Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 897
Filter
1.
Exp Appl Acarol ; 93(1): 211-227, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38864992

ABSTRACT

Acaricides used against Tetranychus urticae Koch, 1836 (Acari: Tetranychidae) in cotton fields cause control failure over time. To determine the resistance status of T. urticae populations to tebufenpyrad and bifenazate, different populations collected from Aydin (AYD), Adana (ADA), Sanliurfa (SAN), and Diyarbakir (DIY) provinces of Türkiye, between 2019 and 2020, were subjected to diagnostic dose bioassays. Firstly, the spider mites were eliminated with a discriminating dose. Afterwards, LC50 and LC90 of the remaining populations were determined and the ten highest resistant populations were selected. The highest phenotypic resistance to bifenazate was observed in AYD4 and DIY2 (LC50 57.14 mg L- 1 with 85.01-fold and LC50 30.15 mg L- 1with 44.86-fold, respectively), while the lowest phenotypic resistance was found in SAN6 (LC50 1.5 mg L- 1; 2.28-fold). Considering the phenotypic resistance to tebufenpyrad, the highest resistance was found in AYD4 population (LC50 96.81 mg L- 1; 12.92-fold), while the lowest - in DIY28 population (LC50 21.23 mg L- 1; 2.83-fold). In pharmacokinetic studies, the ADA16 population was compared with the sensitive German Susceptible Strain population and it was determined that carboxylesterase activity was statistically higher (1.46 ± 0.04 nmol/min/mg protein enzyme activation 2.70-fold). The highest activation of glutathione S-transferase was detected in ADA16 (1.49 ± 0.01 nmol/min/mg protein; 2.32-fold). No mutations were found in PSST (METI 1), the point mutation site for tebufenpyrad, and Cytb (METI 3), the point mutation site for bifenazate. In terms of phenotypic resistance, bifenazate was found to be moderately resistant in two populations (85.01 and 44.86-fold), while tebufenpyrad was moderately resistant in one population (12.92-fold). This study showed that both acaricides are still effective against T. urticae populations.


Subject(s)
Acaricides , Gossypium , Tetranychidae , Animals , Tetranychidae/drug effects , Tetranychidae/enzymology , Acaricides/pharmacology , Inactivation, Metabolic , Drug Resistance , Arthropod Proteins/metabolism , Arthropod Proteins/genetics
2.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(2): 179-183, 2024 May 06.
Article in Chinese | MEDLINE | ID: mdl-38857963

ABSTRACT

OBJECTIVE: To investigate the activity of Acorus tatarinowii extracts against dust mites, and to isolate and characterize active ingredient of A. tatarinowii extracts. METHODS: The essential oil components were extracted from A. tatarinowii rhizome powder by rotary evaporation with methanol as solvents, followed by petroleum ether extraction and rotary evaporation. The essential oil was mixed with Tween-80 at a ratio of 1:1 and diluted into concentrations of 1.000 00%, 0.500 00%, 0.250 00%, 0.125 00%, 0.062 50% and 0.031 25%, while diluted Tween-80 served as controls. A. tatarinowii essential oil at each concentration (200 µL) was transferred evenly to filter papers containing 100 adult mites, with each test repeated in triplicate, and controls were assigned for each concentration. Following treatment at 25 °C and 75% relative humidity for 24 h, the mean corrected mortality of mites was calculated. The essential oil components were separated by silica gel column chromatography, and the essential oil was prepared in the positive column of medium pressure; and then, each component was collected. Silica gel column chromatography was run with the mobile phase that consisted of petroleum ether solution containing 10% ethyl acetate and pure ethyl acetate, detection wavelength of 254 nm, positive silica gel column as the chromatography column, and room temperature as the column temperature. Each component of the purified A. tatarinowii essential oil was diluted into 1.000 00% for acaricidal tests. The components with less than 100% acaricidal activity were discarded, and the remaining components were diluted into 50% of the previous-round tests for subsequent acaricidal tests. The components with acaricidal activity were subjected to high-performance liquid chromatography, liquid chromatography-mass spectrometry and pulsed-Fourier transform nuclear magnetic resonance spectroscopy. The structure of active monomer compounds was determined by standard spectral library retrieval and literature review. RESULTS: A. tatarinowii essential oil at concentrations of 1.000 00%, 0.500 00%, 0.250 00% and 0.125 00% killed all dust mites, and the corrected mortality was all 100%. Exposure to A. tatarinowii extracts at an effective concentration of 0.062 50% for 24 hours resulted in 94.33% mortality of dust mites. Six components (A to F) were separated using gel column chromatography, and components D and E both showed a 100% acaricidal activity against dust mites at a concentration of 0.50000%. In addition, Component D was identified as isoeugenol methyl ether, and Component E as ß-asarinol. CONCLUSIONS: The extract of A. tatarinowii essential oil has acaricidal activity, and the isoeugenol methyl ether shows a remarkable acaricidal activity against dust mites.


Subject(s)
Acorus , Oils, Volatile , Plant Extracts , Pyroglyphidae , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Acorus/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Acaricides/pharmacology , Acaricides/chemistry
3.
Parasites Hosts Dis ; 62(2): 217-225, 2024 May.
Article in English | MEDLINE | ID: mdl-38835262

ABSTRACT

This study evaluated the potential repellent and acaricidal effects of 4 essential oils (clove, eucalyptus, lavender, and mint) against the Asian longhorned tick Haemaphysalis longicornis, a vector of various tick-borne diseases in medical and veterinary contexts. Selected for their potential repellent and acaricidal properties, the 4 essential oils were tested on adult and nymph H. longicornis ticks at different concentrations. The experiment assessed mortality rates and repellency, particularly during tick attachment to host skin. There was a significant increase (p<0.05) in tick mortality and repellency scores across all groups. At a 1% concentration, adult tick mortality ranged from 36% to 86%, while nymph mortality ranged from 6% to 97%. Clove oil exhibited notable efficacy, demonstrating high mortality rates of nymphs and adults. Clove oil also displayed strong repellency properties, with a repellency index of 0.05, surpassing those of mint, eucalyptus, and lavender oils. Clove oil showed the highest effectiveness in deterring nonattached adult ticks (90%) and nymphs (95%) when applied to skin. Clove oil was the most effective against adult and nymph ticks, achieving mortality rates of 86% and 97%, respectively, and led to the highest nonattachment rates when applied to skin. In conclusion, essential oils such as clove, eucalyptus, lavender, and mint oils present promising results for tick population control.


Subject(s)
Acaricides , Ixodidae , Oils, Volatile , Animals , Oils, Volatile/pharmacology , Ixodidae/drug effects , Acaricides/pharmacology , Nymph/drug effects , Insect Repellents/pharmacology , Plant Oils/pharmacology , Female , Eucalyptus/chemistry , Clove Oil/pharmacology , Lavandula , Haemaphysalis longicornis
4.
Sci Rep ; 14(1): 13584, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866908

ABSTRACT

A novel, turnkey, field-based workflow was developed and validated using Rhipicephalus microplus DNA as a template to detect the presence of the voltage-gated sodium channel kdr mutation. The field-based compatible workflow comprises manual sample homogenization for DNA extraction, PCR amplification of the targets in a closed tube, and end-point detection of the PCR products. An R. microplus species-specific assay was also included to confirm species identity and ensure the validity of the kdr mutation assay. The assays were sensitive and specific to the targets, and the workflow resulted in a turnaround time of approximately 1 h at a low cost. The novel combination of PCR with closed-tube and end-point fluorescent detection allows for easy conversion of existing conventional lab-based PCR assays into field-based detection assays. The incorporation of custom-designed 3D-printed components in the workflow provides easy adaptability and modification of the components for diverse nucleic acid detection workflows.


Subject(s)
Polymerase Chain Reaction , Rhipicephalus , Animals , Rhipicephalus/genetics , Polymerase Chain Reaction/methods , Acaricides/pharmacology , Genotyping Techniques/methods , Drug Resistance/genetics , Mutation , Genotype , Voltage-Gated Sodium Channels/genetics
5.
Sci Rep ; 14(1): 13537, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866918

ABSTRACT

The development of interventions targeting reservoirs of Borrelia burgdorferi sensu stricto with acaricide to reduce the density of infected ticks faces numerous challenges imposed by ecological and operational limits. In this study, the pharmacokinetics, efficacy and toxicology of fluralaner were investigated in Mus musculus and Peromyscus leucopus mice, the main reservoir of B. burgdorferi in North America. Fluralaner showed rapid distribution and elimination, leading to fast plasma concentration (Cp) depletion in the first hours after administration followed by a slow elimination rate for several weeks, resulting in a long terminal half-life. Efficacy fell below 100% while Cp (± standard deviation) decreased from 196 ± 54 to 119 ± 62 ng/mL. These experimental results were then used in simulations of fluralaner treatment for a duration equivalent to the active period of Ixodes scapularis larvae and nymphs. Simulations showed that doses as low as 10 mg/kg have the potential to protect P. leucopus against infestation for a full I. scapularis active season if administered at least once every 7 days. This study shows that investigating the pharmacology of candidate acaricides in combination with pharmacokinetic simulations can provide important information to support the development of effective interventions targeting ecological reservoirs of Lyme disease. It therefore represents a critical step that may help surpass limits inherent to the development of these interventions.


Subject(s)
Acaricides , Borrelia burgdorferi , Disease Reservoirs , Ixodes , Lyme Disease , Peromyscus , Animals , Lyme Disease/drug therapy , Mice , Ixodes/microbiology , Ixodes/drug effects , Disease Reservoirs/microbiology , Peromyscus/microbiology , Acaricides/pharmacokinetics , Acaricides/pharmacology , Borrelia burgdorferi/drug effects , Isoxazoles/pharmacokinetics , Female
6.
Pestic Biochem Physiol ; 202: 105952, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879306

ABSTRACT

The citrus red mite, Panonychus citri, is one of the most notorious and devastating citrus pests around the world that has developed resistance to multiple chemical acaricides. In previous research, we found that spirodiclofen-resistant is related to overexpression of P450, CCE, and ABC transporter genes in P. citri. However, the regulatory mechanisms of these detoxification genes are still elusive. This study identified all hormone receptor 96 genes of P. citri. 8 PcHR96 genes contained highly conserved domains. The expression profiles showed that PcHR96h was significantly upregulated in spirodiclofen resistant strain and after exposure to spirodiclofen. RNA interference of PcHR96h decreased expression of detoxification genes and increased spirodiclofen susceptibility in P. citri. Furthermore, molecular docking, heterologous expression, and drug affinity responsive target stability demonstrated that PcHR96h can interact with spirodiclofen in vitro. Our research results indicate that PcHR96h plays an important role in regulating spirodiclofen susceptibility and provides theoretical support for the resistance management of P. citri.


Subject(s)
Spiro Compounds , Animals , Spiro Compounds/pharmacology , Spiro Compounds/metabolism , Acaricides/pharmacology , Propionates/pharmacology , Propionates/metabolism , Tetranychidae/drug effects , Tetranychidae/genetics , Tetranychidae/metabolism , Molecular Docking Simulation , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Drug Resistance/genetics , 4-Butyrolactone/analogs & derivatives
7.
Ticks Tick Borne Dis ; 15(5): 102362, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38852539

ABSTRACT

A promising alternative approach to conventional vector and rodent control practices is the use of a bait containing a rodenticide and acaricide in controlling vectors and pathogen reservoirs concurrently. In the United States, Lyme disease continues to be the most prevalent vector-borne disease with approximately 500,000 Lyme disease cases estimated each year. Previous research has demonstrated the usefulness of a low dose fipronil bait in controlling Ixodes scapularis larvae feeding on white-footed mice. However, considering white-footed mice can be an unwanted species because of their association with tick-borne disease and hantaviruses, a combination rodent and tick bait (RTB) might provide a useful alternative to encourage additional community participation in integrated tick management (ITM) efforts. The purpose of this research was to evaluate the use of RTB (0.025 % warfarin, 0.005 % fipronil) in controlling white-footed mice and I. scapularis larvae. Studies were designed in part based on Environmental Protection Agency (EPA) guidelines. A laboratory choice test was conducted to evaluate the use of RTB in controlling white-footed mice over 15-day exposure when they were exposed to an alternative diet. Mice were observed every day for mortality and signs of warfarin toxicity. A simulated field test was conducted to evaluate the use of RTB, presented in the presence of an alternative diet, in controlling I. scapularis parasitizing white-footed mice over 4-day exposure. Mice were fitted with capsules and manually infested with I. scapularis larvae. The inside of each capsule was observed to evaluate tick attachment. Replete larvae detaching from each mouse were collected. Blood was collected from all treatment group mice via cardiac puncture to determine the fipronil sulfone concentration in plasma for each animal. Results indicated that RTB would be adequately consumed in the presence of an alternative diet under laboratory and simulated field conditions. Treatment with RTB resulted in 100 % mortality of white-footed mice during 15-day exposure and prevented 100 % larvae from feeding to repletion during 4-day exposure. All mice succumbing to RTB showed signs of warfarin toxicity. All mice parasitized with ticks that were exposed to RTB had fipronil sulfone detectable in plasma, with even the lowest concentration detected (8.1 parts per billion) controlling 100 % parasitizing I. scapularis larvae. The results suggest that RTB could be a useful means of rodent and tick control for use in ITM programs.


Subject(s)
Ixodes , Lyme Disease , Peromyscus , Tick Control , Animals , Ixodes/microbiology , Ixodes/physiology , Peromyscus/parasitology , Lyme Disease/prevention & control , Lyme Disease/transmission , Tick Control/methods , Tick Infestations/veterinary , Tick Infestations/prevention & control , Larva/microbiology , Rodenticides/pharmacology , Acaricides/pharmacology , Pyrazoles/pharmacology , Female , Arachnid Vectors/microbiology
8.
Exp Appl Acarol ; 93(1): 71-79, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811383

ABSTRACT

The aim of this work was to analyze the R. microplus (Canestrini, 1888) infestation in two bovine herds with different degrees of natural resistance (i.e., Hereford and Braford) to ticks subjected to an identical chemical treatment scheme to ticks at the same farm, to demonstrate the impact on tick control of the incorporation of a more resistant bovine breed. Two groups of ten Hereford and Braford cows each were subjected to eleven chemical treatments between August 2022 and October 2023 (four fluazuron, two fipronil 1%, one ivermectin 3.15% and four immersion in a dipping vat with a combination of cypermethrin 10% and ethion 40%). Tick population was shown to be susceptible to ivermectin, fluazuron and the mix cypermethrin 10%-ethion 40% and resistant to fipronil according to in vitro tests. Tick infestation was significantly greater in the Hereford cows than in the Braford cows. Tick infestation in both Hereford and Braford breeds was similar when treatment with functional drugs was applied, but when a block of the treatments was done with drugs with decreased functionality due to resistance (i.e. fipronil), treatment failure was manifested more strongly in the most susceptible breed. The incorporation of cattle breeds with moderate or high resistance to R. microplus is instrumental to optimize the efficacy and sustainability of chemical control of ticks in a scenario where resistance to one or more chemical groups is almost ubiquitous, because it favors the biological control of this parasite.


Subject(s)
Acaricides , Cattle Diseases , Pyrazoles , Rhipicephalus , Tick Infestations , Animals , Cattle , Rhipicephalus/physiology , Rhipicephalus/drug effects , Tick Infestations/veterinary , Tick Infestations/parasitology , Acaricides/pharmacology , Cattle Diseases/parasitology , Cattle Diseases/drug therapy , Female , Pyrazoles/pharmacology , Ivermectin/pharmacology , Phenylurea Compounds/pharmacology , Tick Control , Pyrethrins/pharmacology
9.
Curr Microbiol ; 81(7): 199, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822161

ABSTRACT

The present study evaluated the acaricidal activity of three Serratia strains isolated from Mimosa pudica nodules in the Lancandon zone Chiapas, Mexico. The analysis of the genomes based on the Average Nucleotide Identity, the phylogenetic relationships allows the isolates to be placed in the Serria ureilytica clade. The size of the genomes of the three strains is 5.4 Mb, with a GC content of 59%. The Serratia UTS2 strain presented the highest mortality with 61.41% against Tyrophagus putrescentiae followed by the Serratia UTS4 strain with 52.66% and Serratia UTS3 with 47.69% at 72 h at a concentration of 1X109 cell/mL. In the bioinformatic analysis of the genomes, genes related to the synthesis of chitinases, proteases and cellulases were identified, which have been reported for the biocontrol of mites. It is the first report of S. ureilytica with acaricidal activity, which may be an alternative for the biocontrol of stored products with high fat and protein content.


Subject(s)
Acaricides , Phylogeny , Serratia , Animals , Serratia/genetics , Acaricides/pharmacology , Genome, Bacterial , Pest Control, Biological , Chitinases/genetics , Chitinases/metabolism , Mexico
10.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791458

ABSTRACT

Amblyomma sculptum is a species of tick in the family Ixodidae, with equids and capybaras among its preferred hosts. In this study, the acaricidal activity of the essential oil (EO) from Piper aduncum and its main component, Dillapiole, were evaluated against larvae of A. sculptum to establish lethal concentration values and assess the effects of these compounds on tick enzymes. Dillapiole exhibited slightly greater activity (LC50 = 3.38 mg/mL; 95% CI = 3.24 to 3.54) than P. aduncum EO (LC50 = 3.49 mg/mL; 95% CI = 3.36 to 3.62) against ticks. The activities of α-esterase (α-EST), ß-esterase (ß-EST), and glutathione-S-transferase (GST) enzymes in A. sculptum larvae treated with Dillapiole showed a significant increase compared to the control at all concentrations (LC5, LC25, LC50 and LC75), similar results were obtained with P. aduncum EO, except for α-EST, which did not differ from the control at the highest concentration (LC75). The results of the acetylcholinesterase (AChE) activity show an increase in enzyme activity at the two lower concentrations (LC5 and LC25) and a reduction in activity at the two higher, lethal concentrations (LC50 and LC75) compared to the control. These results suggest potential mechanisms of action for these natural acaricides and can provide guidance for the future development of potential plant-derived formulations.


Subject(s)
Acaricides , Acetylcholinesterase , Amblyomma , Oils, Volatile , Piper , Animals , Acaricides/pharmacology , Acetylcholinesterase/metabolism , Allyl Compounds , Amblyomma/drug effects , Amblyomma/growth & development , Benzodioxoles/pharmacology , Cholinesterase Inhibitors/pharmacology , Dioxoles , Esterases/metabolism , Glutathione Transferase/metabolism , Inactivation, Metabolic , Larva/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Piper/chemistry
11.
J Agric Food Chem ; 72(23): 13431-13438, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38815265

ABSTRACT

In order to speculate the three-dimensional structure of the potential binding pocket of the chitin synthase inhibitor, a series of 2,4-diphenyloxazoline derivatives with different lengths of alkyl chains and heteroatoms were designed and synthesized by a homologous strategy. The bioassay results indicate that both the length of the alkyl chains and the type of substituents can affect the acaricidal activity against mite eggs. Compounds containing chloropropyl, alkoxyalkyl, and para-substituted phenoxyalkyl or phenylthioalkyl groups exhibit good activity, while those containing steric hindrance substituents or carbonyl substituents on the benzene ring exhibit reduced activity. Three-dimensional quantitative structure-activity relationship (3D-QSAR) study showed that there may be a narrow hydrophobic region deep in the pocket, and the steric effect plays a more important role than the electrostatic effect. The current work will provide assistance for future molecular design and target binding research.


Subject(s)
Acaricides , Quantitative Structure-Activity Relationship , Acaricides/chemistry , Acaricides/pharmacology , Animals , Mites/drug effects , Mites/chemistry , Oxazoles/chemistry , Oxazoles/pharmacology , Drug Design , Molecular Structure , Chitin Synthase/chemistry , Chitin Synthase/antagonists & inhibitors , Chitin Synthase/metabolism
12.
Vet Parasitol ; 329: 110211, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772086

ABSTRACT

Ticks, particularly Rhipicephalus annulatus, pose significant threats to livestock, causing economic losses and transmitting various infectious diseases. This study aimed to evaluate the potential acaricidal properties of garlic oil and its nanoemulsion against ticks infesting cattle, Rhipicephalus annulatus through the evaluation of mortality rate and morphological changes of the treated ticks. The study also included prevalence, risk factors, and molecular confirmation of tick species. Genetic characterization confirmed the identity of R. annulatus. Our results revealed a high prevalence of R. annulatus (46.9%) with a higher risk in male cattle (50%) than females (44.9%) and a nonsignificant high infection (49.1%) in animals ≤ 1 year old. The acaricidal efficiency of garlic oil and its nanoemulsion was concentration and time-dependent. The high concentration of garlic oil (20 mg/L) induced complete mortality within 48 hours. The nanoemulsion formulation enhanced efficacy, particularly at 5 mg/L, which exhibited rapid and substantial acaricidal activity. Scanning electron microscopy revealed morphological alterations induced by garlic oil and its nanoemulsion, including changes to the anterior capitulum, dorsal, and ventral cuticles. The study contributes to the exploration of effective, safe, and eco-friendly alternatives for tick control. Further research is warranted to validate their efficacy under diverse conditions and assess practical strategies.


Subject(s)
Acaricides , Cattle Diseases , Emulsions , Rhipicephalus , Tick Infestations , Animals , Acaricides/pharmacology , Tick Infestations/veterinary , Tick Infestations/parasitology , Tick Infestations/drug therapy , Tick Infestations/prevention & control , Cattle Diseases/parasitology , Cattle Diseases/drug therapy , Female , Cattle , Male , Rhipicephalus/drug effects , Sulfides/pharmacology , Sulfides/therapeutic use , Allyl Compounds/pharmacology , Garlic/chemistry
13.
Vet Parasitol ; 329: 110208, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781832

ABSTRACT

This study aimed to evaluate the acaricidal potential of the essential oils of Cananga odorata L. (ylang-ylang), Illicium verum (star anise), and Foeniculum vulgare (sweet fennel) in Rhipicephalus microplus engorged females. The essential oils were extracted by hydrodistillation, and the females were immersed in each essential oil at concentrations ranging from 10 µL/mL to 50 µL/mL, using 10% dimethyl sulfoxide as a solvent. Tick mortality was evaluated after seven and 14 days, and the following parameters were determined: female weight before oviposition, preoviposition period, egg mass weight, egg production index, incubation period, hatching rate, fecundity, percentage of reduction in oviposition, percentage of reduction in hatching and product efficacy. Lethal concentration (LC50) values were 34.42 µL/mL (28.34-40.86) for C. odorata and 40.60 µL/mL (32.58-58.21) for F. vulgare. This parameter was not calculated for I. verum because there was insufficient mortality at the concentrations evaluated. The greatest efficacy was observed in the group treated with 40 µL/mL F. vulgare essential oil (97.17%), followed by I. verum (91.35%) and C. odorata (86.19%) at the same concentration. Efficacy results were associated with a greater reduction in egg mass weight and lower hatching rates. Although the essential oils caused a slight acaricidal impact, they showed significant effects on the reproductive performance of R. microplus engorged females. Thus, the results of this study indicate that these essential oils can be used in the development of new acaricidal formulations.


Subject(s)
Acaricides , Foeniculum , Illicium , Oils, Volatile , Reproduction , Rhipicephalus , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Rhipicephalus/drug effects , Foeniculum/chemistry , Female , Acaricides/pharmacology , Reproduction/drug effects , Illicium/chemistry , Oviposition/drug effects , Plant Oils/pharmacology , Plant Oils/chemistry , Cattle , Tick Infestations/veterinary , Tick Infestations/parasitology , Tick Infestations/drug therapy
14.
Vet Parasitol ; 329: 110210, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810593

ABSTRACT

The growing challenge of acaricide resistance and geographical range expansion of invasive tick species demands other interventions, like plant-based alternatives, for sustainable tick control. Leaves, flowers, seedpods, and twig branch extracts of Senna didymobotrya were analyzed using coupled gas chromatography mass spectrometry (GC-MS). Response of adult Amblyomma variegatum and Rhipicephalus appendiculatus to extracts was evaluated. The most attractive plant extract was fractionated and ticks' responses to its fractions assessed. Potential tick attractants in the attractive plant part extract and its fractions were identified by GC-MS analysis. Non- significant qualitative and quantitative differences were observed in the plant parts' extract composition (R = 0.6178). Flower extracts attracted both species, with a 0.1-fold higher attraction in A. variegatum compared to the standard attraction aggregation attachment pheromone (AAAP). Leaf and seedpod extracts repelled ticks at various concentrations. Bioassays after fractionating flower extracts identified hexane and ethyl acetate fractions as most attractive to A. variegatum (P < 0.001) and R. appendiculatus (P < 0.001), respectively. Chemical analysis of the most attractive extracts and fractions identified compounds, including documented acarine attractants, squalene and linoleic acid. A squalene and linoleic acid blend (1:1) at 1 mg/mL significantly attracted adult A. variegatum (P < 0.01) and R. appendiculatus (P < 0.001). The results of this study broaden comprehension of how ticks respond to plants in nature, and showcase the promising potential for integrating these insights into effective tick management programs.


Subject(s)
Acaricides , Amblyomma , Plant Extracts , Rhipicephalus , Senna Plant , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Rhipicephalus/drug effects , Amblyomma/drug effects , Senna Plant/chemistry , Acaricides/pharmacology , Acaricides/chemistry , Female , Flowers/chemistry , Gas Chromatography-Mass Spectrometry , Plant Leaves/chemistry , Tick Control/methods
15.
Exp Parasitol ; 261: 108763, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704016

ABSTRACT

The brown dog tick or Rhipicephalus sanguineus sensu lato is an ixodid tick, responsible for the dissemination of pathogens that cause canine infectious diseases besides inflicting the direct effects of tick bite. The hot humid climate of Kerala, a south Indian state, is favorable for propagation of tick vectors and acaricides are the main stay of tick control. Though the resistance against synthetic pyrethroids is reported among these species, the status of amitraz resistance in R. sanguineus s. l. in the country is uncertain due to the lack of molecular characterisation data and scarce literature reports. Hence the present study was focused on the phenotypic detection and preliminary genotypic characterisation of amitraz resistance in the R. sanguineus s. l. A modified larval packet test (LPT) on a susceptible isolate was performed to determine the discriminating dose (DD). Further LPT-DD on 35 tick isolates was carried out to detect amitraz resistance robustly, along with that full dose response bioassays on the resistant isolates were performed. The results indicated that amitraz resistance is prevalent with 49 per cent of the samples being resistant. Amplification of exon 3 of octopamine receptor gene from both the susceptible and resistant larval isolates was carried out. Amplicons of ten pooled amitraz susceptible and ten pooled amitraz resistant representative samples were sequenced and analysed, unveiling a total of three novel non-synonymous mutations in the partial coding region at positions V32A, N41D and V58I in phenotypically resistant larval DNA samples. In silico analysis by homology modelling and molecular docking of the mutated and unmutated receptors showed that these mutations had reduced the binding affinity to amitraz. However, lack of mutations in the octopamine receptor gene in three of the pooled low order resistant R. sanguineus s. l. larval samples could be suggestive of other mechanisms associated with amitraz resistance in the region. Hence, further association studies should be carried out to confirm the association of these mutations with target insensitivity in R. sanguineus s. l. ticks, along with exploring the status of metabolic resistance and other mechanisms of resistance.


Subject(s)
Acaricides , Receptors, Biogenic Amine , Rhipicephalus sanguineus , Toluidines , Animals , Toluidines/pharmacology , Receptors, Biogenic Amine/genetics , India , Rhipicephalus sanguineus/genetics , Rhipicephalus sanguineus/drug effects , Acaricides/pharmacology , Larva/genetics , Larva/drug effects , Insecticide Resistance/genetics , Polymorphism, Genetic , Genotype , Dogs , Female , Dog Diseases/parasitology , Molecular Docking Simulation , Amino Acid Sequence , Biological Assay
16.
Rev Bras Parasitol Vet ; 33(2): e001524, 2024.
Article in English | MEDLINE | ID: mdl-38695451

ABSTRACT

Rhipicephalus (Boophilus) microplus is a leading cause of significant economic losses in the livestock industry, and tick populations have developed multiple forms of resistance to acaricides; therefore, the potential of novel natural bioactive compounds that are effective for targeting ticks must be addressed. The aim of this study was to evaluate the acaricidal and anticholinesterase activities of R. aculeata seeds and to identify naturally occurring compounds that potentially inhibit anticholinesterase through in silico docking. The acaricidal activity of the extract of R. aculeata seeds against larval and adult R. microplus ticks was assessed through immersion tests. Inhibition of anticholinesterase activity was measured spectrophotometrically. Extracts of R. aculeata seeds showed activity against larvae and engorged females of R. microplus, and a reduction in the reproductive index were also observed. Rutin, chlorogenic acid, quercetin, and epicatechin exhibited noteworthy interactions with the active site residues of RmAChE. These findings could significantly contribute to the exploration of novel natural products that can potentially inhibit RmAChE and could be used in the development of new acaricides for tick control.


Subject(s)
Acaricides , Cholinesterase Inhibitors , Plant Extracts , Rhipicephalus , Seeds , Animals , Rhipicephalus/drug effects , Acaricides/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Seeds/chemistry , Cholinesterase Inhibitors/pharmacology , Computer Simulation , Female , Molecular Docking Simulation
17.
Vet Parasitol ; 328: 110189, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714065

ABSTRACT

In this study we analysed the effect of the temperature, diverse strains of Bacillus thuringiensis, Lysinibacillus sphaericus and nanoformulations with essential plant oils (EONP) on the survival of Sarcoptes scabiei mites derived from naturally-infested Iberian ibex (Capra pyrenaica). In general, mites maintained at 12ºC survived more than those maintained at 35ºC (40.7 hr and 31.2 hr, respectively). Mites with no treatment survived 27.6 h on average. Mites treated with B. thuringiensis serovar. konkukian and geranium EONP showed significant reduction in their survival. Despite the fact that these agents seem to be promising candidates for controlling sarcoptic mange in the field, further research is still needed to get stable, efficient and eco-friendly acaricides.


Subject(s)
Acaricides , Goats , Sarcoptes scabiei , Animals , Acaricides/pharmacology , Sarcoptes scabiei/drug effects , Scabies/drug therapy , Scabies/veterinary , Biological Products/pharmacology , Goat Diseases/drug therapy , Goat Diseases/parasitology , Bacillus thuringiensis/drug effects , Oils, Volatile/pharmacology
18.
Acta Parasitol ; 69(2): 1231-1243, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38671280

ABSTRACT

PURPOSE: Alternative and affordable tick control strategies are crucial to control and prevent tick bites and tick-borne diseases. METHODS: In this study, we evaluated the acaricidal efficacy of 35 aqueous plant extracts (17%) against the camel tick, Hyalomma dromedarii. RESULTS: The phytochemical profile indicated the presence of various secondary substances. Plants were classified into three groups according to their mortality percentage 15 days post-treatment with 17%. This highly effective group (91%-95%) comprised Ocimum basilicum, Mespilus germanica, and Viola alpine followed by Carum carvi, Cucurbita pepo (peel), and Peganum harmala. A moderately effective group (80%-90%) included Acacia nilotica, Apium graveolens, Capsicum annuum, Ceratonia siliqua, Cucurbita pepo (seeds), Equisetum arvense, Eruca sativa, Ginkgo biloba, Plantago psyllium, Phyllanthus emblica, Punica granatum, and Ziziphus spinachristi. The 20 remaining plants were assigned to the less effective group (< 80%). Viscum album (58.3%), which was the least effective reference plant. The high potency of six plant extracts as acaricides may be attributed to the high content of active principles, e.g., phenols, flavonoids, and tannins. CONCLUSION: All of these highly effective plants are recommended for use as an acaricide, in case of facing acaricidal resistance or limited options for tick control.


Subject(s)
Acaricides , Camelus , Ixodidae , Plant Extracts , Animals , Acaricides/pharmacology , Plant Extracts/pharmacology , Egypt , Camelus/parasitology , Ixodidae/drug effects , Tick Infestations/veterinary , Tick Infestations/prevention & control , Tick Infestations/parasitology , Tick Infestations/drug therapy
19.
Insect Biochem Mol Biol ; 170: 104127, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657708

ABSTRACT

Mitochondrial electron transfer inhibitors at complex II (METI-II), also referred to as succinate dehydrogenase inhibitors (SDHI), represent a recently developed class of acaricides encompassing cyflumetofen, cyenopyrafen, pyflubumide and cyetpyrafen. Despite their novelty, resistance has already developed in the target pest, Tetranychus urticae. In this study a new mutation, H146Q in a highly conserved region of subunit B of complex II, was identified in a T. urticae population resistant to all METI-IIs. In contrast to previously described mutations, H146Q is located outside the ubiquinone binding site of complex II. Marker-assisted backcrossing of this mutation in a susceptible genetic background validated its association with resistance to cyflumetofen and pyflubumide, but not cyenopyrafen or cyetpyrafen. Biochemical assays and the construction of inhibition curves with isolated mitochondria corroborated this selectivity. In addition, phenotypic effects of H146Q, together with the previously described H258L, were further examined via CRISPR/Cas9 gene editing. Although both mutations were successfully introduced into a susceptible T. urticae population, the H146Q gene editing event was only recovered in individuals already harboring the I260V mutation, known to confer resistance towards cyflumetofen. The combination of H146Q + I260V conferred high resistance levels to all METI-II acaricides with LC50 values over 5000 mg a.i./L for cyflumetofen and pyflubumide. Similarly, the introduction of H258L via gene editing resulted in high resistance levels to all tested acaricides, with extreme LC50 values (>5000 mg a.i./L) for cyenopyrafen and cyetpyrafen, but lower resistance levels for pyflubumide and cyflumetofen. Together, these findings indicate that different mutations result in a different cross-resistance spectrum, probably also reflecting subtle differences in the binding mode of complex II acaricides.


Subject(s)
Acaricides , Tetranychidae , Animals , Tetranychidae/genetics , Tetranychidae/drug effects , Acaricides/pharmacology , Succinate Dehydrogenase/genetics , Succinate Dehydrogenase/metabolism , Succinate Dehydrogenase/antagonists & inhibitors , Mutation , Binding Sites , Ubiquinone/analogs & derivatives , Drug Resistance/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Female , Propionates/pharmacology
20.
Acta Parasitol ; 69(2): 1141-1147, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38568360

ABSTRACT

PURPOSE: Rhipicephalus (Boophilus) microplus is one the most significant ectoparasite in cattle farming in tropical and subtropical regions, causing problems to livestock health worldwide. The control of this ectoparasite primarily relies on the use of synthetic acaricides. However, the emergence of acaricide resistance has stimulated the search for new control alternatives, including phytocompounds with acaricidal and insecticidal potential. The aim of this study was to evaluate the acaricidal potential of Lavandula dentata essential oil against the engorged females of R. (B.) microplus. METHODS: Engorged females were obtained from infested bovines in dairy farms in Pernambuco, Brazil. L. dentata essential oil was extracted, and adult immersion test assays were performed using the following oil concentrations: 0.2%, 0.4%, 0.6%, 0.8%, and 1%. RESULTS: L. dentata essential oil at a concentration of 1% was lethal to all engorged females, and concentrations of 0.6% and 0.8% caused mortality of 98.6% and 99.1%, respectively. These concentrations disrupted the reproductive capacity of engorged females, reducing oviposition by more than 90% and preventing egg hatching by over 87%. CONCLUSION: The data revealed that L. dentata essential oil possesses effective pharmacological properties against R. (B.) microplus and could be used for tick control following in vivo evaluation, thus contributing to mitigating the negative impacts of synthetic acaricide use.


Subject(s)
Acaricides , Lavandula , Oils, Volatile , Rhipicephalus , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Acaricides/pharmacology , Acaricides/chemistry , Rhipicephalus/drug effects , Female , Lavandula/chemistry , Brazil , Cattle , Tick Infestations/veterinary , Tick Infestations/prevention & control , Tick Infestations/parasitology , Cattle Diseases/parasitology , Plant Oils/pharmacology , Plant Oils/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...