Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 850
Filter
1.
Euro Surveill ; 29(28)2024 Jul.
Article in English | MEDLINE | ID: mdl-38994602

ABSTRACT

Carbapenem-resistant Acinetobacter baumannii (CRAb) is an important pathogen causing serious nosocomial infections. We describe an outbreak of CRAb in an intensive care unit in the Netherlands in 2021. During an outbreak of non-resistant A. baumannii, while infection control measures were in place, CRAb isolates carrying highly similar bla NDM-1 - and tet(x3)-encoding plasmids were isolated from three patients over a period of several months. The chromosomal and plasmid sequences of the CRAb and non-carbapenemase-carrying A. baumannii isolates cultured from patient materials were analysed using hybrid assemblies of short-read and long-read sequences. The CRAb isolates revealed that the CRAb outbreak consisted of two different strains, carrying similar plasmids. The plasmids contained multiple antibiotic resistance genes including the tetracycline resistance gene tet(x3), and the bla NDM-1 and bla OXA-97 carbapenemase genes. We determined minimal inhibitory concentrations (MICs) for 13 antibiotics, including the newly registered tetracycline antibiotics eravacycline and omadacycline. The CRAb isolates showed high MICs for tetracycline antibiotics including eravacycline and omadacycline, except for minocycline which had a low MIC. In this study we show the value of sequencing multidrug-resistant A. baumannii for outbreak tracking and guiding outbreak mitigation measures.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Cross Infection , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Tetracyclines , beta-Lactamases , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Acinetobacter baumannii/enzymology , Humans , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Tetracyclines/pharmacology , Anti-Bacterial Agents/pharmacology , Cross Infection/microbiology , Cross Infection/epidemiology , beta-Lactamases/genetics , Netherlands/epidemiology , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , Disease Outbreaks , Bacterial Proteins/genetics , Carbapenems/pharmacology , Intensive Care Units
2.
J Enzyme Inhib Med Chem ; 39(1): 2372731, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39012078

ABSTRACT

This study refers to the intricate world of Acinetobacter baumannii, a resilient pathogenic bacterium notorious for its propensity at antibiotic resistance in nosocomial infections. Expanding upon previous findings that emphasised the bifunctional enzyme PaaY, revealing unexpected γ-carbonic anhydrase (CA) activity, our research focuses on a different class of CA identified within the A. baumannii genome, the ß-CA, designated as 𝛽-AbauCA (also indicated as CanB), which plays a crucial role in the resistance mechanism mediated by AmpC beta-lactamase. Here, we cloned, expressed, and purified the recombinant 𝛽-AbauCA, unveiling its distinctive kinetic properties and inhibition profile with inorganic anions (classical CA inhibitors). The exploration of 𝛽-AbauCA not only enhances our understanding of the CA repertoire of A. baumannii but also establishes a foundation for targeted therapeutic interventions against this resilient pathogen, promising advancements in combating its adaptability and antibiotic resistance.


Subject(s)
Acinetobacter baumannii , Anions , Anti-Bacterial Agents , Carbonic Anhydrase Inhibitors , Carbonic Anhydrases , Microbial Sensitivity Tests , Acinetobacter baumannii/enzymology , Acinetobacter baumannii/drug effects , Carbonic Anhydrases/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Anions/pharmacology , Anions/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/chemical synthesis , Structure-Activity Relationship , Dose-Response Relationship, Drug , Molecular Structure
3.
Protein Sci ; 33(8): e5129, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39073218

ABSTRACT

Rhodanese-like domains (RLDs) represent a widespread protein family canonically involved in sulfur transfer reactions between diverse donor and acceptor molecules. RLDs mediate these transsulfuration reactions via a transient persulfide intermediate, created by modifying a conserved cysteine residue in their active sites. RLDs are involved in various aspects of sulfur metabolism, including sulfide oxidation in mitochondria, iron-sulfur cluster biogenesis, and thio-cofactor biosynthesis. However, due to the inherent complexity of sulfur metabolism caused by the intrinsically high nucleophilicity and redox sensitivity of thiol-containing compounds, the physiological functions of many RLDs remain to be explored. Here, we focus on a single domain Acinetobacter baumannii RLD (Ab-RLD) associated with a desulfurase encapsulin which is able to store substantial amounts of sulfur inside its protein shell. We determine the 1.6 Å x-ray crystal structure of Ab-RLD, highlighting a homodimeric structure with a number of unusual features. We show through kinetic analysis that Ab-RLD exhibits thiosulfate sulfurtransferase activity with both cyanide and glutathione acceptors. Using native mass spectrometry and in vitro assays, we provide evidence that Ab-RLD can stably carry a persulfide and thiosulfate modification and may employ a ternary catalytic mechanism. Our results will inform future studies aimed at investigating the functional link between Ab-RLD and the desulfurase encapsulin.


Subject(s)
Acinetobacter baumannii , Bacterial Proteins , Thiosulfate Sulfurtransferase , Acinetobacter baumannii/enzymology , Acinetobacter baumannii/chemistry , Acinetobacter baumannii/metabolism , Acinetobacter baumannii/genetics , Thiosulfate Sulfurtransferase/chemistry , Thiosulfate Sulfurtransferase/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Crystallography, X-Ray , Models, Molecular
4.
Sci Rep ; 14(1): 14418, 2024 06 22.
Article in English | MEDLINE | ID: mdl-38909136

ABSTRACT

This study aimed to investigate the epidemiological characteristics and trends over time of carbapenemase-producing (e.g., KPC, NDM, VIM, IMP, and OXA-48) Gram-negative bacteria (CPGNB). Non-duplicated multi-drug resistant Gram-negative bacteria (MDRGNB) were collected from the First Affiliated Hospital of Zhengzhou University from April 2019 to February 2023. Species identification of each isolate was performed using the Vitek2 system and confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry according to the manufacturer's instructions. PCR detected carbapenem resistance genes in the strains, strains carrying carbapenem resistance genes were categorized as CPGNB strains after validation by carbapenem inactivation assay. A total of 5705 non-repetitive MDRGNB isolates belonging to 78 different species were collected during the study period, of which 1918 CPGNB were validated, with the respiratory tract being the primary source of specimens. Epidemiologic statistics showed a significant predominance of ICU-sourced strains compared to other departments. Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa were the significant CPGNB in Henan, and KPC and NDM were the predominant carbapenemases. Carbapenem-resistant infections in Henan Province showed an overall increasing trend, and the carriage of carbapenemase genes by CPGNB has become increasingly prevalent and complicated. The growing prevalence of CPGNB in the post-pandemic era poses a significant challenge to public safety.


Subject(s)
Bacterial Proteins , Gram-Negative Bacteria , Gram-Negative Bacterial Infections , beta-Lactamases , beta-Lactamases/genetics , beta-Lactamases/metabolism , China/epidemiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Humans , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/enzymology , Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/epidemiology , Male , Female , Microbial Sensitivity Tests , Adult , Middle Aged , Carbapenems/pharmacology , Anti-Bacterial Agents/pharmacology , Aged , Drug Resistance, Multiple, Bacterial/genetics , Child , Adolescent , Child, Preschool , Young Adult , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/isolation & purification , Acinetobacter baumannii/genetics , Acinetobacter baumannii/enzymology , Acinetobacter baumannii/drug effects , Infant
5.
Euro Surveill ; 29(24)2024 Jun.
Article in English | MEDLINE | ID: mdl-38873796

ABSTRACT

In 2003-2023, amid 5,436 Acinetobacter baumannii isolates collected globally through the Multidrug-Resistant Organism Repository and Surveillance Network, 97 were ST19PAS, 34 of which carbapenem-resistant. Strains (n = 32) sampled after 2019 harboured either bla OXA-23, bla OXA-72, and/or bla NDM-5. Phylogenetic analysis of the 97 isolates and 11 publicly available ST19 genomes revealed three sub-lineages of carbapenemase-producing isolates from mainly Ukraine and Georgia, including an epidemic clone carrying all three carbapenemase genes. Infection control and global surveillance of carbapenem-resistant A. baumannii remain important.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Bacterial Proteins , Microbial Sensitivity Tests , beta-Lactamases , beta-Lactamases/genetics , Acinetobacter baumannii/genetics , Acinetobacter baumannii/isolation & purification , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/enzymology , Humans , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Bacterial Proteins/genetics , Ukraine/epidemiology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Phylogeny , Drug Resistance, Multiple, Bacterial/genetics , Georgia (Republic)/epidemiology , Multilocus Sequence Typing
6.
Proc Natl Acad Sci U S A ; 121(27): e2402422121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38923984

ABSTRACT

Maintenance of DNA integrity is essential to all forms of life. DNA damage generated by reaction with genotoxic chemicals results in deleterious mutations, genome instability, and cell death. Pathogenic bacteria encounter several genotoxic agents during infection. In keeping with this, the loss of DNA repair networks results in virulence attenuation in several bacterial species. Interstrand DNA crosslinks (ICLs) are a type of DNA lesion formed by covalent linkage of opposing DNA strands and are particularly toxic as they interfere with replication and transcription. Bacteria have evolved specialized DNA glycosylases that unhook ICLs, thereby initiating their repair. In this study, we describe AlkX, a DNA glycosylase encoded by the multidrug resistant pathogen Acinetobacter baumannii. AlkX exhibits ICL unhooking activity similar to that of its Escherichia coli homolog YcaQ. Interrogation of the in vivo role of AlkX revealed that its loss sensitizes cells to DNA crosslinking and impairs A. baumannii colonization of the lungs and dissemination to distal tissues during pneumonia. These results suggest that AlkX participates in A. baumannii pathogenesis and protects the bacterium from stress conditions encountered in vivo. Consistent with this, we found that acidic pH, an environment encountered during host colonization, results in A. baumannii DNA damage and that alkX is induced by, and contributes to, defense against acidic conditions. Collectively, these studies reveal functions for a recently described class of proteins encoded in a broad range of pathogenic bacterial species.


Subject(s)
Acinetobacter baumannii , DNA Damage , DNA Glycosylases , Acinetobacter baumannii/pathogenicity , Acinetobacter baumannii/genetics , Acinetobacter baumannii/enzymology , Acinetobacter baumannii/metabolism , DNA Glycosylases/metabolism , DNA Glycosylases/genetics , DNA Repair , Acinetobacter Infections/microbiology , Acinetobacter Infections/pathology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Animals , Mice , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Virulence , Escherichia coli/genetics , Escherichia coli/metabolism
7.
mSphere ; 9(6): e0027624, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38832781

ABSTRACT

This study aimed to characterize carbapenem-resistant Acinetobacter baumannii (CRAB) isolates from Jiangxi patients using whole-genome sequencing (WGS). We subjected 100 clinical CRAB strains isolated from the three local largest teaching hospitals to WGS and antimicrobial susceptibility testing. Molecular epidemiology was investigated using multilocus sequence typing, core genome multilocus typing, core genome single-nucleotide polymorphism phylogeny, and pulsed-field gel electrophoresis. The most prevalent acquired carbapenemase was blaOXA-23, predominant in all isolates (100%). Isolates belonging to the dominating international clone IC2 accounted for 92% of all isolates. International IC11 (ST164Pas/ST1418Ox) clone was found in an additional 8% (eight isolates), with seven isolates (87.5%) carrying an acquired additional blaNDM-1 carbapenemase. The oxa23-associated Tn2009, either alone or in a tandem repeat structure containing four copies of blaOXA-23, was discovered in 62% (57 isolates) of IC2. The oxa23-associated Tn2006 was identified in 38% (35 isolates) of IC2 and all IC11 isolates. A putative conjugative RP-T1 (formerly RepAci6) plasmid with blaOXA-23 in Tn2006 within AbaR4, designated pSRM1.1, was found in IC2 A. baumannii strain SRM1. The blaNDM-1 gene found in seven IC11 isolates was located on a novel Tn6924-like transposon, a first-time report in IC11. These findings underscore the significant importance of real-time surveillance to prevent the further spread of CRAB. IMPORTANCE: Carbapenem-resistant Acinetobacter baumannii (CRAB) is notorious for causing difficult-to-treat infections. To elucidate the molecular and clinical epidemiology of CRAB in Jiangxi, clinical CRAB isolates were collected and underwent whole-genome sequencing and antibiotic susceptibility phenotyping. Key findings included the predominance of OXA-23-producing IC2 A. baumannii, marked by the emergence of OXA-23 and NDM-1-producing IC11 strains.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Bacterial Proteins , Microbial Sensitivity Tests , Molecular Epidemiology , Multilocus Sequence Typing , Whole Genome Sequencing , beta-Lactamases , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/enzymology , beta-Lactamases/genetics , Humans , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Bacterial Proteins/genetics , Retrospective Studies , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Genome, Bacterial , Phylogeny , Male , Female , Middle Aged , Aged , Adult , Electrophoresis, Gel, Pulsed-Field , Plasmids/genetics , Polymorphism, Single Nucleotide , Genomics
8.
Viruses ; 16(5)2024 05 13.
Article in English | MEDLINE | ID: mdl-38793652

ABSTRACT

The genus Acinetobacter comprises both environmental and clinically relevant species associated with hospital-acquired infections. Among them, Acinetobacter baumannii is a critical priority bacterial pathogen, for which the research and development of new strategies for antimicrobial treatment are urgently needed. Acinetobacter spp. produce a variety of structurally diverse capsular polysaccharides (CPSs), which surround the bacterial cells with a thick protective layer. These surface structures are primary receptors for capsule-specific bacteriophages, that is, phages carrying tailspikes with CPS-depolymerizing/modifying activities. Phage tailspike proteins (TSPs) exhibit hydrolase, lyase, or esterase activities toward the corresponding CPSs of a certain structure. In this study, the data on all lytic capsule-specific phages infecting Acinetobacter spp. with genomes deposited in the NCBI GenBank database by January 2024 were summarized. Among the 149 identified TSPs encoded in the genomes of 143 phages, the capsular specificity (K specificity) of 46 proteins has been experimentally determined or predicted previously. The specificity of 63 TSPs toward CPSs, produced by various Acinetobacter K types, was predicted in this study using a bioinformatic analysis. A comprehensive phylogenetic analysis confirmed the prediction and revealed the possibility of the genetic exchange of gene regions corresponding to the CPS-recognizing/degrading parts of different TSPs between morphologically and taxonomically distant groups of capsule-specific Acinetobacter phages.


Subject(s)
Acinetobacter , Bacterial Capsules , Bacteriophages , Genome, Viral , Phylogeny , Bacteriophages/genetics , Bacteriophages/enzymology , Bacteriophages/classification , Acinetobacter/virology , Acinetobacter/genetics , Acinetobacter/enzymology , Bacterial Capsules/metabolism , Bacterial Capsules/genetics , Viral Tail Proteins/genetics , Viral Tail Proteins/metabolism , Polysaccharides/metabolism , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/genetics , Acinetobacter baumannii/virology , Acinetobacter baumannii/genetics , Acinetobacter baumannii/enzymology , Glycoside Hydrolases
9.
J Mol Biol ; 436(12): 168603, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38729259

ABSTRACT

OXA-66 is a member of the OXA-51 subfamily of class D ß-lactamases native to the Acinetobacter genus that includes Acinetobacter baumannii, one of the ESKAPE pathogens and a major cause of drug-resistant nosocomial infections. Although both wild type OXA-66 and OXA-51 have low catalytic activity, they are ubiquitous in the Acinetobacter genomes. OXA-51 is also remarkably thermostable. In addition, newly emerging, single and double amino acid variants show increased activity against carbapenems, indicating that the OXA-51 subfamily is growing and gaining clinical significance. In this study, we used molecular dynamics simulations, X-ray crystallography, and thermal denaturation data to examine and compare the dynamics of OXA-66 wt and its gain-of-function variants: I129L (OXA-83), L167V (OXA-82), P130Q (OXA-109), P130A, and W222L (OXA-234). Our data indicate that OXA-66 wt also has a high melting temperature, and its remarkable stability is due to an extensive and rigid hydrophobic bridge formed by a number of residues around the active site and harbored by the three loops, P, Ω, and ß5-ß6. Compared to the WT enzyme, the mutants exhibit higher flexibility only in the loop regions, and are more stable than other robust carbapenemases, such as OXA-23 and OXA-24/40. All the mutants show increased rotational flexibility of residues I129 and W222, which allows carbapenems to bind. Overall, our data support the hypothesis that structural features in OXA-51 and OXA-66 promote evolution of multiple highly stable variants with increased clinical relevance in A. baumannii.


Subject(s)
Acinetobacter baumannii , Molecular Dynamics Simulation , beta-Lactamases , Acinetobacter baumannii/genetics , Acinetobacter baumannii/enzymology , beta-Lactamases/chemistry , beta-Lactamases/genetics , beta-Lactamases/metabolism , Crystallography, X-Ray , Enzyme Stability , Protein Conformation , Carbapenems/pharmacology , Carbapenems/metabolism , Evolution, Molecular , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain
11.
Microbiol Spectr ; 12(6): e0038224, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38651885

ABSTRACT

Integration of carbapenemase gene blaIMP into the chromosome of carbapenem-resistant Acinetobacter baumannii (CRAB) has not been reported. The aim of this study was to explore the genomic characteristics of CRAB AB322 isolated from a Taiwanese patient diagnosed with bacteremia in 2011, whose chromosome harbors blaIMP-19. Disk diffusion and broth microdilution were employed to analyze the antimicrobial susceptibility of AB322 to 14 antimicrobials. Nanopore whole-genome sequencing platform was utilized for AB322 genome sequencing, and conjugation was further performed to investigate the transferability of blaIMP-19 to amikacin-resistant A. baumannii 218 (AB218) and Acinetobacter nosocomialis 254 (AN254). The results showed that AB322 was classified as multidrug-resistant A. baumannii but remained susceptible to ampicillin/sulbactam, colistin, and tigecycline. Whole-genome sequencing revealed the AB322 genome, consisting of a 4,098,985-bp chromosome, a 71,590-bp conjugative plasmid named pAB322-1, and an 8,726-bp plasmid named pAB322-2. Multilocus sequence typing analysis indicated that AB322 belonged to sequence type 1. AB322 chromosome harbored numerous acquired antimicrobial resistance genes, including aph(3')-Ia, aadA1b, aadA1, aac(6')-Ib3, aac (3)-Ia, blaADC-25, blaOXA-69, blaIMP-19, catA1, sul1, and tet(A), conferring resistance to ß-lactams, aminoglycosides, chloramphenicol, sulfamethoxazole, and tetracyclines. Moreover, blaIMP-19 was identified to be situated within class 1 integron In240 and an incomplete PHAGE_Salmon_SJ46_NC_031129 on AB322 chromosome. However, conjugation experiments revealed that blaIMP-19 could not be transferred to AB218 and AN254 in our testing conditions. In conclusion, we first report the presence of chromosomal-integrated blaIMP-19 in CRAB, possibly mediated by integron. The future dissemination of blaIMP-19 among different species, leading to carbapenem resistance dissemination, requires close monitoring. IMPORTANCE: The horizontal transfer of antimicrobial-resistant genes is crucial for the dissemination of resistance, especially as Acinetobacter baumannii has emerged as a clinically significant pathogen. However, in this study, we first report the integration of the blaIMP-19 gene into the chromosome of A. baumannii, and such horizontal transfer may be associated with integron-phage elements. Additionally, it is possible that these DNA fragments carrying antimicrobial-resistant genes could further spread to other pathogens by moving horizontally onto conjugative plasmids.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Bacterial Proteins , Drug Resistance, Multiple, Bacterial , Integrons , Plasmids , beta-Lactamases , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/enzymology , Plasmids/genetics , Integrons/genetics , Humans , Acinetobacter Infections/microbiology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Taiwan , Microbial Sensitivity Tests , Whole Genome Sequencing , Bacteriophages/genetics , Bacteriophages/enzymology , Chromosomes, Bacterial/genetics , Carbapenems/pharmacology , Multilocus Sequence Typing , Bacteremia/microbiology
13.
BMC Infect Dis ; 24(1): 459, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689210

ABSTRACT

BACKGROUND: Acinetobacter baumannii is an opportunistic pathogen that can cause a variety of nosocomial infections in humans. This study aimed to molecularly characterize extended-spectrum beta-lactamase (ESBL) producing and carbapenem-resistant Acinetobacter species isolated from surgical site infections (SSI). METHODS: A multicentre cross-sectional study was performed among SSI patients at four hospitals located in Northern, Southern, Southwest, and Central parts of Ethiopia. The isolates were identified by microbiological methods and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Antibiotic susceptibility was determined using disk diffusion. The presence of phenotypic ESBL and carbapenemase production was detected by employing standard microbiological tests, including combined disk diffusion (CDT). ESBL and carbapenem resistance determinants genes were studied by polymerase chain reaction (PCR) and sequencing. RESULTS: A total of 8.7% Acinetobacter species were identified from 493 culture-positive isolates out of 752 SSI wounds. The species identified by MALDI-TOF MS were 88.4% A. baumannii, 4.7% Acinetobacter pittii, 4.7% Acinetobacter soli, and 2.3% Acinetobacter lactucae. Of all isolates 93% were positive for ESBL enzymes according to the CDT. Using whole genome sequencing 62.8% of the A. baumannii harbored one or more beta-lactamase genes, and 46.5% harbored one or more carbapenemase producing genes. The distribution of beta-lactamases among Acinetobacter species by hospitals was 53.8%, 64.3%, 75%, and 75% at JUSH, TASH, DTCSH, and HUCSH respectively. Among ESBL genes, blaCTX-M alleles were detected in 21.4% of isolates; of these 83.3% were blaCTX-M-15. The predominant carbapenemase gene of blaOXA type was detected in 24 carbapenem-resistant A. baumannii followed by blaNDM alleles carried in 12 A. baumannii with blaNDM-1 as the most common. CONCLUSIONS: The frequency of Acinetobacter species that produce metallobetalactamases (MBLs) and ESBLs that were found in this study is extremely scary and calls for strict infection prevention and control procedures in health facilities helps to set effective antibiotics stewardship.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Bacterial Proteins , Microbial Sensitivity Tests , Surgical Wound Infection , beta-Lactamases , beta-Lactamases/genetics , beta-Lactamases/metabolism , Humans , Acinetobacter baumannii/genetics , Acinetobacter baumannii/enzymology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Ethiopia/epidemiology , Cross-Sectional Studies , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Surgical Wound Infection/microbiology , Surgical Wound Infection/epidemiology , Adult , Male , Middle Aged , Female , Anti-Bacterial Agents/pharmacology , Young Adult , Adolescent , Aged , Child , Child, Preschool , Carbapenems/pharmacology , Aged, 80 and over , Infant
14.
PeerJ ; 12: e17199, 2024.
Article in English | MEDLINE | ID: mdl-38680892

ABSTRACT

Carbapenem-resistant Acinetobacter spp. is associated with nosocomial infections in intensive care unit patients, resulting in high mortality. Although Acinetobacter spp. represent a serious public health problem worldwide, there are a few studies related to the presence of carbapenemases in health care facilities and other environmental settings in Ecuador. The main aim of this study was to characterize the carbapenem-resistant Acinetobacter spp. isolates obtained from four hospitals (52) and from five rivers (27) close to Quito. We used the disc diffusion and EDTA sinergy tests to determine the antimicrobial susceptibility and the production of metallo ß-lactamases, respectively. We carried out a multiplex PCR of gyrB gene and the sequencing of partial rpoB gene to bacterial species identification. We performed molecular screening of nine carbapenem-resistant genes (blaSPM, blaSIM, blaGIM, blaGES, blaOXA-23, blaOXA-24, blaOXA-51, blaOXA-58, and blaOXA-143) by multiplex PCR, followed by identification using sequencing of blaOXA genes. Our findings showed that carbapenem-resistant A. baumannii were the main species found in health care facilities and rivers. Most of the clinical isolates came from respiratory tract samples and harbored blaOXA-23, blaOXA-366, blaOXA-72, blaOXA-65, blaOXA-70, and blaOXA-143-like genes. The river isolates harbored only the blaOXA-51 and probably blaOXA-259 genes. We concluded that the most predominant type of carbapenem genes among isolates were both blaOXA-23 and blaOXA-65 among A. baumannii clinical isolates.


Subject(s)
Acinetobacter Infections , Acinetobacter , Bacterial Proteins , beta-Lactamases , Ecuador/epidemiology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Humans , Acinetobacter Infections/microbiology , Acinetobacter Infections/drug therapy , Acinetobacter/genetics , Acinetobacter/isolation & purification , Acinetobacter/drug effects , Acinetobacter/enzymology , Microbial Sensitivity Tests , Cross Infection/microbiology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Rivers/microbiology , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Acinetobacter baumannii/enzymology , Multiplex Polymerase Chain Reaction
15.
Future Microbiol ; 19(7): 563-576, 2024.
Article in English | MEDLINE | ID: mdl-38426849

ABSTRACT

Sulbactam-durlobactam is a pathogen-targeted ß-lactam/ß-lactamase inhibitor combination that has been approved by the US FDA for the treatment of hospital-acquired and ventilator-associated bacterial pneumonia caused by susceptible isolates of Acinetobacter baumannii-calcoaceticus complex (ABC) in patients 18 years of age and older. Sulbactam is a penicillin derivative with antibacterial activity against Acinetobacter but is prone to hydrolysis by ß-lactamases encoded by contemporary isolates. Durlobactam is a diazabicyclooctane ß-lactamase inhibitor with activity against Ambler classes A, C and D serine ß-lactamases that restores sulbactam activity both in vitro and in vivo against multidrug-resistant ABC. Sulbactam-durlobactam is a promising alternative therapy for the treatment of serious Acinetobacter infections, which can have high rates of mortality.


Sulbactam­durlobactam: a drug for treating lung infectionsAcinetobacter is a type of bacteria. One type, called CRAB, causes serious infections and can be fatal. CRAB is very hard to treat because most drugs no longer work. Sulbactam­durlobactam (SUL-DUR) is a drug that can kill CRAB. The US FDA approved SUL-DUR in May of 2023 for treating lung infections (pneumonia) caused by CRAB. This article explains how SUL-DUR works. Use of SUL-DUR and other drugs to treat these types of infections are discussed. In conclusion, SUL-DUR is a promising therapy for serious infections caused by CRAB.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Azabicyclo Compounds , Sulbactam , beta-Lactamase Inhibitors , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/enzymology , Sulbactam/pharmacology , Humans , beta-Lactamase Inhibitors/pharmacology , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Azabicyclo Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , beta-Lactamases/metabolism , beta-Lactamases/genetics , beta-Lactams/pharmacology , Microbial Sensitivity Tests , Drug Combinations , Animals
16.
Int J Antimicrob Agents ; 63(5): 107160, 2024 May.
Article in English | MEDLINE | ID: mdl-38537721

ABSTRACT

In a vast majority of bacteria, protozoa and plants, the methylerythritol phosphate (MEP) pathway is utilized for the synthesis of isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), which are precursors for isoprenoids. Isoprenoids, such as cholesterol and coenzyme Q, play a variety of crucial roles in physiological activities, including cell-membrane formation, protein degradation, cell apoptosis, and transcription regulation. In contrast, humans employ the mevalonate (MVA) pathway for the production of IDP and DMADP, rendering proteins in the MEP pathway appealing targets for antimicrobial agents. This pathway consists of seven consecutive enzymatic reactions, of which 4-diphosphocytidyl-2C-methyl-D-erythritol synthase (IspD) and 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF) catalyze the third and fifth steps, respectively. In this study, we characterized the enzymatic activities and protein structures of Helicobacter pylori IspDF and Acinetobacter baumannii IspD. Then, using the direct interaction-based thermal shift assay, we conducted a compound screening of an approved drug library and identified 27 hit compounds potentially binding to AbIspD. Among them, two natural products, rosmarinic acid and tanshinone IIA sodium sulfonate, exhibited inhibitory activities against HpIspDF and AbIspD, by competing with one of the substrates, MEP. Moreover, tanshinone IIA sodium sulfonate also demonstrated certain antibacterial effects against H. pylori. In summary, we identified two IspD inhibitors from approved ingredients, broadening the scope for antibiotic discovery targeting the MEP pathway.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Helicobacter pylori , Hemiterpenes , Helicobacter pylori/drug effects , Helicobacter pylori/enzymology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/enzymology , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Biological Products/pharmacology , Biological Products/chemistry , Organophosphorus Compounds/pharmacology , Humans , Transferases (Other Substituted Phosphate Groups)/antagonists & inhibitors , Transferases (Other Substituted Phosphate Groups)/metabolism
17.
Biochemistry ; 61(22): 2607-2620, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36314559

ABSTRACT

Acinetobacter baumannii is a Gram-negative opportunistic pathogen that causes nosocomial infections, especially among immunocompromised individuals. The rise of multidrug resistant strains of A. baumannii has limited the use of standard antibiotics, highlighting a need for new drugs that exploit novel mechanisms of pathogenicity. Disrupting iron acquisition by inhibiting the biosynthesis of iron-chelating molecules (siderophores) secreted by the pathogen is a potential strategy for developing new antibiotics. Here we investigated FbsI, an N-hydroxylating monooxygenase involved in the biosynthesis of fimsbactin A, the major siderophore produced by A. baumannii. FbsI was characterized using steady-state and transient-state kinetics, spectroscopy, X-ray crystallography, and small-angle X-ray scattering. FbsI was found to catalyze the N-hydroxylation of the aliphatic diamines putrescine and cadaverine. Maximum coupling of the reductive and oxidative half-reactions occurs with putrescine, suggesting it is the preferred (in vivo) substrate. FbsI uses both NADPH and NADH as the reducing cofactor with a slight preference for NADPH. The crystal structure of FbsI complexed with NADP+ was determined at 2.2 Å resolution. The structure exhibits the protein fold characteristic of Class B flavin-dependent monooxygenases. FbsI is most similar in 3D structure to the cadaverine N-hydroxylases DesB and DfoA. Small-angle X-ray scattering shows that FbsI forms a tetramer in solution like the N-hydroxylating monooxygenases of the SidA/IucD/PvdA family. A model of putrescine docked into the active site provides insight into substrate recognition. A mechanism for the catalytic cycle is proposed where dehydration of the C4a-hydroxyflavin intermediate is partially rate-limiting, and the hydroxylated putrescine product is released before NADP+.


Subject(s)
Acinetobacter baumannii , Mixed Function Oxygenases , Acinetobacter baumannii/enzymology , Anti-Bacterial Agents , Cadaverine , Flavins/metabolism , Kinetics , Mixed Function Oxygenases/chemistry , NADP/metabolism , Ornithine/chemistry , Putrescine , Siderophores
18.
Proc Natl Acad Sci U S A ; 119(38): e2123117119, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36099298

ABSTRACT

Acinetobacter baumannii is a clinically important, predominantly health care-associated gram-negative bacterium with high rates of emerging resistance worldwide. Given the urgent need for novel antibacterial therapies against A. baumannii, we focused on inhibiting lipoprotein biosynthesis, a pathway that is essential for envelope biogenesis in gram-negative bacteria. The natural product globomycin, which inhibits the essential type II signal peptidase prolipoprotein signal peptidase (LspA), is ineffective against wild-type A. baumannii clinical isolates due to its poor penetration through the outer membrane. Here, we describe a globomycin analog, G5132, that is more potent against wild-type and clinical A. baumannii isolates. Mutations leading to G5132 resistance in A. baumannii map to the signal peptide of a single hypothetical gene, which we confirm encodes an alanine-rich lipoprotein and have renamed lirL (prolipoprotein signal peptidase inhibitor resistance lipoprotein). LirL is a highly abundant lipoprotein primarily localized to the inner membrane. Deletion of lirL leads to G5132 resistance, inefficient cell division, increased sensitivity to serum, and attenuated virulence. Signal peptide mutations that confer resistance to G5132 lead to the accumulation of diacylglyceryl-modified LirL prolipoprotein in untreated cells without significant loss in cell viability, suggesting that these mutations overcome a block in lipoprotein biosynthetic flux by decreasing LirL prolipoprotein substrate sensitivity to processing by LspA. This study characterizes a lipoprotein that plays a critical role in resistance to LspA inhibitors and validates lipoprotein biosynthesis as a antibacterial target in A. baumannii.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Aspartic Acid Endopeptidases , Bacterial Proteins , Drug Resistance, Bacterial , Furans , Gene Deletion , Lipoproteins , Protease Inhibitors , Pyridines , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/enzymology , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Aspartic Acid Endopeptidases/genetics , Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Furans/pharmacology , Lipoproteins/biosynthesis , Lipoproteins/genetics , Peptides/pharmacology , Protease Inhibitors/pharmacology , Protein Sorting Signals/genetics , Pyridines/pharmacology
19.
J Biol Chem ; 298(7): 102127, 2022 07.
Article in English | MEDLINE | ID: mdl-35709986

ABSTRACT

The evolution of multidrug resistance in Acinetobacter spp. increases the risk of our best antibiotics losing their efficacy. From a clinical perspective, the carbapenem-hydrolyzing class D ß-lactamase subfamily present in Acinetobacter spp. is particularly concerning because of its ability to confer resistance to carbapenems. The kinetic profiles of class D ß-lactamases exhibit variability in carbapenem hydrolysis, suggesting functional differences. To better understand the structure-function relationship between the carbapenem-hydrolyzing class D ß-lactamase OXA-24/40 found in Acinetobacter baumannii and carbapenem substrates, we analyzed steady-state kinetics with the carbapenem antibiotics meropenem and ertapenem and determined the structures of complexes of OXA-24/40 bound to imipenem, meropenem, doripenem, and ertapenem, as well as the expanded-spectrum cephalosporin cefotaxime, using X-ray crystallography. We show that OXA-24/40 exhibits a preference for ertapenem compared with meropenem, imipenem, and doripenem, with an increase in catalytic efficiency of up to fourfold. We suggest that superposition of the nine OXA-24/40 complexes will better inform future inhibitor design efforts by providing insight into the complicated and varying ways in which carbapenems are selected and bound by class D ß-lactamases.


Subject(s)
Bacterial Proteins , Carbapenems , beta-Lactamases , Acinetobacter baumannii/enzymology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Carbapenems/chemistry , Carbapenems/metabolism , Hydrolysis , Microbial Sensitivity Tests , Protein Conformation , Substrate Specificity , beta-Lactamases/chemistry , beta-Lactamases/metabolism
20.
Proc Natl Acad Sci U S A ; 119(14): e2107994119, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35363566

ABSTRACT

Persistence of Acinetobacter baumannii in environments with low water activity is largely attributed to the biosynthesis of compatible solutes. Mannitol is one of the key compatible solutes in A. baumannii, and it is synthesized by a bifunctional mannitol-1-phosphate dehydrogenase/phosphatase (AbMtlD). AbMtlD catalyzes the conversion of fructose-6-phosphate to mannitol in two consecutive steps. Here, we report the crystal structure of dimeric AbMtlD, constituting two protomers each with a dehydrogenase and phosphatase domain. A proper assembly of AbMtlD dimer is facilitated by an intersection comprising a unique helix­loop­helix (HLH) domain. Reduction and dephosphorylation catalysis of fructose-6-phosphate to mannitol is dependent on the transient dimerization of AbMtlD. AbMtlD presents as a monomer under lower ionic strength conditions and was found to be mainly dimeric under high-salt conditions. The AbMtlD catalytic efficiency was markedly increased by cross-linking the protomers at the intersected HLH domain via engineered disulfide bonds. Inactivation of the AbMtlD phosphatase domain results in an intracellular accumulation of mannitol-1-phosphate in A. baumannii, leading to bacterial growth impairment upon salt stress. Taken together, our findings demonstrate that salt-induced dimerization of the bifunctional AbMtlD increases catalytic dehydrogenase and phosphatase efficiency, resulting in unidirectional catalysis of mannitol production.


Subject(s)
Acinetobacter baumannii , Helix-Loop-Helix Motifs , Mannitol , Sugar Alcohol Dehydrogenases , Acinetobacter baumannii/enzymology , Mannitol/metabolism , Osmotic Pressure , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/metabolism , Salt Stress , Sugar Alcohol Dehydrogenases/chemistry , Sugar Alcohol Dehydrogenases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL