACT
During germination, seed reserves are mobilised to sustain the metabolic and energetic demands of plant growth. Mitochondrial respiration is presumably required to drive germination in several species, but only recently its role in this process has begun to be elucidated. Using Arabidopsis thaliana lines with changes in the levels of the respiratory chain component cytochrome c (CYTc), we investigated the role of this protein in germination and its relationship with hormonal pathways. Cytochrome c deficiency causes delayed seed germination, which correlates with decreased cyanide-sensitive respiration and ATP production at the onset of germination. In addition, CYTc affects the sensitivity of germination to abscisic acid (ABA), which negatively regulates the expression of CYTC-2, one of two CYTc-encoding genes in Arabidopsis. CYTC-2 acts downstream of the transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4), which binds to a region of the CYTC-2 promoter required for repression by ABA and regulates its expression. The results show that CYTc is a main player during seed germination through its role in respiratory metabolism and energy production. In addition, the direct regulation of CYTC-2 by ABI4 and its effect on ABA-responsive germination establishes a link between mitochondrial and hormonal functions during this process.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cytochromes c/genetics , Cytochromes c/metabolism , Gene Expression Regulation, Plant , Germination/genetics , Mitochondria/metabolism , Seeds/genetics , Transcription Factors/genetics , Transcription Factors/metabolismABSTRACT
Background: Soybean is the main oilseed crop grown in the world; however, drought stress affects its growth and physiology, reducing its yield. The objective of this study was to characterize the physiological, metabolic, and genetic aspects that determine differential resistance to water deficit in soybean genotypes. Methods: Three soybean genotypes were used in this study, two lineages (L11644 and L13241), and one cultivar (EMBRAPA 48-C48). Plants were grown in pots containing 8 kg of a mixture of soil and sand (2:1) in a greenhouse under sunlight. Soil moisture in the pots was maintained at field capacity until the plants reached the stage of development V4 (third fully expanded leaf). At this time, plants were subjected to three water treatments: Well-Watered (WW) (plants kept under daily irrigation); Water Deficit (WD) (withholding irrigation until plants reached the leaf water potential at predawn of -1.5 ± 0.2 MPa); Rewatered (RW) (plants rehydrated for three days after reached the water deficit). The WW and WD water treatments were evaluated on the eighth day for genotypes L11644 and C48, and on the tenth day for L13241, after interruption of irrigation. For the three genotypes, the treatment RW was evaluated after three days of resumption of irrigation. Physiological, metabolic and gene expression analyses were performed. Results: Water deficit inhibited growth and gas exchange in all genotypes. The accumulation of osmolytes and the concentrations of chlorophylls and abscisic acid (ABA) were higher in L13241 under stress. The metabolic adjustment of lineages in response to WD occurred in order to accumulate amino acids, carbohydrates, and polyamines in leaves. The expression of genes involved in drought resistance responses was more strongly induced in L13241. In general, rehydration provided recovery of plants to similar conditions of control treatment. Although the C48 and L11644 genotypes have shown some tolerance and resilience responses to severe water deficit, greater efficiency was observed in the L13241 genotype through adjustments in morphological, physiological, genetic and metabolic characteristics that are combined in the same plant. This study contributes to the advancement in the knowledge about the resistance to drought in cultivated plants and provides bases for the genetic improvement of the soybean culture.
Subject(s)
Glycine max , Plant Leaves , Glycine max/genetics , Plant Leaves/genetics , Abscisic Acid/metabolism , Soil , Gene Expression RegulationABSTRACT
The B-box (BBX) proteins are zinc-finger transcription factors with a key role in growth and developmental regulatory networks mediated by light. AtBBX21 overexpressing (BBX21-OE) potato (Solanum tuberosum) plants, cultivated in optimal water conditions, have a higher photosynthesis rate and stomatal conductance without penalty in water use efficiency (WUE) and with a higher tuber yield. In this work, we cultivated potato plants in two water regimes: 100 and 35% field capacity of water restriction that imposed leaf water potentials between -0.3 and -1.2 MPa for vegetative and tuber growth during 14 or 28 days, respectively. We found that 42-day-old plants of BBX21-OE were more tolerant to water restriction with higher levels of chlorophylls and tuber yield than wild-type spunta (WT) plants. In addition, the BBX21-OE lines showed higher photosynthesis rates and WUE under water restriction during the morning. Mechanistically, we found that BBX21-OE lines were more tolerant to moderated drought by enhancing mesophyll conductance (gm ) and maximum capacity of electron transport (Jmax ), and by reducing abscisic acid (ABA) sensitivity in plant tissues. By RNA-seq analysis, we found 204 genes whose expression decreased by drought in WT plants and expressed independently of the water condition in BBX21-OE lines as SAP12, MYB73, EGYP1, TIP2-1 and DREB2A, and expressions were confirmed by quantitative polymerase chain reaction. These results suggest that BBX21 interplays with the ABA and growth signaling networks, improving the photosynthetic behavior in suboptimal water conditions with an increase in potato tuber yield.
Subject(s)
Abscisic Acid/metabolism , Photosynthesis , Plant Growth Regulators/metabolism , Solanum tuberosum/genetics , Transcription Factors/metabolism , Water/metabolism , Chlorophyll/metabolism , Chloroplasts/metabolism , Droughts , Electron Transport , Plant Leaves/genetics , Plant Leaves/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Tubers/genetics , Plant Tubers/physiology , Signal Transduction , Solanum tuberosum/physiology , Transcription Factors/geneticsABSTRACT
Plant expansins are structural cell wall-loosening proteins implicated in several developmental processes and responses to environmental constraints and pathogen infection. To date, there is limited information about the biological function of expansins-like B (EXLBs), one of the smallest and less-studied subfamilies of plant expansins. In the present study, we conducted a functional analysis of the wild Arachis AdEXLB8 gene in transgenic tobacco (Nicotiana tabacum) plants to clarify its putative role in mediating defense responses to abiotic and biotic stresses. First, its cell wall localization was confirmed in plants expressing an AdEXLB8:eGFP fusion protein, while nanomechanical assays indicated cell wall reorganization and reassembly due to AdEXLB8 overexpression without compromising the phenotype. We further demonstrated that AdEXLB8 increased tolerance not only to isolated abiotic (drought) and biotic (Sclerotinia sclerotiorum and Meloidogyne incognita) stresses but also to their combination. The jasmonate and abscisic acid signaling pathways were clearly favored in transgenic plants, showing an activated antioxidative defense system. In addition to modifications in the biomechanical properties of the cell wall, we propose that AdEXLB8 overexpression interferes with phytohormone dynamics leading to a defense primed state, which culminates in plant defense responses against isolated and combined abiotic and biotic stresses.
Subject(s)
Arachis/genetics , Nicotiana/physiology , Plant Proteins/genetics , Stress, Physiological/genetics , Abscisic Acid/metabolism , Animals , Ascomycota/pathogenicity , Biomechanical Phenomena , Cell Wall/genetics , Cell Wall/metabolism , Cyclopentanes/metabolism , Droughts , Gene Expression Regulation, Plant , Oxylipins/metabolism , Plant Cells/metabolism , Plant Leaves/physiology , Plant Proteins/metabolism , Plants, Genetically Modified , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Nicotiana/cytology , Nicotiana/genetics , Nicotiana/microbiology , Tylenchoidea/pathogenicityABSTRACT
The germination timing of seeds is of the utmost adaptive importance for plant populations. Light is one of the best characterized factors promoting seed germination in several species. The germination is also finely regulated by changes in hormones levels, mainly those of gibberellin (GA) and abscisic acid (ABA). Here, we performed physiological, pharmacological, and molecular analyses to uncover the role of ATHB2, an HD-ZIP II transcription factor, in germination of Arabidopsis seeds. Our study demonstrated that ATHB2 is a negative regulator and sustains the expression of transcription factors to block germination promoted by light. Besides, we found that ATHB2 increases ABA sensitivity. Moreover, ABA and auxin content in athb2-2 mutant is higher than wild-type in dry seeds, but the differences disappeared during the imbibition in darkness and the first hours of exposition to light, respectively. Some ABA and light transcription factors are up-regulated by ATHB2, such as ABI5, ABI3, XERICO, SOMNUS and PIL5/PIF1. In opposition, PIN7, an auxin transport, is down-regulated. The role of ATHB2 as a repressor of germination induced by light affecting the gemination timing, could have differential effects on the establishment of seedlings altering the competitiveness between crops and weeds in the field.
Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/embryology , Germination/physiology , Seeds/growth & development , Abscisic Acid/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant/physiology , Genes, Plant , Germination/radiation effects , Signal Transduction/physiology , Transcription Factors/geneticsABSTRACT
Compatible plant viral infections are a common cause of agricultural losses worldwide. Characterization of the physiological responses controlling plant water management under combined stresses is of great interest in the current climate change scenario. We studied the outcome of TuMV infection on stomatal closure and water balance, hormonal balance and drought tolerance in Arabidopsis. TuMV infection reduced stomatal aperture concomitantly with diminished gas exchange rate, daily water consumption and rosette initial dehydration rate. Infected plants overaccumulated salicylic acid and abscisic acid and showed altered expression levels of key ABA homeostasis genes including biosynthesis and catabolism. Also the expression of ABA signalling gene ABI2 was induced and ABCG40 (which imports ABA into guard cells) was highly induced upon infection. Hypermorfic abi2-1 mutant plants, but no other ABA or SA biosynthetic, signalling or degradation mutants tested abolished both stomatal closure and low stomatal conductance phenotypes caused by TuMV. Notwithstanding lower relative water loss during infection, plants simultaneously subjected to drought and viral stresses showed higher mortality rates than mock-inoculated drought stressed controls, alongside downregulation of drought-responsive gene RD29A. Our findings indicate that despite stomatal closure triggered by TuMV, additional phenomena diminish drought tolerance upon infection.
Subject(s)
Arabidopsis/physiology , Droughts , Plant Stomata/physiology , Plant Stomata/virology , Potyvirus/physiology , Stress, Physiological , Abscisic Acid/metabolism , Arabidopsis/virology , Mutation/genetics , Plant Diseases/virology , Salicylic Acid/metabolism , Signal Transduction , Water/metabolismABSTRACT
Stomatal closure is a common adaptation response of plants to the onset of drought condition and its regulation is controlled by transcription factors. MYB60, a transcription factor involved in the regulation of light-induced stomatal opening, has been characterized in arabidopsis and grapevine. In this work, we studied the role of MYB60 homolog SIMYB60 in tomato plants. We identified, isolated, and sequenced the SIMYB60 coding sequence, and found domains and motifs characteristic of other MYB60 proteins. We determined that SlMYB60 is mainly expressed in leaves, and its expression is repressed by abscisic acid. Next, we isolated a putative promoter region containing regulatory elements responsible for guard cell expression and other putative regulatory elements related to ABA repression and vascular tissue expression. Protein localization assays demonstrated that SlMYB60 localizes to the nucleus. Finally, SlMYB60 is able to complement the mutant phenotype of atmyb60-1 in Arabidopsis. Together, these results indicate that SlMYB60 is the homologous gene in tomato and potentially offer a molecular target to improve crops.
Subject(s)
Adaptation, Physiological/genetics , Arabidopsis Proteins/genetics , Droughts , Solanum lycopersicum/genetics , Transcription Factors/genetics , Abscisic Acid/metabolism , Gene Expression Regulation, Plant/genetics , Solanum lycopersicum/growth & development , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Regulatory Sequences, Nucleic Acid/geneticsABSTRACT
Nicotinamide adenine dinucleotide (NAD) plays a central role in redox metabolism in all domains of life. Additional roles in regulating posttranslational protein modifications and cell signaling implicate NAD as a potential integrator of central metabolism and programs regulating stress responses and development. Here we found that NAD negatively impacts stomatal development in cotyledons of Arabidopsis thaliana. Plants with reduced capacity for NAD+ transport from the cytosol into the mitochondria or the peroxisomes exhibited reduced numbers of stomatal lineage cells and reduced stomatal density. Cotyledons of plants with reduced NAD+ breakdown capacity and NAD+ -treated cotyledons also presented reduced stomatal number. Expression of stomatal lineage-related genes was repressed in plants with reduced expression of NAD+ transporters as well as in plants treated with NAD+ . Impaired NAD+ transport was further associated with an induction of abscisic acid (ABA)-responsive genes. Inhibition of ABA synthesis rescued the stomatal phenotype in mutants deficient in intracellular NAD+ transport, whereas exogenous NAD+ feeding of aba-2 and ost1 seedlings, impaired in ABA synthesis and ABA signaling, respectively, did not impact stomatal number, placing NAD upstream of ABA. Additionally, in vivo measurement of ABA dynamics in seedlings of an ABA-specific optogenetic reporter - ABAleon2.1 - treated with NAD+ showed increases in ABA content suggesting that NAD+ impacts on stomatal development through ABA synthesis and signaling. Our results demonstrate that intracellular NAD+ homeostasis as set by synthesis, breakdown and transport is essential for normal stomatal development, and provide a link between central metabolism, hormone signaling and developmental plasticity.