Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.374
Filter
1.
Sci Rep ; 14(1): 17072, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048608

ABSTRACT

Non-alcoholic Fatty Liver Disease (NAFLD) and Non-alcoholic Steatohepatitis (NASH) are major metabolic diseases with increasing global prevalence and no approved therapies. There is a mounting need to develop biomarkers of diagnosis, prognosis and treatment response that can effectively replace current requirements for liver biopsies, which are invasive, error-prone and expensive. We performed SomaLogic serum proteome profiling with baseline (n = 231) and on-treatment (n = 72, Weeks 12 and 16, Placebo and 25 mg PF-05221304) samples from a Phase 2a trial (NCT03248882) with Clesacostat (PF-05221304), an acetyl coA carboxylase inhibitor (ACCi) in patients with NAFLD/NASH. SomaSignal NASH probability scores and expression data for 7000+ analytes were analyzed to identify potential biomarkers associated with baseline clinical measures of NAFLD/NASH [Magnetic Resonance Imaging-Proton Density Fat Fraction (MRI-PDFF), alanine aminotransferase (ALT) and aspartate aminotransferase (AST)] as well as biomarkers of treatment response to ACCi. SomaSignal NASH probability scores identified biopsy-proven/clinically defined NIT-based (Presumed) NASH classification of the cohort with > 70% agreement. Clesacostat-induced reduction in steatosis probability scores aligned with observed clinical reduction in hepatic steatosis based on MRI-PDFF. We identify a set of 69 analytes that robustly correlate with clinical measures of hepatic inflammation and steatosis (MRI-PDFF, ALT and AST), 27 of which were significantly reversed with ACC inhibition. Clesacostat treatment dramatically upregulated Wnt5a protein and Apolipoproteins C3 and E, with drug-induced changes significantly correlating to changes on MRI-PDFF. Our data demonstrate the utility of SomaLogic- analyte panel for diagnosis and treatment response in NAFLD/NASH and provide potential new mechanistic insights into liver steatosis reduction, inflammation and serum triglyceride elevation with ACC inhibition. (Clinical Trial Identifier: NCT03248882).


Subject(s)
Acetyl-CoA Carboxylase , Biomarkers , Non-alcoholic Fatty Liver Disease , Proteomics , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/blood , Acetyl-CoA Carboxylase/antagonists & inhibitors , Acetyl-CoA Carboxylase/metabolism , Biomarkers/blood , Proteomics/methods , Female , Male , Adult , Middle Aged , Liver/pathology , Liver/metabolism , Enzyme Inhibitors/therapeutic use , Enzyme Inhibitors/pharmacology
2.
Pestic Biochem Physiol ; 203: 105985, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39084789

ABSTRACT

Avena fatua L. is one of the most damaging and malignant weeds in wheat fields in China. Fenoxaprop-P-ethyl, mesosulfuron-methyl, and isoproturon, which belong to Acetyl-CoA carboxylase- (ACCase), acetolactate synthase- (ALS), and photosystem II- (PS II) inhibitors, respectively, are commonly used in wheat fields and have a long history of use on A. fatua. An A. fatua population (R) resistant to fenoxaprop-P-ethyl, mesosulfuron-methyl, and isoproturon was collected from a wheat field in 2020. This study explored the mechanisms of target site resistance (TSR) and non-target site resistance (NTSR) in the multi-resistant A. fatua. Whole-plant bioassays showed that the R population had evolved high resistance to fenoxaprop-P-ethyl and moderate resistance to mesosulfuron-methyl and isoproturon. However, no mutations were detected in the ACCase, ALS, or psbA genes in the R population. In addition, the ACCase and ALS gene expression levels in the R group were significantly higher than those in the susceptible population (S) after treatment with fenoxaprop-P-ethyl or mesosulfuron-methyl. In vitro ACCase and ALS activity assays showed that ACCase and ALS from the R population were insensitive to fenoxaprop and mesosulfuron-methyl, respectively, with resistance indices 6.12-fold and 17.46-fold higher than those of the S population. Furthermore, pretreatment with P450 inhibitors significantly (P < 0.05) reversed the multi-resistant A. fatua's resistance to fenoxaprop-P-ethyl, mesosulfuron-methyl, and isoproturon. Sethoxydim, flucarbazone­sodium, chlortoluron, and cypyrafluone were effective in controlling multi-resistance A. fatua. Therefore, the overexpression of ACCase and ALS to synthesize sufficient herbicide-targeting proteins, along with P450-mediated metabolism, conferred resistance to fenoxaprop-P-ethyl, mesosulfuron-methyl, and isoproturon in the R population.


Subject(s)
Acetolactate Synthase , Acetyl-CoA Carboxylase , Herbicide Resistance , Herbicides , Oxazoles , Phenylurea Compounds , Propionates , Herbicide Resistance/genetics , Herbicides/pharmacology , Oxazoles/pharmacology , China , Phenylurea Compounds/pharmacology , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Propionates/pharmacology , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Poaceae/drug effects , Phenylpropionates/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Sulfonylurea Compounds
3.
Lipids Health Dis ; 23(1): 201, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937844

ABSTRACT

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is a prevalent chronic liver condition. However, the potential therapeutic benefits and underlying mechanism of nicotinate-curcumin (NC) in the treatment of NASH remain uncertain. METHODS: A rat model of NASH induced by a high-fat and high-fructose diet was treated with nicotinate-curcumin (NC, 20, 40 mg·kg- 1), curcumin (Cur, 40 mg·kg- 1) and metformin (Met, 50 mg·kg- 1) for a duration of 4 weeks. The interaction between NASH, Cur and Aldo-Keto reductase family 1 member B10 (AKR1B10) was filter and analyzed using network pharmacology. The interaction of Cur, NC and AKR1B10 was analyzed using molecular docking techniques, and the binding energy of Cur and NC with AKR1B10 was compared. HepG2 cells were induced by Ox-LDL (25 µg·ml- 1, 24 h) in high glucose medium. NC (20µM, 40µM), Cur (40µM) Met (150µM) and epalrestat (Epa, 75µM) were administered individually. The activities of ALT, AST, ALP and the levels of LDL, HDL, TG, TC and FFA in serum were quantified using a chemiluminescence assay. Based on the changes in the above indicators, score according to NAS standards. The activities of Acetyl-CoA and Malonyl-CoA were measured using an ELISA assay. And the expression and cellular localization of AKR1B10 and Acetyl-CoA carboxylase (ACCα) in HepG2 cells were detected by Western blotting and immunofluorescence. RESULTS: The results of the animal experiments demonstrated that NASH rat model induced by a high-fat and high-fructose diet exhibited pronounced dysfunction in liver function and lipid metabolism. Additionally, there was a significant increase in serum levels of FFA and TG, as well as elevated expression of AKR1B10 and ACCα, and heightened activity of Acetyl-CoA and Malonyl-CoA in liver tissue. The administration of NC showed to enhance liver function in rats with NASH, leading to reductions in ALT, AST and ALP levels, and decrease in blood lipid and significant inhibition of FFA and TG synthesis in the liver. Network pharmacological analysis identified AKR1B10 and ACCα as potential targets for NASH treatment. Molecular docking studies revealed that both Cur and NC are capable of binding to AKR1B10, with NC exhibiting a stronger binding energy to AKR1B10. Western blot analysis demonstrated an upregulation in the expression of AKR1B10 and ACCα in the liver tissue of NASH rats, accompanied by elevated Acetyl-CoA and Malonyl-CoA activity, and increased levels of FFA and TG. The results of the HepG2 cell experiments induced by Ox-LDL suggest that NC significantly inhibited the expression and co-localization of AKR1B10 and ACCα, while also reduced levels of TC and LDL-C and increased level of HDL-C. These effects are accompanied by a decrease in the activities of ACCα and Malonyl-CoA, and levels of FFA and TG. Furthermore, the impact of NC appears to be more pronounced compared to Cur. CONCLUSION: NC could effectively treat NASH and improve liver function and lipid metabolism disorder. The mechanism of NC is related to the inhibition of AKR1B10/ACCα pathway and FFA/TG synthesis of liver.


Subject(s)
Aldo-Keto Reductases , Curcumin , Non-alcoholic Fatty Liver Disease , Triglycerides , Curcumin/pharmacology , Curcumin/analogs & derivatives , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Humans , Hep G2 Cells , Aldo-Keto Reductases/metabolism , Rats , Male , Triglycerides/blood , Triglycerides/metabolism , Acetyl-CoA Carboxylase/metabolism , Aldehyde Reductase/metabolism , Aldehyde Reductase/antagonists & inhibitors , Diet, High-Fat/adverse effects , Molecular Docking Simulation , Liver/drug effects , Liver/metabolism , Metformin/pharmacology , Rats, Sprague-Dawley , Disease Models, Animal , Rhodanine/analogs & derivatives , Thiazolidines
4.
Int J Biol Macromol ; 270(Pt 2): 132243, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744369

ABSTRACT

Myoblast differentiation depends on fatty acid oxidation (FAO),and its rate-limiting enzyme acetyl-CoA carboxylase 2 (ACC2) participate in the regulation skeletal muscle development. However, the precise regulatory mechanism is still unknown. Using previous RNA-sequencing data from our laboratory, we explored the effect of ACC2 on myoblast differentiation, as a candidate gene, since its expression is higher in myoblasts of lamb (first day of age) than that of the fetus (75th day of pregnancy). Our findings show that siACC2 inhibited myoblast proliferation, promoted differentiation, and boosted mitochondrial and fatty acid oxidation activities. The effect of ACC2 on goat muscle cell differentiation was modulated by Etomoxir, a CPT1A inhibitor. Notably, the AMPK/ACC2 pathway was found to regulate fatty acid oxidation and goat muscle cell differentiation. Inhibiting the AMPK/ACC2 pathway significantly reduced CPT1A expression. These findings indicate that AMPK/ACC2 regulate goat myoblast differentiation via fatty acid oxidation, contributing to understanding the mechanism of goat skeletal muscle development.


Subject(s)
AMP-Activated Protein Kinases , Acetyl-CoA Carboxylase , Cell Differentiation , Fatty Acids , Goats , Myoblasts , Oxidation-Reduction , Animals , Fatty Acids/metabolism , Myoblasts/metabolism , Myoblasts/cytology , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/genetics , AMP-Activated Protein Kinases/metabolism , Cell Proliferation , Epoxy Compounds/pharmacology , Signal Transduction
5.
J Agric Food Chem ; 72(21): 12014-12028, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38748759

ABSTRACT

Alopecurus aequalis Sobol. is a predominant grass weed in Chinese winter wheat fields, posing a substantial threat to crop production owing to its escalating herbicide resistance. This study documented the initial instance of an A. aequalis population (AHFT-3) manifesting resistance to multiple herbicides targeting four distinct sites: acetyl-CoA carboxylase (ACCase), acetolactate synthase, photosystem II, and 1-deoxy-d-xylulose-5-phosphate synthase. AHFT-3 carried an Asp-to-Gly mutation at codon 2078 of ACCase, with no mutations in the remaining three herbicide target genes, and exhibited no overexpression of any target gene. Compared with the susceptible population AHFY-3, AHFT-3 metabolized mesosulfuron-methyl, isoproturon, and bixlozone faster. The inhibition and comparison of herbicide-detoxifying enzyme activities indicated the participation of cytochrome P450s in the resistance to all four herbicides, with glutathione S-transferases specifically linked to mesosulfuron-methyl. Three CYP72As and a Tau class glutathione S-transferase, markedly upregulated in resistant plants, potentially played pivotal roles in the multiple-herbicide-resistance phenotype.


Subject(s)
Acetyl-CoA Carboxylase , Herbicide Resistance , Herbicides , Plant Proteins , Poaceae , Herbicide Resistance/genetics , Herbicides/pharmacology , Herbicides/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Poaceae/genetics , Poaceae/metabolism , Poaceae/drug effects , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Mutation , Plant Weeds/drug effects , Plant Weeds/genetics , Plant Weeds/metabolism
6.
J Agric Food Chem ; 72(21): 12029-12044, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38752706

ABSTRACT

Weeds present a significant challenge to agricultural productivity, and acetyl-CoA carboxylase (ACCase)-inhibiting herbicides have proven to be effective in managing weed populations in rice fields. To develop ACCase-inhibiting herbicide-resistant rice, we generated mutants of rice ACCase (OsACC) featuring Ile-1792-Leu or Gly-2107-Ser substitutions through ethyl methyl sulfonate (EMS) mutagenesis. The Ile-1792-Leu mutant displayed cross-resistance to aryloxyphenoxypropionate (APP) and phenylpyrazoline (DEN) herbicides, whereas the Gly-2107-Ser mutants primarily exhibited cross-resistance to APP herbicides with diminished resistance to the DEN herbicide. In vitro assays of the OsACC activity revealed an increase in resistance to haloxyfop and quizalofop, ranging from 4.84- to 29-fold in the mutants compared to that in wild-type. Structural modeling revealed that both mutations likely reduce the binding affinity between OsACC and ACCase inhibitors, thereby imparting resistance. This study offers insights into two target-site mutations, contributing to the breeding of herbicide-resistant rice and presenting alternative weed management strategies in rice cultivation.


Subject(s)
Acetyl-CoA Carboxylase , Enzyme Inhibitors , Herbicide Resistance , Herbicides , Mutation , Oryza , Plant Proteins , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/antagonists & inhibitors , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/chemistry , Oryza/genetics , Oryza/enzymology , Herbicides/pharmacology , Herbicides/chemistry , Herbicide Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Plant Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Plant Weeds/drug effects , Plant Weeds/genetics , Plant Weeds/enzymology
7.
Nat Commun ; 15(1): 4083, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744825

ABSTRACT

Energetic stress compels cells to evolve adaptive mechanisms to adjust their metabolism. Inhibition of mTOR kinase complex 1 (mTORC1) is essential for cell survival during glucose starvation. How mTORC1 controls cell viability during glucose starvation is not well understood. Here we show that the mTORC1 effectors eukaryotic initiation factor 4E binding proteins 1/2 (4EBP1/2) confer protection to mammalian cells and budding yeast under glucose starvation. Mechanistically, 4EBP1/2 promote NADPH homeostasis by preventing NADPH-consuming fatty acid synthesis via translational repression of Acetyl-CoA Carboxylase 1 (ACC1), thereby mitigating oxidative stress. This has important relevance for cancer, as oncogene-transformed cells and glioma cells exploit the 4EBP1/2 regulation of ACC1 expression and redox balance to combat energetic stress, thereby supporting transformation and tumorigenicity in vitro and in vivo. Clinically, high EIF4EBP1 expression is associated with poor outcomes in several cancer types. Our data reveal that the mTORC1-4EBP1/2 axis provokes a metabolic switch essential for survival during glucose starvation which is exploited by transformed and tumor cells.


Subject(s)
Acetyl-CoA Carboxylase , Adaptor Proteins, Signal Transducing , Cell Cycle Proteins , Cell Survival , Fatty Acids , Glucose , Mechanistic Target of Rapamycin Complex 1 , Animals , Humans , Mice , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Line, Tumor , Eukaryotic Initiation Factors/metabolism , Eukaryotic Initiation Factors/genetics , Fatty Acids/metabolism , Glucose/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , NADP/metabolism , Oxidative Stress , Phosphoproteins/metabolism , Phosphoproteins/genetics , Protein Biosynthesis
8.
J Biol Chem ; 300(7): 107412, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796064

ABSTRACT

The heart alters the rate and relative oxidation of fatty acids and glucose based on availability and energetic demand. Insulin plays a crucial role in this process diminishing fatty acid and increasing glucose oxidation when glucose availability increases. Loss of insulin sensitivity and metabolic flexibility can result in cardiovascular disease. It is therefore important to identify mechanisms by which insulin regulates substrate utilization in the heart. Mitochondrial pyruvate dehydrogenase (PDH) is the key regulatory site for the oxidation of glucose for ATP production. Nevertheless, the impact of insulin on PDH activity has not been fully delineated, particularly in the heart. We sought in vivo evidence that insulin stimulates cardiac PDH and that this process is driven by the inhibition of fatty acid oxidation. Mice injected with insulin exhibited dephosphorylation and activation of cardiac PDH. This was accompanied by an increase in the content of malonyl-CoA, an inhibitor of carnitine palmitoyltransferase 1 (CPT1), and, thus, mitochondrial import of fatty acids. Administration of the CPT1 inhibitor oxfenicine was sufficient to activate PDH. Malonyl-CoA is produced by acetyl-CoA carboxylase (ACC). Pharmacologic inhibition or knockout of cardiac ACC diminished insulin-dependent production of malonyl-CoA and activation of PDH. Finally, circulating insulin and cardiac glucose utilization exhibit daily rhythms reflective of nutritional status. We demonstrate that time-of-day-dependent changes in PDH activity are mediated, in part, by ACC-dependent production of malonyl-CoA. Thus, by inhibiting fatty acid oxidation, insulin reciprocally activates PDH. These studies identify potential molecular targets to promote cardiac glucose oxidation and treat heart disease.


Subject(s)
Fatty Acids , Insulin , Myocardium , Oxidation-Reduction , Pyruvate Dehydrogenase Complex , Animals , Insulin/metabolism , Pyruvate Dehydrogenase Complex/metabolism , Mice , Myocardium/metabolism , Myocardium/enzymology , Fatty Acids/metabolism , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/genetics , Malonyl Coenzyme A/metabolism , Male , Mice, Knockout , Glucose/metabolism , Mice, Inbred C57BL
9.
J Agric Food Chem ; 72(20): 11405-11414, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717990

ABSTRACT

This study investigated the multiple herbicide resistance (MHR) mechanism of one Echinochloa crus-galli population that was resistant to florpyrauxifen-benzyl (FPB), cyhalofop-butyl (CHB), and penoxsulam (PEX). This population carried an Ala-122-Asn mutation in the acetolactate synthase (ALS) gene but no mutation in acetyl-CoA carboxylase (ACCase) and transport inhibitor response1 (TIR1) genes. The metabolism rate of PEX was 2-fold higher, and the production of florpyrauxifen-acid and cyhalofop-acid was lower in the resistant population. Malathion and 4-chloro-7-nitrobenzoxadiazole (NBD-Cl) could reverse the resistance, suggesting that cytochrome P450 (CYP450) and glutathione S-transferase (GST) contribute to the enhanced metabolism. According to RNA-seq and qRT-PCR validation, two CYP450 genes (CYP71C42 and CYP71D55), one GST gene (GSTT2), two glycosyltransferase genes (rhamnosyltransferase 1 and IAAGLU), and two ABC transporter genes (ABCG1 and ABCG25) were induced by CHB, FPB, and PEX in the resistant population. This study revealed that the target mutant and enhanced metabolism were involved in the MHR mechanism in E. crus-galli.


Subject(s)
Cytochrome P-450 Enzyme System , Echinochloa , Herbicide Resistance , Herbicides , Mutation , Plant Proteins , Herbicide Resistance/genetics , Herbicides/pharmacology , Herbicides/metabolism , Echinochloa/genetics , Echinochloa/drug effects , Echinochloa/metabolism , Echinochloa/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Plant Weeds/drug effects , Plant Weeds/genetics , Plant Weeds/metabolism , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Butanes , Nitriles , Sulfonamides , Uridine/analogs & derivatives
10.
Cell Metab ; 36(5): 884-886, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38718753

ABSTRACT

Tumors compromise T cell functionality through various mechanisms, including the induction of a nutrient-scarce microenvironment, leading to lipid accumulation and metabolic reprogramming. Hunt et al. elucidate acetyl-CoA carboxylase's crucial role in regulating lipid metabolism in CD8+ T cells, uncovering a novel metabolic strategy to potentiate antitumor immune responses.


Subject(s)
Acetyl-CoA Carboxylase , CD8-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Humans , Acetyl-CoA Carboxylase/metabolism , Animals , Neoplasms/immunology , Neoplasms/metabolism , Lipid Metabolism , Tumor Microenvironment/immunology
11.
Curr Opin Hematol ; 31(5): 217-223, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38727017

ABSTRACT

PURPOSE OF REVIEW: Lipids play vital roles in platelet structure, signaling, and metabolism. In addition to capturing exogenous lipids, platelets possess the capacity for de novo lipogenesis, regulated by acetyl-coA carboxylase 1 (ACC1). This review aims to cover the critical roles of platelet de novo lipogenesis and lipidome in platelet production, function, and diseases. RECENT FINDINGS: Upon platelet activation, approximately 20% of the platelet lipidome undergoes significant modifications, primarily affecting arachidonic acid-containing species. Multiple studies emphasize the impact of de novo lipogenesis, with ACC1 as key player, on platelet functions. Mouse models suggest the importance of the AMPK-ACC1 axis in regulating platelet membrane arachidonic acid content, associated with TXA 2 secretion, and thrombus formation. In human platelets, ACC1 inhibition leads to reduced platelet reactivity. Remodeling of the platelet lipidome, alongside with de novo lipogenesis, is also crucial for platelet biogenesis. Disruptions in the platelet lipidome are observed in various pathological conditions, including cardiovascular and inflammatory diseases, with associations between these alterations and shifts in platelet reactivity highlighted. SUMMARY: The platelet lipidome, partially regulated by ACC-driven de novo lipogenesis, is indispensable for platelet production and function. It is implicated in various pathological conditions involving platelets.


Subject(s)
Blood Platelets , Lipidomics , Lipogenesis , Humans , Blood Platelets/metabolism , Animals , Lipidomics/methods , Acetyl-CoA Carboxylase/metabolism , Lipid Metabolism , Platelet Activation
12.
J Lipid Res ; 65(5): 100542, 2024 May.
Article in English | MEDLINE | ID: mdl-38641009

ABSTRACT

Nitric oxide (NO), produced primarily by nitric oxide synthase enzymes, is known to influence energy metabolism by stimulating fat uptake and oxidation. The effects of NO on de novo lipogenesis (DNL), however, are less clear. Here we demonstrate that hepatic expression of endothelial nitric oxide synthase is reduced following prolonged administration of a hypercaloric high-fat diet. This results in marked reduction in the amount of S-nitrosylation of liver proteins including notably acetyl-CoA carboxylase (ACC), the rate-limiting enzyme in DNL. We further show that ACC S-nitrosylation markedly increases enzymatic activity. Diminished endothelial nitric oxide synthase expression and ACC S-nitrosylation may thus represent a physiological adaptation to caloric excess by constraining lipogenesis. Our findings demonstrate that S-nitrosylation of liver proteins is subject to dietary control and suggest that DNL is coupled to dietary and metabolic conditions through ACC S-nitrosylation.


Subject(s)
Acetyl-CoA Carboxylase , Liver , Nitric Oxide Synthase Type III , Acetyl-CoA Carboxylase/metabolism , Liver/metabolism , Liver/enzymology , Nitric Oxide Synthase Type III/metabolism , Animals , Male , Nitric Oxide/metabolism , Diet, High-Fat/adverse effects , Lipogenesis , Enzyme Activation , Rats
13.
Trends Endocrinol Metab ; 35(7): 563-565, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38664153

ABSTRACT

Liver-targeted acetyl-coenzyme A (CoA) carboxylase (ACC) inhibitors in metabolic dysfunction-associated steatotic liver disease (MASLD) trials reveal notable secondary effects: hypertriglyceridemia and altered glucose metabolism, paradoxically with reduced hepatic steatosis. In their study, Deja et al. explored how hepatic ACC influences metabolism using different pharmacological and genetic methods, coupled with targeted metabolomics and stable isotope-based tracing techniques.


Subject(s)
Acetyl-CoA Carboxylase , Liver , Animals , Humans , Acetyl-CoA Carboxylase/antagonists & inhibitors , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Fatty Liver/metabolism , Liver/metabolism
14.
Environ Pollut ; 350: 123971, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38641033

ABSTRACT

Haloacetaldehyde disinfection by-products (HAL-DBPs) are among the top three unregulated DBPs found in drinking water. The cytotoxicity and genotoxicity of HALs are much higher than that of the regulated trihalomethanes and haloacetic acids. Previous studies have mainly focused on the toxic effects of single HAL, with few examining the toxic effects of mixed exposures to HALs. The study aimed to observe the effects of mixed exposures of 1∼1000X the realistic level of HALs on the hepatotoxicity and lipid metabolism of C57BL/6J mice, based on the component and concentration of HALs detected in the finished water of Shanghai. Exposure to realistic levels of HALs led to a significant increase in phosphorated acetyl CoA carboxylase 1 (p-ACC1) in the hepatic de novo lipogenesis (DNL) pathway. Additionally, exposure to 100X realistic levels of HALs resulted in significant alterations to key enzymes of DNL pathway, including ACC1, fatty acid synthase (FAS), and diacylglycerol acyltransferase 2 (DGAT2), as well as key proteins of lipid disposal such as carnitine palmitoyltransferase 1 (CPT-1) and peroxisome proliferator activated receptor α (PPARα). Exposure to 1000X realistic levels of HALs significantly increased hepatic and serum triglyceride levels, as well as total cholesterol, low-density lipoprotein, alanine aminotransferase, aspartate transaminase, alkaline phosphatase, and lactate dehydrogenase levels, significantly decreased high-density lipoprotein. Meanwhile, histopathological analysis demonstrated that HALs exacerbated tissue vacuolization and inflammatory cell infiltration in mice livers, which showed the typical phenotypes of non-alcoholic fatty liver disease (NAFLD). These results suggested that the HALs mixture is a critical risk factor for NAFLD and is significantly highly toxic to C57BL/6J mice.


Subject(s)
Acetaldehyde , Lipid Metabolism , Liver , Mice, Inbred C57BL , Animals , Mice , Liver/drug effects , Liver/metabolism , Acetaldehyde/toxicity , Acetaldehyde/analogs & derivatives , Lipid Metabolism/drug effects , Male , Disinfection , Water Pollutants, Chemical/toxicity , Acetyl-CoA Carboxylase/metabolism , PPAR alpha/metabolism , Diacylglycerol O-Acyltransferase/metabolism , Diacylglycerol O-Acyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/genetics , Lipogenesis/drug effects , Disinfectants/toxicity , Fatty Acid Synthases/metabolism , China , Drinking Water/chemistry
15.
mBio ; 15(5): e0341423, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38572988

ABSTRACT

Acetyl-CoA carboxylases (ACCs) convert acetyl-CoA to malonyl-CoA, a key step in fatty acid biosynthesis and autotrophic carbon fixation pathways. Three functionally distinct components, biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyltransferase (CT), are either separated or partially fused in different combinations, forming heteromeric ACCs. However, an ACC with fused BC-BCCP and separate CT has not been identified, leaving its catalytic mechanism unclear. Here, we identify two BC isoforms (BC1 and BC2) from Chloroflexus aurantiacus, a filamentous anoxygenic phototroph that employs 3-hydroxypropionate (3-HP) bi-cycle rather than Calvin cycle for autotrophic carbon fixation. We reveal that BC1 possesses fused BC and BCCP domains, where BCCP could be biotinylated by E. coli or C. aurantiacus BirA on Lys553 residue. Crystal structures of BC1 and BC2 at 3.2 Å and 3.0 Å resolutions, respectively, further reveal a tetramer of two BC1-BC homodimers, and a BC2 homodimer, all exhibiting similar BC architectures. The two BC1-BC homodimers are connected by an eight-stranded ß-barrel of the partially resolved BCCP domain. Disruption of ß-barrel results in dissociation of the tetramer into dimers in solution and decreased biotin carboxylase activity. Biotinylation of the BCCP domain further promotes BC1 and CTß-CTα interactions to form an enzymatically active ACC, which converts acetyl-CoA to malonyl-CoA in vitro and produces 3-HP via co-expression with a recombinant malonyl-CoA reductase in E. coli cells. This study revealed a heteromeric ACC that evolves fused BC-BCCP but separate CTα and CTß to complete ACC activity.IMPORTANCEAcetyl-CoA carboxylase (ACC) catalyzes the rate-limiting step in fatty acid biosynthesis and autotrophic carbon fixation pathways across a wide range of organisms, making them attractive targets for drug discovery against various infections and diseases. Although structural studies on homomeric ACCs, which consist of a single protein with three subunits, have revealed the "swing domain model" where the biotin carboxyl carrier protein (BCCP) domain translocates between biotin carboxylase (BC) and carboxyltransferase (CT) active sites to facilitate the reaction, our understanding of the subunit composition and catalytic mechanism in heteromeric ACCs remains limited. Here, we identify a novel ACC from an ancient anoxygenic photosynthetic bacterium Chloroflexus aurantiacus, it evolves fused BC and BCCP domain, but separate CT components to form an enzymatically active ACC, which converts acetyl-CoA to malonyl-CoA in vitro and produces 3-hydroxypropionate (3-HP) via co-expression with recombinant malonyl-CoA reductase in E. coli cells. These findings expand the diversity and molecular evolution of heteromeric ACCs and provide a structural basis for potential applications in 3-HP biosynthesis.


Subject(s)
Acetyl-CoA Carboxylase , Carbon-Nitrogen Ligases , Chloroflexus , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/chemistry , Carbon-Nitrogen Ligases/metabolism , Carbon-Nitrogen Ligases/genetics , Carbon-Nitrogen Ligases/chemistry , Chloroflexus/genetics , Chloroflexus/metabolism , Chloroflexus/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Biotin/metabolism , Biotin/biosynthesis , Malonyl Coenzyme A/metabolism , Acetyl Coenzyme A/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Fatty Acid Synthase, Type II
16.
Org Lett ; 26(16): 3424-3428, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38630577

ABSTRACT

Penihemeroterpenoids A-C, the first meroterpenoids with an unprecedented 6/5/6/5/5/6/5 heptacyclic ring system, together with precursors penihemeroterpenoids D-F, were co-isolated from the fungus Penicillium herquei GZU-31-6. Among them, penihemeroterpenoids C-F exhibited lipid-lowering effects comparable to those of the positive control simvastatin by the activation of the AMPK/ACC/SREBP-1c signaling pathway, downregulated the mRNA levels of lipid synthesis genes FAS and PNPLA3, and increased the level of mRNA expression of the lipid export gene MTTP.


Subject(s)
AMP-Activated Protein Kinases , Penicillium , Signal Transduction , Sterol Regulatory Element Binding Protein 1 , Terpenes , Penicillium/chemistry , Terpenes/chemistry , Terpenes/pharmacology , Signal Transduction/drug effects , Humans , Sterol Regulatory Element Binding Protein 1/metabolism , AMP-Activated Protein Kinases/metabolism , Molecular Structure , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/antagonists & inhibitors , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/chemistry
17.
Pestic Biochem Physiol ; 200: 105826, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582590

ABSTRACT

Acetyl-CoA carboxylase (ACCase)-inhibiting herbicides are among the most commonly used herbicides to control grassy weeds, especially Leptochloa chinensis, in rice fields across China. Herein, we collected a suspected resistant (R) population of L. chinensis (HFLJ16) from Lujiang county in Anhui Province. Whole plant dose response tests showed that, compared with the susceptible (S) population, the R population showed high resistance to cyhalofop-butyl (22-fold) and displayed cross-resistance to metamifop (9.7-fold), fenoxaprop-P-ethyl (18.7-fold), quizalofop-P-ethyl (7.6-fold), clodinafop-propargyl (12-fold) and clethodim (8.4-fold). We detected an amino acid substitution (Cys-2088-Arg) in the ACCase of resistant L. chinensis. However, ACCase gene expression levels were not significantly different (P > 0.05) between R plants and S plants, without or with cyhalofop-butyl treatment. Furthermore, pretreatment with piperonyl butoxide (PBO, a cytochrome P450 monooxygenase (CYP450) inhibitor) or 4-chloro-7-nitrobenzoxadiazole (NBD-Cl, a glutathione-S-transferase (GST) inhibitor), inhibited the resistance of the R population to cyhalofop-butyl significantly (by approximately 60% and 26%, respectively). Liquid chromatography tandem mass spectrometry analysis showed that R plants metabolized cyhalofop-butyl and cyhalofop acid (its metabolite) significantly faster than S plants. Three CYP450 genes, one GST gene, and two ABC transporter genes were induced by cyhalofop-butyl and were overexpressed in the R population. Overall, GST-associated detoxification, CYP450 enhancement, and target-site gene mutation are responsible for the resistance of L. chinensis to cyhalofop-butyl.


Subject(s)
4-Chloro-7-nitrobenzofurazan , Acetyl-CoA Carboxylase , Butanes , Herbicides , Nitriles , Oxazoles , Propionates , Acetyl-CoA Carboxylase/metabolism , Plant Proteins/genetics , Poaceae/genetics , Poaceae/metabolism , Herbicides/pharmacology , Cytochrome P-450 Enzyme System/genetics , Mutation , Herbicide Resistance/genetics
18.
Cell Metab ; 36(5): 969-983.e10, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38490211

ABSTRACT

The solid tumor microenvironment (TME) imprints a compromised metabolic state in tumor-infiltrating T cells (TILs), hallmarked by the inability to maintain effective energy synthesis for antitumor function and survival. T cells in the TME must catabolize lipids via mitochondrial fatty acid oxidation (FAO) to supply energy in nutrient stress, and it is established that T cells enriched in FAO are adept at cancer control. However, endogenous TILs and unmodified cellular therapy products fail to sustain bioenergetics in tumors. We reveal that the solid TME imposes perpetual acetyl-coenzyme A (CoA) carboxylase (ACC) activity, invoking lipid biogenesis and storage in TILs that opposes FAO. Using metabolic, lipidomic, and confocal imaging strategies, we find that restricting ACC rewires T cell metabolism, enabling energy maintenance in TME stress. Limiting ACC activity potentiates a gene and phenotypic program indicative of T cell longevity, engendering T cells with increased survival and polyfunctionality, which sustains cancer control.


Subject(s)
Acetyl-CoA Carboxylase , CD8-Positive T-Lymphocytes , Lipid Metabolism , Tumor Microenvironment , Acetyl-CoA Carboxylase/metabolism , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Mice , Mice, Inbred C57BL , Humans , Fatty Acids/metabolism , Female , Cell Line, Tumor , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mitochondria/metabolism
19.
Mol Biol Rep ; 51(1): 402, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456942

ABSTRACT

BACKGROUND: Acetyl-CoA carboxylase (ACC) catalyzes the carboxylation of acetyl-CoA to malonyl-CoA. Malonyl-CoA, which plays a key role in regulating glucose and lipid metabolism, is not only a substrate for fatty acid synthesis but also an inhibitor of the oxidation pathway. ACC exists as two isoenzymes that are encoded by two different genes. ACC1 in grass carp (Ctenopharyngodon idellus) has been cloned and sequenced. However, studies on the cloning, tissue distribution, and function of ACC2 in grass carp were still rare. METHODS AND RESULTS: The full-length cDNA of acc2 was 8537 bp with a 7146 bp open reading frame encoding 2381 amino acids. ACC2 had a calculated molecular weight of 268.209 kDa and an isoelectric point of 5.85. ACC2 of the grass carp shared the closest relationship with that of the common carp (Sinocyclocheilus grahami). The expressions of acc1 and acc2 mRNA were detected in all examined tissues.  The expression level of acc1 was high in the brain and fat but absent in the midgut and hindgut. The expression level of acc2 in the kidney was significantly higher than in other tissues, followed by the heart, brain, muscle, and spleen. ACCs inhibitor significantly reduced the levels of glucose, malonyl-CoA, and triglyceride in hepatocytes. CONCLUSIONS: This study showed that the function of ACC2 was evolutionarily conserved from fish to mammals. ACCs inhibitor inhibited the biological activity of ACCs, and reduced fat accumulation in grass carp.


Subject(s)
Carps , Animals , Carps/genetics , Carps/metabolism , Cloning, Molecular , Base Sequence , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Gene Expression , Glucose , Mammals/metabolism
20.
Cell Metab ; 36(5): 1088-1104.e12, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38447582

ABSTRACT

Acetyl-CoA carboxylase (ACC) promotes prandial liver metabolism by producing malonyl-CoA, a substrate for de novo lipogenesis and an inhibitor of CPT-1-mediated fat oxidation. We report that inhibition of ACC also produces unexpected secondary effects on metabolism. Liver-specific double ACC1/2 knockout (LDKO) or pharmacologic inhibition of ACC increased anaplerosis, tricarboxylic acid (TCA) cycle intermediates, and gluconeogenesis by activating hepatic CPT-1 and pyruvate carboxylase flux in the fed state. Fasting should have marginalized the role of ACC, but LDKO mice maintained elevated TCA cycle intermediates and preserved glycemia during fasting. These effects were accompanied by a compensatory induction of proteolysis and increased amino acid supply for gluconeogenesis, which was offset by increased protein synthesis during feeding. Such adaptations may be related to Nrf2 activity, which was induced by ACC inhibition and correlated with fasting amino acids. The findings reveal unexpected roles for malonyl-CoA synthesis in liver and provide insight into the broader effects of pharmacologic ACC inhibition.


Subject(s)
Acetyl-CoA Carboxylase , Amino Acids , Gluconeogenesis , Liver , Malonyl Coenzyme A , Mice, Knockout , Oxidation-Reduction , Animals , Malonyl Coenzyme A/metabolism , Liver/metabolism , Acetyl-CoA Carboxylase/metabolism , Mice , Amino Acids/metabolism , Male , Pyruvate Carboxylase/metabolism , Citric Acid Cycle , Pyruvic Acid/metabolism , Mice, Inbred C57BL , Fasting/metabolism , Carnitine O-Palmitoyltransferase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL