Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 853
Filter
1.
Curr Microbiol ; 81(8): 248, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951187

ABSTRACT

Myxococcus xanthus synthesizes polyphosphates (polyPs) with polyphosphate kinase 1 (Ppk1) and degrades short- and long-chain polyPs with the exopolyphosphatases, Ppx1 and Ppx2, respectively. M. xanthus polyP:AMP phosphotransferase (Pap) generates ADP from AMP and polyPs. Pap expression is induced by an elevation in intracellular polyP concentration. M. xanthus synthesized polyPs during the stationary phase; the ppk1 mutant died earlier than the wild-type strain after the stationary phase. In addition, M. xanthus cells cultured in phosphate-starved medium, H2O2-supplemented medium, or amino acid-deficient medium increased the intracellular polyP levels by six- to ninefold after 6 h of incubation. However, the growth of ppk1 and ppx2 mutants in phosphate-starved medium and H2O2-supplemented medium was not significantly different from that of wild-type strain, nor was there a significant difference in fruiting body formation and sporulation in starvation condition. During development, no difference was observed in the adenylate energy charge (AEC) values in the wild-type, ppk1 mutant, and pap mutant strains until the second day of development. However, after day 3, the ppk1 and pap mutants had a lower ADP ratio and a higher AMP ratio compared to wild-type strain, and as a result, the AEC values of these mutants were lower than those of the wild-type strain. Spores of ppk1 and pap mutants in the nutrient medium germinated later than those of the wild-type strain. These results suggested that polyPs produced during development may play an important role in cellular energy homeostasis of the spores by being used to convert AMP to ADP via Pap.


Subject(s)
Myxococcus xanthus , Polyphosphates , Spores, Bacterial , Polyphosphates/metabolism , Myxococcus xanthus/genetics , Myxococcus xanthus/growth & development , Myxococcus xanthus/metabolism , Spores, Bacterial/growth & development , Spores, Bacterial/genetics , Spores, Bacterial/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Phosphotransferases (Phosphate Group Acceptor)/genetics , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Acid Anhydride Hydrolases/genetics , Acid Anhydride Hydrolases/metabolism , Culture Media/chemistry
2.
Mol Cell ; 84(12): 2223-2237.e4, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38870937

ABSTRACT

In Saccharomyces cerevisiae (S. cerevisiae), Mre11-Rad50-Xrs2 (MRX)-Sae2 nuclease activity is required for the resection of DNA breaks with secondary structures or protein blocks, while in humans, the MRE11-RAD50-NBS1 (MRN) homolog with CtIP is needed to initiate DNA end resection of all breaks. Phosphorylated Sae2/CtIP stimulates the endonuclease activity of MRX/N. Structural insights into the activation of the Mre11 nuclease are available only for organisms lacking Sae2/CtIP, so little is known about how Sae2/CtIP activates the nuclease ensemble. Here, we uncover the mechanism of Mre11 activation by Sae2 using a combination of AlphaFold2 structural modeling of biochemical and genetic assays. We show that Sae2 stabilizes the Mre11 nuclease in a conformation poised to cleave substrate DNA. Several designs of compensatory mutations establish how Sae2 activates MRX in vitro and in vivo, supporting the structural model. Finally, our study uncovers how human CtIP, despite considerable sequence divergence, employs a similar mechanism to activate MRN.


Subject(s)
DNA-Binding Proteins , Endodeoxyribonucleases , Endonucleases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Endonucleases/metabolism , Endonucleases/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/chemistry , Humans , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , Models, Molecular , Phosphorylation , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , DNA Breaks, Double-Stranded , Acid Anhydride Hydrolases/metabolism , Acid Anhydride Hydrolases/genetics , Mutation , MRE11 Homologue Protein/metabolism , MRE11 Homologue Protein/genetics , DNA Repair , Enzyme Activation
3.
Appl Environ Microbiol ; 90(5): e0229023, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38619267

ABSTRACT

The linear polymer polyphosphate (poly-P) is present across all three domains of life and serves diverse physiological functions. The enzyme polyphosphate kinase (Ppk) is responsible for poly-P synthesis, whereas poly-P degradation is carried out by the enzyme exopolyphosphatase (Ppx). In many Lactobacillaceae, the Ppk-encoding gene (ppk) is found clustered together with two genes encoding putative exopolyphosphatases (ppx1 and ppx2) each having different domain compositions, with the gene order ppx1-ppk-ppx2. However, the specific function of these ppx genes remains unexplored. An in-frame deletion of ppx1 in Lacticaseibacillus paracasei BL23 resulted in bacteria unable to accumulate poly-P, whereas the disruption of ppx2 did not affect poly-P synthesis. The expression of ppk was not altered in the Δppx1 strain, and poly-P synthesis in this strain was only restored by expressing ppx1 in trans. Moreover, no poly-P synthesis was observed when ppk was expressed from a plasmid in the Δppx1 strain. Purified Ppx2 exhibited in vitro exopolyphosphatase activity, whereas no in vitro enzymatic activity could be demonstrated for Ppx1. This observation corresponds with the absence in Ppx1 of conserved motifs essential for catalysis found in characterized exopolyphosphatases. Furthermore, assays with purified Ppk and Ppx1 evidenced that Ppx1 enhanced Ppk activity. These results demonstrate that Ppx1 is essential for poly-P synthesis in Lc. paracasei and have unveiled, for the first time, an unexpected role of Ppx1 exopolyphosphatase in poly-P synthesis.IMPORTANCEPoly-P is a pivotal molecular player in bacteria, participating in a diverse array of processes ranging from stress resilience to pathogenesis while also serving as a functional component in probiotic bacteria. The synthesis of poly-P is tightly regulated, but the underlying mechanisms remain incompletely elucidated. Our study sheds light on the distinctive role played by the two exopolyphosphatases (Ppx) found in the Lactobacillaceae bacterial group, of relevance in food and health. This particular group is noteworthy for possessing two Ppx enzymes, supposedly involved in poly-P degradation. Remarkably, our investigation uncovers an unprecedented function of Ppx1 in Lacticaseibacillus paracasei, where its absence leads to the total cessation of poly-P synthesis, paralleling the impact observed upon eliminating the poly-P forming enzyme, poly-P kinase. Unlike the anticipated role as a conventional exopolyphosphatase, Ppx1 demonstrates an unexpected function. Our results added a layer of complexity to our understanding of poly-P dynamics in bacteria.


Subject(s)
Acid Anhydride Hydrolases , Bacterial Proteins , Polyphosphates , Acid Anhydride Hydrolases/metabolism , Acid Anhydride Hydrolases/genetics , Polyphosphates/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Phosphotransferases (Phosphate Group Acceptor)/genetics
4.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(2): 232-241, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38686720

ABSTRACT

DNA is susceptible to various factors in vitro and in vivo and experience different forms of damage,among which double-strand break(DSB)is a deleterious form.To maintain the stability of genetic information,organisms have developed multiple mechanisms to repair DNA damage.Among these mechanisms,homologous recombination(HR)is praised for the high accuracy.The MRE11-RAD50-NBS1(MRN)complex plays an important role in HR and is conserved across different species.The knowledge on the MRN complex mainly came from the previous studies in Saccharomyces cerevisiae and Caenorhabditis elegans,while studies in the last decades have revealed the role of mammalian MRN complex in DNA repair of higher animals.In this review,we first introduces the MRN complex regarding the composition,structure,and roles in HR.In addition,we discuss the human diseases such as ataxia-telangiectasia-like disorder,Nijmegen breakage syndrome,and Nijmegen breakage syndrome-like disorder that are caused by dysfunctions in the MRN complex.Furthermore,we summarize the mouse models established to study the clinical phenotypes of the above diseases.


Subject(s)
Acid Anhydride Hydrolases , Cell Cycle Proteins , DNA Repair Enzymes , DNA-Binding Proteins , MRE11 Homologue Protein , Nuclear Proteins , Humans , Acid Anhydride Hydrolases/metabolism , Acid Anhydride Hydrolases/genetics , MRE11 Homologue Protein/metabolism , MRE11 Homologue Protein/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Animals , DNA Repair , Ataxia Telangiectasia/genetics , Ataxia Telangiectasia/metabolism , Nijmegen Breakage Syndrome/metabolism , Nijmegen Breakage Syndrome/genetics
5.
Plant Physiol ; 195(3): 2073-2093, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38563472

ABSTRACT

The Arabidopsis (Arabidopsis thaliana) constitutive triple response1-10 (ctr1-10) mutant produces a reduced level of CTR1 protein and exhibits a weak ctr1 mutant phenotype. Sequence analysis revealed highly active translation of the upstream open reading frame (uORF) at the extended 5'-UTR of the ctr1-10 mRNA, resulting from T-DNA insertion. Enhancer screening for ctr1-10 isolated the fragile histidine triad-1 (fhit-1) mutation. The fhit-1 ctr1-10 mutant phenotypically resembled strong ctr1 mutants and barely produced CTR1, and the fhit-1 mutation reduced the translation efficiency of ctr1-10 but not that of CTR1 mRNA. The human (Homo sapiens) Fhit that involves tumorigenesis and genome instability has the in vitro dinucleotide 5',5'″-P1, P3-triphosphate hydrolase activity, and expression of the human HsFHIT or the hydrolase-defective HsFHITH96N transgene reversed the fhit-1 ctr1-10 mutant phenotype and restored CTR1 levels. Genetic editing that in situ disrupts individual upstream ATG codons proximal to the ctr1-10 mORF elevated CTR1 levels in ctr1-10 plants independent of FHIT. EUKARYOTIC INITIATION FACTOR3G (eIF3G), which is involved in translation and reinitiation, interacted with FHIT, and both were associated with the polysome. We propose that FHIT resumes early terminated ctr1-10 mORF translation in the face of active and complex uORF translation. Our study unveils a niche that may lead to investigations on the molecular mechanism of Fhit-like proteins in translation reinitiation. The biological significance of FHIT-regulated translation is discussed.


Subject(s)
Acid Anhydride Hydrolases , Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Protein Biosynthesis , RNA, Messenger , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Acid Anhydride Hydrolases/genetics , Acid Anhydride Hydrolases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mutation/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , 5' Untranslated Regions/genetics , Humans , Phenotype , Open Reading Frames/genetics
6.
Development ; 151(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38512324

ABSTRACT

The conserved MRE11-RAD50-NBS1/Xrs2 complex is crucial for DNA break metabolism and genome maintenance. Although hypomorphic Rad50 mutation mice showed normal meiosis, both null and hypomorphic rad50 mutation yeast displayed impaired meiosis recombination. However, the in vivo function of Rad50 in mammalian germ cells, particularly its in vivo role in the resection of meiotic double strand break (DSB) ends at the molecular level remains elusive. Here, we have established germ cell-specific Rad50 knockout mouse models to determine the role of Rad50 in mitosis and meiosis of mammalian germ cells. We find that Rad50-deficient spermatocytes exhibit defective meiotic recombination and abnormal synapsis. Mechanistically, using END-seq, we demonstrate reduced DSB formation and abnormal DSB end resection occurs in mutant spermatocytes. We further identify that deletion of Rad50 in gonocytes leads to complete loss of spermatogonial stem cells due to genotoxic stress. Taken together, our results reveal the essential role of Rad50 in mammalian germ cell meiosis and mitosis, and provide in vivo views of RAD50 function in meiotic DSB formation and end resection at the molecular level.


Subject(s)
DNA Breaks, Double-Stranded , Animals , Male , Mice , DNA Repair/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Loss of Function Mutation , Mammals/metabolism , Meiosis/genetics , Mutation , Spermatocytes/metabolism , Germ Cells/metabolism , Acid Anhydride Hydrolases/genetics , Acid Anhydride Hydrolases/metabolism
7.
Int J Biol Macromol ; 262(Pt 2): 129796, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38311144

ABSTRACT

Rapid adaptation of metabolic capabilities is crucial for bacterial survival in habitats with fluctuating nutrient availability. In such conditions, the bacterial stringent response is a central regulatory mechanism activated by nutrient starvation or other stressors. This response is primarily controlled by exopolyphosphatase/guanosine pentaphosphate phosphohydrolase (PPX/GPPA) enzymes. To gain further insight into these enzymes, the high-resolution crystal structure of PPX from Zymomonas mobilis (ZmPPX) was determined at 1.8 Å. The phosphatase activity of PPX was strictly dependent on the presence of divalent metal cations. Notably, the structure of ZmPPX revealed the presence of two magnesium ions in the active site center, which is atypical compared to other PPX structures where only one divalent ion is observed. ZmPPX exists as a dimer in solution and belongs to the "long" PPX group consisting of four domains. Remarkably, the dimer configuration exhibits a substantial and deep aqueduct with positive potential along its interface. This aqueduct appears to extend towards the active site region, suggesting that this positively charged aqueduct could potentially serve as a binding site for polyP.


Subject(s)
Magnesium , Zymomonas , Zymomonas/metabolism , Acid Anhydride Hydrolases/chemistry , Acid Anhydride Hydrolases/metabolism , Bacteria/metabolism , Ions
8.
Cancer Metastasis Rev ; 43(2): 755-775, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38180572

ABSTRACT

We describe here the molecular basis of the complex formation of PRUNE1 with the tumor metastasis suppressors NME1 and NME2, two isoforms appertaining to the nucleoside diphosphate kinase (NDPK) enzyme family, and how this complex regulates signaling the immune system and energy metabolism, thereby shaping the tumor microenvironment (TME). Disrupting the interaction between NME1/2 and PRUNE1, as suggested, holds the potential to be an excellent therapeutic target for the treatment of cancer and the inhibition of metastasis dissemination. Furthermore, we postulate an interaction and regulation of the other Class I NME proteins, NME3 and NME4 proteins, with PRUNE1 and discuss potential functions. Class I NME1-4 proteins are NTP/NDP transphosphorylases required for balancing the intracellular pools of nucleotide diphosphates and triphosphates. They regulate different cellular functions by interacting with a large variety of other proteins, and in cancer and metastasis processes, they can exert pro- and anti-oncogenic properties depending on the cellular context. In this review, we therefore additionally discuss general aspects of class1 NME and PRUNE1 molecular structures as well as their posttranslational modifications and subcellular localization. The current knowledge on the contributions of PRUNE1 as well as NME proteins to signaling cascades is summarized with a special regard to cancer and metastasis.


Subject(s)
Energy Metabolism , NM23 Nucleoside Diphosphate Kinases , Neoplasm Metastasis , Neoplasms , Signal Transduction , Humans , Neoplasms/pathology , Neoplasms/metabolism , NM23 Nucleoside Diphosphate Kinases/metabolism , Animals , Nucleoside-Diphosphate Kinase/metabolism , Acid Anhydride Hydrolases/metabolism , Tumor Microenvironment , Phosphoric Monoester Hydrolases
9.
Biochem Biophys Res Commun ; 682: 85-90, 2023 11 19.
Article in English | MEDLINE | ID: mdl-37804591

ABSTRACT

Acylphosphatase (AcP, EC 3.6.1.7) is a small model protein conformed by a ferredoxin-like fold, profoundly studied to get insights into protein folding and aggregation processes. Numerous studies focused on the aggregation and/or amyloidogenic properties of AcPs suggest the importance of edge-ß-strands in the process. In this work, we present the first crystallographic structure of Escherichia coli AcP (EcoAcP), showing notable differences with the only available NMR structure for this enzyme. EcoAcP is crystalised as an intertwined dimer formed by replacing a single C-terminal ß-strand between two protomers, suggesting a flexible character of the C-terminal edge of EcoAcP. Despite numerous works where AcP from different sources have been used as a model system for protein aggregation, our domain-swapped EcoAcP structure is the first 3-D structural evidence of native-like aggregated species for any AcP reported to date, providing clues on molecular determinants unleashing aggregation.


Subject(s)
Acid Anhydride Hydrolases , Protein Folding , Models, Molecular , Acid Anhydride Hydrolases/metabolism , Crystallography , Acylphosphatase
10.
Adv Exp Med Biol ; 1423: 289-301, 2023.
Article in English | MEDLINE | ID: mdl-37525057

ABSTRACT

Current hypothesis of Alzheimer's disease (AD) postulates that amyloid ß (Aß) deposition in the brain causes tau inclusion in neurons and leads to cognitive decline. The discovery of the genetic association between triggering receptor expressed on myeloid cells 2 (TREM2) with increased AD risk points to a causal link between microglia and AD pathogenesis, and revealed a crucial role of TREM2-dependent clustering of microglia around amyloid plaques that prevents Aß toxicity to facilitate tau deposition near the plaques. Here we review the physiological and pathological roles of another AD risk gene expressed in microglia, inositol polyphosphate-5-polyphosphatase D (INPP5D), which encodes a phosphoinositide phosphatase. Evidence suggests that its risk polymorphisms alter the expression level and/or function of INPP5D, while concomitantly affecting tau levels in cerebrospinal fluids. In ß-amyloidosis mice, INPP5D was upregulated upon Aß deposition and negatively regulated the microglial clustering toward amyloid plaques. INPP5D seems to exert its function by acting antagonistically at downstream of the TREM2 signaling pathway, suggesting that it is a novel regulator of the protective barrier by microglia. Further studies to elucidate INPP5D's role in AD may help in developing new therapeutic targets for AD treatment.


Subject(s)
Alzheimer Disease , Animals , Mice , Acid Anhydride Hydrolases/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Disease Models, Animal , Microglia/pathology , Plaque, Amyloid/pathology
11.
Int J Mol Sci ; 24(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36982687

ABSTRACT

The MRE11, RAD50, and NBN genes encode for the nuclear MRN protein complex, which senses the DNA double strand breaks and initiates the DNA repair. The MRN complex also participates in the activation of ATM kinase, which coordinates DNA repair with the p53-dependent cell cycle checkpoint arrest. Carriers of homozygous germline pathogenic variants in the MRN complex genes or compound heterozygotes develop phenotypically distinct rare autosomal recessive syndromes characterized by chromosomal instability and neurological symptoms. Heterozygous germline alterations in the MRN complex genes have been associated with a poorly-specified predisposition to various cancer types. Somatic alterations in the MRN complex genes may represent valuable predictive and prognostic biomarkers in cancer patients. MRN complex genes have been targeted in several next-generation sequencing panels for cancer and neurological disorders, but interpretation of the identified alterations is challenging due to the complexity of MRN complex function in the DNA damage response. In this review, we outline the structural characteristics of the MRE11, RAD50 and NBN proteins, the assembly and functions of the MRN complex from the perspective of clinical interpretation of germline and somatic alterations in the MRE11, RAD50 and NBN genes.


Subject(s)
Cell Cycle Proteins , Tumor Suppressor Proteins , Humans , Cell Cycle Proteins/metabolism , Tumor Suppressor Proteins/genetics , MRE11 Homologue Protein/genetics , MRE11 Homologue Protein/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Repair/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Acid Anhydride Hydrolases/genetics , Acid Anhydride Hydrolases/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
12.
Cancer Lett ; 557: 216078, 2023 03 31.
Article in English | MEDLINE | ID: mdl-36736531

ABSTRACT

For treatment of glioblastoma (GBM), temozolomide (TMZ) and radiotherapy (RT) exert antitumor effects by inducing DNA double-strand breaks (DSBs), mainly via futile DNA mismatch repair (MMR) and inducing apoptosis. Here, we provide evidence that RBBP4 modulates glioblastoma resistance to chemotherapy and radiotherapy by recruiting transcription factors and epigenetic regulators that bind to their promoters to regulate the expression of the Mre11-Rad50-NBS1(MRN) complex and the level of DNA-DSB repair, which are closely associated with recovery from TMZ- and radiotherapy-induced DNA damage in U87MG and LN229 glioblastoma cells, which have negative MGMT expression. Disruption of RBBP4 induced GBM cell DNA damage and apoptosis in response to TMZ and radiotherapy and enhanced radiotherapy and chemotherapy sensitivity by the independent pathway of MGMT. These results displayed a possible chemo-radioresistant mechanism in MGMT negative GBM. In addition, the RBBP4-MRN complex regulation axis may provide an interesting target for developing therapy-sensitizing strategies for GBM.


Subject(s)
DNA Breaks, Double-Stranded , Glioblastoma , Humans , Glioblastoma/pathology , DNA Repair Enzymes/genetics , MRE11 Homologue Protein/genetics , DNA Repair , Temozolomide/therapeutic use , Transcription Factors/genetics , DNA , Chemoradiotherapy , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/genetics , Acid Anhydride Hydrolases/metabolism , Retinoblastoma-Binding Protein 4/genetics , Retinoblastoma-Binding Protein 4/metabolism
13.
Cells ; 12(3)2023 01 17.
Article in English | MEDLINE | ID: mdl-36766695

ABSTRACT

In previous studies, we have identified the tumor suppressor proteins Fhit (fragile histidine triad) and Nit1 (Nitrilase1) as interaction partners of ß-catenin both acting as repressors of the canonical Wnt pathway. Interestingly, in D. melanogaster and C. elegans these proteins are expressed as NitFhit fusion proteins. According to the Rosetta Stone hypothesis, if proteins are expressed as fusion proteins in one organism and as single proteins in others, the latter should interact physically and show common signaling function. Here, we tested this hypothesis and provide the first biochemical evidence for a direct association between Nit1 and Fhit. In addition, size exclusion chromatography of purified recombinant human Nit1 showed a tetrameric structure as also previously observed for the NitFhit Rosetta Stone fusion protein Nft-1 in C. elegans. Finally, in line with the Rosetta Stone hypothesis we identified Hsp60 and Ubc9 as other common interaction partners of Nit1 and Fhit. The interaction of Nit1 and Fhit may affect their enzymatic activities as well as interaction with other binding partners.


Subject(s)
Caenorhabditis elegans , Tumor Suppressor Proteins , Animals , Humans , Acid Anhydride Hydrolases/metabolism , Caenorhabditis elegans/metabolism , Drosophila melanogaster/metabolism , Hydrolases , Recombinant Proteins
14.
FEBS Lett ; 597(11): 1447-1461, 2023 06.
Article in English | MEDLINE | ID: mdl-36694267

ABSTRACT

Polyphosphate (polyP) is a conserved polymer of inorganic phosphate residues that can reach thousands of moieties in length. PolyP has been implicated in cellular functions ranging from energy and phosphate homeostasis to cell signalling in eukaryotes from yeast to humans. Despite the interest in the role of polyP as a signalling molecule, the spatiotemporal regulation of polyP itself remains poorly understood. This knowledge gap limits our ability to understand how polyP impacts the physiology of normal and diseased cells and how this might be exploited in a therapeutic context. Polyphosphatases, enzymes that degrade polyP to generate shorter chains and free inorganic phosphate are ideally positioned to mediate polyP dynamics. However, little is known about how the activities of these enzymes are linked to specific cellular functions and how they might be regulated. Here, we provide an in-depth overview of polyphosphatase enzymes in budding yeast, which has served as a workhorse for polyP research, and in mammalian cells where the enzymes that make and degrade polyP have remained elusive. We identify critical open questions in both systems and propose strategies to guide future work.


Subject(s)
Acid Anhydride Hydrolases , Saccharomyces cerevisiae , Animals , Humans , Acid Anhydride Hydrolases/metabolism , Saccharomyces cerevisiae/metabolism , Eukaryotic Cells/metabolism , Polyphosphates/metabolism , Mammals/metabolism
15.
Oncogene ; 42(8): 586-600, 2023 02.
Article in English | MEDLINE | ID: mdl-36550358

ABSTRACT

The MRE11-RAD50-NBS1 (MRN) complex plays a crucial role in DNA double-strand breaks (DSBs) sensing and initiation of signaling cascades. However, the precise mechanisms by which the recruitment of MRN complex is regulated has yet to be elucidated. Here, we identified TRIpartite motif-containing protein 24 (TRIM24), a protein considered as an oncogene overexpressed in cancers, as a novel signaling molecule in response to DSBs. TRIM24 is essential for DSBs-induced recruitment of MRN complex and activation of downstream signaling. In the absence of TRIM24, MRN mediated DSBs repair is remarkably diminished. Mechanistically, TRIM24 is phosphorylated by ataxia-telangiectasia mutated (ATM) and then recruited to DSBs sites, facilitating the accumulation of the MRN components to chromatin. Depletion of TRIM24 sensitizes human hepatocellular carcinoma cells to cancer therapy agent-induced apoptosis and retards the tumor growth in a subcutaneous xenograft tumor mouse model. Together, our data reveal a novel function of TRIM24 in response to DSBs through regulating the MRN complex, which suggests that TRIM24 may be a potential therapeutic molecular target for tumor treatment.


Subject(s)
Carrier Proteins , Cell Cycle Proteins , DNA Breaks, Double-Stranded , Animals , Humans , Mice , Acid Anhydride Hydrolases/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , DNA Repair , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , MRE11 Homologue Protein/genetics , MRE11 Homologue Protein/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism
16.
J Biol Chem ; 299(1): 102752, 2023 01.
Article in English | MEDLINE | ID: mdl-36436562

ABSTRACT

The MRE11-RAD50-NBS1 (MRN) complex plays essential roles in the cellular response to DNA double-strand breaks (DSBs), which are the most cytotoxic DNA lesions, and is a target of various modifications and controls. Recently, lysine 48-linked ubiquitination of NBS1, resulting in premature disassembly of the MRN complex from DSB sites, was observed in cells lacking RECQL4 helicase activity. However, the role and control of this ubiquitination during the DSB response in cells with intact RECQL4 remain unknown. Here, we showed that USP2 counteracts this ubiquitination and stabilizes the MRN complex during the DSB response. By screening deubiquitinases that increase the stability of the MRN complex in RECQL4-deficient cells, USP2 was identified as a new deubiquitinase that acts at DSB sites to counteract NBS1 ubiquitination. We determined that USP2 is recruited to DSB sites in a manner dependent on ATM, a major checkpoint kinase against DSBs, and stably interacts with NBS1 and RECQL4 in immunoprecipitation experiments. Phosphorylation of two critical residues in the N terminus of USP2 by ATM is required for its recruitment to DSBs and its interaction with RECQL4. While inactivation of USP2 alone does not substantially influence the DSB response, we found that inactivation of USP2 and USP28, another deubiquitinase influencing NBS1 ubiquitination, results in premature disassembly of the MRN complex from DSB sites as well as defects in ATM activation and homologous recombination repair abilities. These results suggest that deubiquitinases counteracting NBS1 ubiquitination are essential for the stable maintenance of the MRN complex and proper cellular response to DSBs.


Subject(s)
Cell Cycle Proteins , DNA Breaks, Double-Stranded , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Deubiquitinating Enzymes/genetics , DNA , DNA Repair , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , MRE11 Homologue Protein/genetics , Ubiquitination , Humans , Cell Line, Tumor , Ubiquitin Thiolesterase/metabolism , DNA-Binding Proteins/metabolism , Acid Anhydride Hydrolases/metabolism
17.
Cell Death Differ ; 30(2): 488-499, 2023 02.
Article in English | MEDLINE | ID: mdl-36477079

ABSTRACT

Cisplatin and other platinum-based anticancer agents are among the most widely used chemotherapy drugs in the treatment of different types of cancer. However, it is common to find patients who respond well to treatment at first but later relapse due to the appearance of resistance to cisplatin. Among the mechanisms responsible for this phenomenon is the increase in DNA damage repair. Here, we elucidate the effect of cisplatin on the MRN (MRE11-RAD50-NBS1) DNA damage sensor complex. We found that the tumor suppressor FBXW7 is a key factor in controlling the turnover of the MRN complex by inducing its degradation through lysosomes. Inhibition of lysosomal enzymes allowed the detection of the association of FBXW7-dependent ubiquitylated MRN with LC3 and the autophagy adaptor p62/SQSTM1 and the localization of MRN in lysosomes. Furthermore, cisplatin-induced cell death increased MRN degradation, suggesting that this complex is one of the targets that favor cell death. These findings open the possibility of using the induction of the degradation of the MRN complex after genotoxic damage as a potential therapeutic strategy to eliminate tumor cells.


Subject(s)
Cisplatin , DNA Repair Enzymes , Humans , Cisplatin/pharmacology , F-Box-WD Repeat-Containing Protein 7/metabolism , MRE11 Homologue Protein , DNA Repair Enzymes/genetics , Cell Cycle Proteins/genetics , Nuclear Proteins/metabolism , DNA-Binding Proteins/metabolism , Acid Anhydride Hydrolases/metabolism
18.
J Pept Sci ; 29(3): e3458, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36264037

ABSTRACT

Intracellular dinucleoside polyphosphates (Npn Ns) have been known for decades but the functional role remains enigmatic. Diadenosine triphosphate (Ap3 A) is one of the most prominent examples, and its intercellular concentration was shown to increase upon cellular stress. By employment of previously reported Ap3 A-based photoaffinity-labeling probes (PALPs) in chemical proteomics, we investigated the Ap3 A interactome in the human lung carcinoma cell line H1299. The cell line is deficient of the fragile histidine triade (Fhit) protein, a hydrolase of Ap3 A and tumor suppressor. Overall, the number of identified potential interaction partners was significantly lower than in the previously investigated HEK293T cell line. Gene ontology term analysis revealed that the identified proteins participate in similar pathways as for HEK293T, but the percentage of proteins involved in RNA-related processes is higher for H1299. The obtained results highlight similarities and differences of the Ap3 A interaction network in different cell lines and give further indications regarding the importance of the presence of Fhit.


Subject(s)
Dinucleoside Phosphates , Neoplasms , Humans , Dinucleoside Phosphates/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Guanosine Pentaphosphate , Acid Anhydride Hydrolases/genetics , Acid Anhydride Hydrolases/metabolism , HEK293 Cells , Proteomics
19.
Int J Mol Sci ; 23(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36232441

ABSTRACT

The metal binding at protein-protein interfaces is still uncharted territory in intermolecular interactions. To date, only a few protein complexes binding Zn(II) in an intermolecular manner have been deeply investigated. The most notable example of such interfaces is located in the highly conserved Rad50 protein, part of the Mre11-Rad50-Nbs1 (MRN) complex, where Zn(II) is required for homodimerization (Zn(Rad50)2). The high stability of Zn(Rad50)2 is conserved not only for the protein derived from the thermophilic archaeon Pyrococcus furiosus (logK12 = 20.95 for 130-amino-acid-long fragment), which was the first one studied, but also for the human paralog studied here (logK12 = 19.52 for a 183-amino-acid-long fragment). As we reported previously, the extremely high stability results from the metal-coupled folding process where particular Rad50 protein fragments play a critical role. The sequence-structure-stability analysis based on human Rad50 presented here separates the individual structural components that increase the stability of the complex, pointing to amino acid residues far away from the Zn(II) binding site as being largely responsible for the complex stabilization. The influence of the individual components is very well reflected by the previously published crystal structure of the human Rad50 zinc hook (PDB: 5GOX). In addition, we hereby report the effect of phosphorylation of the zinc hook domain, which exerts a destabilizing effect on the domain. This study identifies factors governing the stability of metal-mediated protein-protein interactions and illuminates their molecular basis.


Subject(s)
DNA-Binding Proteins , Pyrococcus furiosus , Acid Anhydride Hydrolases/metabolism , Amino Acids/metabolism , Cell Cycle Proteins/metabolism , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/metabolism , Humans , Phosphorylation , Zinc/metabolism
20.
J Biol Chem ; 298(11): 102438, 2022 11.
Article in English | MEDLINE | ID: mdl-36049521

ABSTRACT

Triphosphate tunnel metalloenzymes (TTMs) are found in all biological kingdoms and have been characterized in microorganisms and animals. Members of the TTM family have divergent biological functions and act on a range of triphosphorylated substrates (RNA, thiamine triphosphate, and inorganic polyphosphate). TTMs in plants have received considerably less attention and are unique in that some homologs harbor additional domains including a P-loop kinase and transmembrane domain. Here, we report on structural and functional aspects of the multimodular TTM1 and TTM2 of Arabidopsis thaliana. Our tissue and cellular microscopy studies show that both AtTTM1 and AtTTM2 are expressed in actively dividing (meristem) tissue and are tail-anchored proteins at the outer mitochondrial membrane, mediated by the single C-terminal transmembrane domain, supporting earlier studies. In addition, we reveal from crystal structures of AtTTM1 in the presence and absence of a nonhydrolyzable ATP analog a catalytically incompetent TTM tunnel domain tightly interacting with the P-loop kinase domain that is locked in an inactive conformation. Our structural comparison indicates that a helical hairpin may facilitate movement of the TTM domain, thereby activating the kinase. Furthermore, we conducted genetic studies to show that AtTTM2 is important for the developmental transition from the vegetative to the reproductive phase in Arabidopsis, whereas its closest paralog AtTTM1 is not. We demonstrate through rational design of mutations based on the 3D structure that both the P-loop kinase and TTM tunnel modules of AtTTM2 are required for the developmental switch. Together, our results provide insight into the structure and function of plant TTM domains.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Metalloproteins , Animals , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Polyphosphates , Metalloproteins/chemistry , Acid Anhydride Hydrolases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...