Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 709
Filter
1.
Mol Med Rep ; 30(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38994757

ABSTRACT

Cancer incidence is increasing globally, presenting a growing public health challenge. While anticancer drugs are crucial in treatment, their limitations, including poor targeting ability and high toxicity, hinder effectiveness and patient safety, requiring relentless scientific research and technological advancements to develop safer and more effective therapeutics. Cinnamaldehyde (CA), an active compound derived from the natural plant cinnamon, has garnered attention in pharmacological research due to its diverse therapeutic applications. CA has potential in treating a wide array of conditions, including cardiovascular diseases, diabetes, inflammatory disorders and various forms of cancer. The present review comprehensively summarizes the physicochemical and pharmacokinetic profiles of CA, and delves into the latest advancements in elucidating its potential mechanisms and targets across various cancer types. CA and its derivatives have antitumor effects, which encompass inhibiting cell proliferation, arresting the cell cycle, inducing apoptosis, limiting cell migration and invasion, and suppressing angiogenesis. Additionally, the present review explores targeted formulations of CA, laying a scientific foundation for further exploration of its implications in cancer prevention and treatment strategies.


Subject(s)
Acrolein , Antineoplastic Agents , Neoplasms , Acrolein/analogs & derivatives , Acrolein/chemistry , Acrolein/pharmacology , Acrolein/therapeutic use , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Cell Proliferation/drug effects
2.
Molecules ; 29(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38999117

ABSTRACT

Oleum cinnamomi (OCM) is a volatile component of the Cinnamomum cassia Presl in the Lauraceae family, which displays broad-spectrum antibacterial properties. It has been found that OCM has a significant inhibitory effect against Cutibacterium acnes (C. acnes), but the precise target and molecular mechanism are still not fully understood. In this study, the antibacterial activity of OCM against C. acnes and its potential effect on cell membranes were elucidated. Metabolomics methods were used to reveal metabolic pathways, and proteomics was used to explore the targets of OCM inhibiting C. acnes. The yield of the OCM was 3.3% (w/w). A total of 19 compounds were identified, representing 96.213% of the total OCM composition, with the major constituents being phenylpropanoids (36.84%), sesquiterpenoids (26.32%), and monoterpenoids (15.79%). The main component identified was trans-cinnamaldehyde (85.308%). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of OCM on C. acnes were 60 µg/mL and 180 µg/mL, respectively. The modified proteomics results indicate that cinnamaldehyde was the main bioactive ingredient within OCM, which covalently modifies the ABC transporter adenosine triphosphate (ATP)-binding protein and nicotinamide adenine dinucleotide (NADH)-quinone oxidoreductase, hindering the amino acid transport process, and disrupting the balance between NADH and nicotinamide adenine dinucleoside phosphorus (NAD+), thereby hindering energy metabolism. We have reported for the first time that OCM exerts an antibacterial effect by covalent binding of cinnamaldehyde to target proteins, providing potential and interesting targets to explore new control strategies for gram-positive anaerobic bacteria.


Subject(s)
Anti-Bacterial Agents , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Propionibacteriaceae/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Proteomics/methods , Acrolein/analogs & derivatives , Acrolein/pharmacology , Acrolein/chemistry , Metabolomics/methods
3.
AAPS J ; 26(4): 67, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862870

ABSTRACT

Addressing the intertwined challenges of antimicrobial resistance and impaired wound healing in diabetic patients, an oil/water emulsion-based nano-ointment integrating phenylpropanoids-Eugenol and Cinnamaldehyde-with positively-charged silver nanoparticles was synthesized. The process began with the synthesis and characterization of nano-silver, aimed at ensuring the effectiveness and safety of the nanoparticles in biological applications. Subsequent experiments determined the minimum inhibitory concentration (MIC) against pathogens such as Streptococcus aureus, Pseudomonas aeruginosa and Candida albicans. These MIC values of all three active leads guided the strategic formulation of an ointment base, which effectively integrated the bioactive components. Evaluations of this nano-ointment revealed enhanced antimicrobial activity against both clinical and reference bacterial strains and it maintained stability after freeze-thaw cycles. Furthermore, the ointment demonstrated superior in-vitro diabetic wound healing capabilities and significantly promoted angiogenesis, as shown by enhanced blood vessel formation in the Chorioallantoic Membrane assay. These findings underscore the formulation's therapeutic potential, marking a significant advance in the use of nanotechnology for topical wound care.


Subject(s)
Metal Nanoparticles , Microbial Sensitivity Tests , Ointments , Silver , Wound Healing , Silver/administration & dosage , Silver/chemistry , Silver/pharmacology , Wound Healing/drug effects , Metal Nanoparticles/chemistry , Metal Nanoparticles/administration & dosage , Animals , Acrolein/analogs & derivatives , Acrolein/administration & dosage , Acrolein/pharmacology , Acrolein/chemistry , Candida albicans/drug effects , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/pharmacology , Pseudomonas aeruginosa/drug effects , Administration, Topical , Humans , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects
4.
J Agric Food Chem ; 72(23): 13240-13249, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38825967

ABSTRACT

Acrolein (ACR), methylglyoxal (MGO), and glyoxal (GO) are a class of reactive carbonyl species (RCS), which play a crucial role in the pathogenesis of chronic and age-related diseases. Here, we explored a new RCS inhibitor (theanine, THE) and investigated its capture capacity on RCS in vivo by human experiments. After proving that theanine could efficiently capture ACR instead of MGO/GO by forming adducts under simulated physiological conditions, we further detected the ACR/MGO/GO adducts of theanine in the human urine samples after consumption of theanine capsules (200 and 400 mg) or green tea (4 cups, containing 200 mg of theanine) by using ultraperformance liquid chromatography-time-of-flight-high-resolution mass spectrometry. Quantitative assays revealed that THE-ACR, THE-2ACR-1, THE-MGO, and THE-GO were formed in a dose-dependent manner in the theanine capsule groups; the maximum value of the adducts of theanine was also tested. Furthermore, besides the RCS adducts of theanine, the RCS adducts of catechins could also be detected in the drinking tea group. Whereas, metabolite profile analysis showed that theanine could better capture RCS produced in the renal metabolic pathway than catechins. Our findings indicated that theanine could reduce RCS in the body in two ways: as a pure component or contained in tea leaves.


Subject(s)
Glutamates , Glyoxal , Pyruvaldehyde , Tea , Humans , Tea/chemistry , Glutamates/metabolism , Glutamates/analysis , Male , Pyruvaldehyde/metabolism , Pyruvaldehyde/chemistry , Glyoxal/metabolism , Glyoxal/chemistry , Adult , Acrolein/metabolism , Acrolein/chemistry , Capsules/chemistry , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Female , Young Adult , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Extracts/administration & dosage , Chromatography, High Pressure Liquid
5.
J Control Release ; 371: 371-385, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38849089

ABSTRACT

The efficacy of DNA-damaging agents, such as the topoisomerase I inhibitor SN38, is often compromised by the robust DNA repair mechanisms in tumor cells, notably homologous recombination (HR) repair. Addressing this challenge, we introduce a novel nano-strategy utilizing binary tumor-killing mechanisms to enhance the therapeutic impact of DNA damage and mitochondrial dysfunction in cancer treatment. Our approach employs a synergistic drug pair comprising SN38 and the BET inhibitor JQ-1. We synthesized two prodrugs by conjugating linoleic acid (LA) to SN38 and JQ-1 via a cinnamaldehyde thioacetal (CT) bond, facilitating co-delivery. These prodrugs co-assemble into a nanostructure, referred to as SJNP, in an optimal synergistic ratio. SJNP was validated for its efficacy at both the cellular and tissue levels, where it primarily disrupts the transcription factor protein BRD4. This disruption leads to downregulation of BRCA1 and RAD51, impairing the HR process and exacerbating DNA damage. Additionally, SJNP releases cinnamaldehyde (CA) upon CT linkage cleavage, elevating intracellular ROS levels in a self-amplifying manner and inducing ROS-mediated mitochondrial dysfunction. Our results indicate that SJNP effectively targets murine triple-negative breast cancer (TNBC) with minimal adverse toxicity, showcasing its potential as a formidable opponent in the fight against cancer.


Subject(s)
Acrolein , Camptothecin , Drug Delivery Systems , Nanoparticles , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/drug therapy , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Animals , Humans , Female , Cell Line, Tumor , Acrolein/analogs & derivatives , Acrolein/administration & dosage , Acrolein/chemistry , Camptothecin/analogs & derivatives , Camptothecin/administration & dosage , Camptothecin/therapeutic use , Camptothecin/pharmacology , Prodrugs/administration & dosage , Prodrugs/therapeutic use , Linoleic Acid/chemistry , Linoleic Acid/administration & dosage , Triazoles/administration & dosage , Triazoles/pharmacology , Triazoles/chemistry , DNA Damage/drug effects , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Mice, Nude , Mice , Cell Cycle Proteins/metabolism , Transcription Factors/metabolism , Topoisomerase I Inhibitors/administration & dosage , Bromodomain Containing Proteins , Azepines
6.
Anal Chem ; 96(24): 10038-10045, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38847602

ABSTRACT

Ferroptosis is a pattern of cell death caused by iron-dependent accumulation of lipid peroxides and is closely associated with the occurrence and development of multiple diseases. Acrolein (ACR), one of the final metabolites of lipid peroxidation, is a reactive carbonyl species with strong biotoxicity. Effective detection of ACR is important for understanding its role in the progression of ferroptosis and studying the specific mechanisms of ferroptosis-mediated diseases. However, visualization detection of ACR during ferroptosis has not yet been reported. In this work, the first ratiometric fluorescent probe (HBT-SH) based on 2-(2'-hydroxyphenyl) benzothiazole (HBT) was designed for tracing endogenous ACR with an unprecedented regiospecific ACR-induced intramolecular cyclization strategy, which employs 2-aminoethanethiol as an ACR-selective recognition receptor. The experimental results showed that HBT-SH has excellent selectivity, high sensitivity (LOD = 0.26 µM) and good biocompatibility. More importantly, the upregulation of ACR levels was observed during ferroptosis in HeLa cells and zebrafish, indicating that ACR may be a specific active molecule that plays an essential biological role during ferroptosis or may serve as a potential marker of ferroptosis, which has great significance for studying the pathological process and treatment options of ferroptosis-related diseases.


Subject(s)
Acrolein , Ferroptosis , Fluorescent Dyes , Zebrafish , Ferroptosis/drug effects , Acrolein/chemistry , Acrolein/metabolism , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , HeLa Cells , Animals , Up-Regulation/drug effects , Optical Imaging , Molecular Structure
7.
Int J Biol Macromol ; 274(Pt 1): 133398, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917925

ABSTRACT

Sodium alginate (SA) is widely used in the food, biomedical, and chemical industries due to its biocompatibility, biodegradability, and excellent film-forming properties. This article introduces a simple method for preparing uniform alginate-based packaging materials with exceptional properties for fruit preservation. The alginate was uniformly crosslinked by gradually releasing calcium ions triggered by the sustained hydrolysis of gluconolactone (GDL). A cinnamaldehyde (CA) emulsion, stabilized by xanthan without the use of traditional surfactants, was tightly incorporated into the alginate film to enhance its antimicrobial, antioxidant, and UV shielding properties. The alginate-based film effectively blocked ultraviolet rays in the range of 400-200 nm, while allowing for a visible light transmittance of up to 70 %. Additionally, it showed an increased water contact angle and decreased water vapor permeability. The alginate-based film was also employed in the preparation of coated paper through the commonly used coating process in the papermaking industry. The alginate-based material displayed excellent antioxidant properties and antimicrobial activity against Escherichia coli, Staphylococcus aureus and Botrytis cinerea, successfully extending the shelf life of strawberries to 7 days at room temperature. This low-cost and facile method has the potential to drive advancements in the food and biomedical fields by tightly incorporating active oil onto a wide range of biomacromolecule substrates.


Subject(s)
Acrolein , Alginates , Antioxidants , Fruit , Alginates/chemistry , Fruit/chemistry , Acrolein/analogs & derivatives , Acrolein/chemistry , Acrolein/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Food Preservation/methods , Food Packaging/methods , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Escherichia coli/drug effects
8.
J Food Drug Anal ; 32(2): 140-154, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38934689

ABSTRACT

As cancer continues to rise globally, there is growing interest in discovering novel methods for prevention and treatment. Due to the limitations of traditional cancer therapies, there has been a growing emphasis on investigating herbal remedies and exploring their potential synergistic effects when combined with chemotherapy drugs. Cinnamaldehyde, derived from cinnamon, has gained significant attention for its potential role in cancer prevention and treatment. Extensive research has demonstrated that cinnamaldehyde exhibits promising anticancer properties by modulating various cellular processes involved in tumor growth and progression. However, challenges and unanswered questions remain regarding the precise mechanisms for its effective use as an anticancer agent. This article aims to explore the multifaceted effects of cinnamaldehyde on cancer cells and shed light on these existing issues. Cinnamaldehyde has diverse anti-cancer mechanisms, including inducing apoptosis by activating caspases and damaging mitochondrial function, inhibiting tumor angiogenesis, anti-proliferation, anti-inflammatory and antioxidant. In addition, cinnamaldehyde also acts as a reactive oxygen species scavenger, reducing oxidative stress and preventing DNA damage and genomic instability. This article emphasizes the promising therapeutic potential of cinnamaldehyde in cancer treatment and underscores the need for future research to unlock novel mechanisms and strategies for combating cancer. By providing valuable insights into the role and mechanism of cinnamaldehyde in cancer, this comprehensive understanding paves the way for its potential as a novel therapeutic agent. Overall, cinnamaldehyde holds great promise as an anticancer agent, and its comprehensive exploration in this article highlights its potential as a valuable addition to cancer treatment options.


Subject(s)
Acrolein , Neoplasms , Acrolein/analogs & derivatives , Acrolein/pharmacology , Acrolein/chemistry , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Animals , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , DNA Damage/drug effects , Cell Proliferation/drug effects , Reactive Oxygen Species/metabolism
9.
Int J Biol Macromol ; 274(Pt 1): 133281, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38906358

ABSTRACT

In this study, a novel adsorbent, A-PEI/CS-Cu2+, was developed by crosslinking polyethyleneimine/chitosan hydrogel with acrolein and loading it with copper ions. The adsorption process of A-PEI/CS-Cu2+ on the anionic dye acid yellow 36 (AY36) was investigated by kinetic, isothermal and thermodynamic modeling. It was noteworthy that A-PEI/CS-Cu2+ exhibited rapid adsorption with a 90 % removal rate achieved within just 5 min, which was much faster than the adsorption rate of A-PEI/CS without load of copper ions and showed its potential for rapid adsorption applications. The maximum adsorption capacity for AY36 could reach up to 3114 mg g-1. In addition, the high concentration of saline wastewater was found to have almost no effect on the adsorption reaction in the salt effect test experiment. In five desorption-regeneration cycle experiments, the sample exhibited good recyclability and regeneration performance. The driving force of the adsorption process mainly originated from the electrostatic interaction, hydrogen bonding, and intermolecular interaction, in which the addition of copper ions led to the enhancement of the electrostatic interaction and chelation between A-PEI/CS-Cu2+ and AY36. Overall, the findings suggest the excellent potential of A-PEI/CS-Cu2+ for rapid and efficient adsorption, as well as its suitability for practical applications in wastewater treatment.


Subject(s)
Acrolein , Chitosan , Copper , Hydrogels , Polyethyleneimine , Water Pollutants, Chemical , Chitosan/chemistry , Copper/chemistry , Polyethyleneimine/chemistry , Adsorption , Hydrogels/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Acrolein/chemistry , Azo Compounds/chemistry , Thermodynamics , Anions/chemistry , Water Purification/methods , Coloring Agents/chemistry , Wastewater/chemistry , Ions/chemistry , Hydrogen-Ion Concentration
10.
Int J Biol Macromol ; 272(Pt 1): 132684, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38810845

ABSTRACT

The emergence of cathepsins as a potential target for anticancer drugs has led to extensive research in the development of their inhibitors. In the present study, we designed, synthesized, and characterized several cinnamaldehyde schiff bases employing diverse hydrazines, as potential cathepsin B inhibitors. The parallel studies on cathepsin B isolated from liver and cerebrospinal fluid unveiled the significance of the synthesized compounds as cathepsin B inhibitors at nanomolar concentrations. The compound, 7 exhibited the highest inhibition of 83.48 % and 82.96 % with an IC50 value of 0.06 nM and 0.09 nM for liver and cerebrospinal fluid respectively. The inhibitory potential of synthesized compounds has been extremely effective in comparison to previous reports. With the help of molecular docking studies using iGEMDOCK software, we found that the active site -CH2SH group is involved in the case of α-N-benzoyl-D, l-arginine-b-naphthylamide (BANA), curcumin 2, 3, 6, and 7. For toxicity prediction, ADMET studies were conducted and the synthesized compounds emerged to be non-toxic. The results obtained from the in vitro studies were supported with in silico studies. The synthesized cinnamaldehyde schiff bases can be considered promising drug candidates in conditions with elevated cathepsin B levels.


Subject(s)
Acrolein , Cathepsin B , Hydrazones , Liver , Molecular Docking Simulation , Cathepsin B/antagonists & inhibitors , Cathepsin B/metabolism , Acrolein/analogs & derivatives , Acrolein/chemistry , Acrolein/pharmacology , Liver/drug effects , Liver/metabolism , Humans , Hydrazones/pharmacology , Hydrazones/chemistry , Hydrazones/chemical synthesis , Catalytic Domain , Animals
11.
Photochem Photobiol Sci ; 23(6): 1129-1142, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734995

ABSTRACT

Bacterial infections are a global health concern, particularly due to the increasing resistance of bacteria to antibiotics. Multi-drug resistance (MDR) is a considerable challenge, and novel approaches are needed to treat bacterial infections. Photodynamic inactivation (PDI) of microorganisms is increasingly recognized as an effective method to inactivate a broad spectrum of bacteria and overcome resistance mechanisms. This study presents the synthesis of a new cationic 5,15-di-imidazolyl porphyrin derivative and the impact of n-octanol/water partition coefficient (logP) values of this class of photosensitizers on PDI efficacy of Escherichia coli. The derivative with logP = -0.5, IP-H-OH2+, achieved a remarkable 3 log CFU reduction of E. coli at 100 nM with only 1.36 J/cm2 light dose at 415 nm, twice as effective as the second-best porphyrin IP-H-Me2+, of logP = -1.35. We relate the rapid uptake of IP-H-OH2+ by E. coli to improved PDI and the very low uptake of a fluorinated derivative, IP-H-CF32+, logP ≈ 1, to its poor performance. Combination of PDI with cinnamaldehyde, a major component of the cinnamon plant known to alter bacteria cell membranes, offered synergic inactivation of E. coli (7 log CFU reduction), using 50 nM of IP-H-OH2+ and just 1.36 J/cm2 light dose. The success of combining PDI with this natural compound broadens the scope of therapies for MDR infections that do not add drug resistance. In vivo studies on a mouse model of wound infection showed the potential of cationic 5,15-di-imidazolyl porphyrins to treat clinically relevant infected wounds.


Subject(s)
Acrolein , Anti-Bacterial Agents , Escherichia coli , Imidazoles , Photosensitizing Agents , Porphyrins , Escherichia coli/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Porphyrins/pharmacology , Porphyrins/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Acrolein/analogs & derivatives , Acrolein/pharmacology , Acrolein/chemistry , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/chemical synthesis , Cations/chemistry , Cations/pharmacology , Microbial Sensitivity Tests , Animals , Mice , Drug Synergism , Photochemotherapy
12.
Food Funct ; 15(12): 6217-6231, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38767618

ABSTRACT

Cinnamaldehyde (CA) is the main bioactive component extracted from the internal bark of cinnamon trees with many health benefits. In this paper, the bioavailability and biological activities of cinnamaldehyde, and the underlying molecular mechanism are reviewed and discussed, including antioxidant, cardioprotective, anti-inflammatory, anti-obesity, anticancer, and antibacterial properties. Common delivery systems that could improve the stability and bioavailability of CA are also summarized and evaluated, such as micelles, microcapsules, liposomes, nanoparticles, and nanoemulsions. This work provides a comprehensive understanding of the beneficial functions and delivery strategies of CA, which is useful for the future application of CA in the functional food industry.


Subject(s)
Acrolein , Drug Delivery Systems , Acrolein/analogs & derivatives , Acrolein/pharmacology , Acrolein/chemistry , Humans , Drug Delivery Systems/methods , Animals , Administration, Oral , Biological Availability , Nanoparticles/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Cinnamomum zeylanicum/chemistry
13.
Int J Biol Macromol ; 271(Pt 1): 132605, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788869

ABSTRACT

Natural preservatives such as cinnamaldehyde (CIN) are garnering increasing interest to replace their synthetic counterparts in maintaining fruit freshness and safety. However, their long-term effectiveness and widespread application have been greatly limited due to high volatility and potent aroma. To address these challenges, we developed a viable and simple strategy to prepare a multifunctional active coating for fruit preservation by incorporating host-guest inclusion complex of CIN and 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) CIN@HP-ß-CD into hyaluronic acid (HA), a natural polysaccharide with exceptional film-forming properties. The as-prepared HA/CIN@HP-ß-CD coatings exhibited universal surface affinity, excellent antimicrobial performance, and satisfactory antioxidant properties with no potential toxicity. Release kinetic studies have demonstrated that CIN in the coating is continuously and slowly released. Furthermore, freshness preservation experiments on bananas and fresh-cut apples demonstrated that the developed coating is effective in preserving the color of fruit, decreasing the weight loss rate, preventing the microorganism's growth, and significantly extending the period of freshness, exhibiting the potential for application in fruit preservation.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin , Acrolein , Food Preservation , Fruit , Hyaluronic Acid , Acrolein/analogs & derivatives , Acrolein/chemistry , Acrolein/pharmacology , Fruit/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Food Preservation/methods , Hyaluronic Acid/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology
14.
Int J Biol Macromol ; 271(Pt 2): 132663, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38797291

ABSTRACT

This study investigated the release of aromatic compounds with distinct functional groups within bilayer microcapsules. Bilayer microcapsules of four distinctive core materials (benzyl alcohol, eugenol, cinnamaldehyde, and benzoic acid) were synthesized via freeze-drying. Chitosan (CS) and sodium alginate (ALG) were used as wall materials. CS concentration, using orthogonal experiments with the loading ratio as a metric. Under optimal conditions, three other types of microcapsules (cinnamic aldehyde, benzoic acid, and benzyl alcohol) were obtained. The four types of microcapsules were characterized using Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscope (TEM), and thermogravimetric analysis (TGA), and their sustained release characteristics were evaluated. The optimal conditions were: CS dosage, 1.2 %; CS-to-eugenol mass ratio, 1:2; and CS-to-ALG mass ratio, 1:1. By comparing the IR spectra of the four types of microcapsules, wall material, and core material, the core materials were revealed to be encapsulated within the wall material. SEM results revealed that the granular protuberances on the surface of the microcapsules were closely aligned and persistent when magnified 2000×. The TEM results indicated that all four microcapsules had a spherical and bilayer structure. The thermal stability and sustained release results showed that the four microcapsules were more resilient and less volatile than the four core materials. The release conformed to first-order kinetics, and the release ratios of the four microcapsules were as follows: benzyl alcohol microcapsules Ëƒ eugenol microcapsules Ëƒ cinnamaldehyde microcapsules Ëƒ benzoic acid microcapsules. The prepared bilayer microcapsules encapsulated four different core materials with good sustained release properties.


Subject(s)
Alginates , Capsules , Chitosan , Delayed-Action Preparations , Drug Liberation , Chitosan/chemistry , Alginates/chemistry , Delayed-Action Preparations/chemistry , Eugenol/chemistry , Benzoic Acid/chemistry , Spectroscopy, Fourier Transform Infrared , Acrolein/chemistry , Acrolein/analogs & derivatives , Drug Carriers/chemistry , Thermogravimetry
15.
Colloids Surf B Biointerfaces ; 240: 113990, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810468

ABSTRACT

Chemodynamic therapy (CDT), which employs intracellular H2O2 to produce toxic hydroxyl radicals to kill cancer cells, has received great attention due to its specificity to tumors. However, the relatively insufficient endogenous H2O2 and the short-lifetime and limited diffusion distance of •OH compromise the therapeutic efficacy of CDT. Mitochondria, which play crucial roles in oncogenesis, are highly vulnerable to elevated oxidative stress. Herein, we constructed a mitochondria-mediated self-cycling system to achieve high dose of •OH production through continuous H2O2 supply. Cinnamaldehyde (CA), which can elevate H2O2 level in the mitochondria, was loaded in Cu(II)-containing metal organic framework (MOF), termed as HKUST-1. After actively targeting mitochondria, the intrinsic H2O2 in mitochondria of cancer cells could induce degradation of MOF, releasing the initial free CA. The released CA further triggered the upregulation of endogenous H2O2, resulting in the subsequent adequate release of CA and the final burst growth of H2O2. The cycle process greatly promoted the Fenton-like reaction between Cu2+ and H2O2 and induced long-term high oxidative stress, achieving enhanced chemodynamic therapy. In a word, we put forward an efficient strategy for enhanced chemodynamic therapy.


Subject(s)
Acrolein , Hydrogen Peroxide , Metal-Organic Frameworks , Mitochondria , Oxidative Stress , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Humans , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Acrolein/pharmacology , Acrolein/chemistry , Acrolein/analogs & derivatives , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Copper/chemistry , Copper/pharmacology , Animals , Cell Survival/drug effects , Mice , Hydroxyl Radical/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Particle Size , Cell Line, Tumor , Surface Properties
16.
J Food Sci ; 89(7): 4047-4063, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38778558

ABSTRACT

Scallops are rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid but perishable due to their microbial growth and lipid oxidation. In this study, gelatin/dextran films containing cinnamaldehyde and α-tocopherol (0% + 0%, 0.3% + 0.3%, 0.6% + 0.6%, 0.9% + 0.9%, and 1.2% + 1.2%, w/w) as active fillers were developed by solution casting method, and their preservation effects on scallop adductor muscle refrigerated at 4°C for 0, 3, 6, 9, and 12 days were evaluated. Inclusion of the two active fillers did not influence the thermal stability of the films but created heterogenous and discontinuous film microstructure and increased the film hydrophobicity. Increase in the concentrations of active fillers lowered the mechanical properties and water vapor permeability of the films but increased their crystallinity, thickness, water contact angle, opacity, antibacterial property, and antioxidant property. The longest release times for both cinnamaldehyde and α-tocopherol were found in 95% (v/v) ethanol solution. The gelatin/dextran films containing 1.2% (w/w) of active fillers (Gelatin [Ge]/Dextran [Dx]/1.2 film) improved the chemical stability of refrigerated scallop adductor muscle. The total viable count (TVC) of the unpackaged scallop adductor muscle exceeded the recommended limit of 7 lg CFU/g on day 6 (7.07 ± 0.50 lg CFU/g), whereas the TVC of the Ge/Dx/1.2 film-packaged scallop adductor muscle was still below the limit on day 9 (5.60 ± 0.50 lg CFU/g). Thus, the Ge/Dx/1.2 film can extend the shelf life of refrigerated scallop adductor muscle by at least 3 days. Overall, the developed gelatin/dextran active packaging films are promising for the preservation of aquatic food products.


Subject(s)
Acrolein , Dextrans , Food Packaging , Food Preservation , Gelatin , Pectinidae , alpha-Tocopherol , Gelatin/chemistry , Pectinidae/chemistry , Animals , Acrolein/analogs & derivatives , Acrolein/pharmacology , Acrolein/chemistry , Dextrans/chemistry , Dextrans/pharmacology , alpha-Tocopherol/pharmacology , alpha-Tocopherol/chemistry , Food Preservation/methods , Food Packaging/methods , Antioxidants/pharmacology , Permeability , Shellfish/analysis , Hydrophobic and Hydrophilic Interactions
17.
J Am Soc Mass Spectrom ; 35(6): 1110-1119, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38665041

ABSTRACT

Quantifying reactive aldehyde biomarkers, such as malondialdehyde, acrolein, and crotonaldehyde, is the most preferred approach to determine oxidative stress. However, reported analytical methods lack specificity for accurately quantifying these aldehydes as certain methodologies may produce false positive results due to harsh experimental conditions. Thus, in this research work, a novel HILIC-MS/MS method with endogenous histidine derivatization is developed, which proves to have higher specificity and reproducibility in quantifying these aldehydes from the biological matrix. To overcome the reactivity of aldehyde, endogenous histidine is used for its derivatization. The generated adduct is orthogonally characterized by NMR and LC-HRMS. The method employed a hydrophilic HILIC column and multiple reaction monitoring (MRM) to accurately quantify these reactive aldehydes. The developed method is an unequivocal solution for quantifying stress in in vivo and in vitro studies.


Subject(s)
Acrolein , Biomarkers , Malondialdehyde , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Biomarkers/analysis , Malondialdehyde/analysis , Malondialdehyde/chemistry , Acrolein/analysis , Acrolein/chemistry , Animals , Oxidative Stress , Hydrophobic and Hydrophilic Interactions , Reproducibility of Results , Humans , Histidine/analysis , Histidine/chemistry , Chromatography, Liquid/methods , Aldehydes/analysis , Aldehydes/chemistry
18.
Biomater Adv ; 160: 213840, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579520

ABSTRACT

Combating antimicrobial resistance is one of the biggest health challenges because of the ineffectiveness of standard biocide treatments. This challenge could be approached using natural products, which have demonstrated powerful therapeutics against multidrug-resistant microbes. In the present work, a nanodevice consisting of mesoporous silica nanoparticles loaded with an essential oil component (cinnamaldehyde) and functionalized with the polypeptide ε-poly-l-lysine is developed and used as an antimicrobial agent. In the presence of the corresponding stimuli (i.e., exogenous proteolytic enzymes from bacteria or fungi), the polypeptide is hydrolyzed, and the cinnamaldehyde delivery is enhanced. The nanodevice's release mechanism and efficacy are evaluated in vitro against the pathogenic microorganisms Escherichia coli, Staphylococcus aureus, and Candida albicans. The results demonstrate that the new device increases the delivery of the cinnamaldehyde via a biocontrolled uncapping mechanism triggered by proteolytic enzymes. Moreover, the nanodevice notably improves the antimicrobial efficacy of cinnamaldehyde when compared to the free compound, ca. 52-fold for E. coli, ca. 60-fold for S. aureus, and ca. 7-fold for C. albicans. The enhancement of the antimicrobial activity of the essential oil component is attributed to the decrease of its volatility due to its encapsulation in the porous silica matrix and the increase of its local concentration when released due to the presence of microorganisms.


Subject(s)
Acrolein , Acrolein/analogs & derivatives , Anti-Infective Agents , Candida albicans , Escherichia coli , Nanoparticles , Silicon Dioxide , Staphylococcus aureus , Acrolein/pharmacology , Acrolein/chemistry , Nanoparticles/chemistry , Escherichia coli/drug effects , Candida albicans/drug effects , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Staphylococcus aureus/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/administration & dosage , Porosity , Microbial Sensitivity Tests , Polylysine/chemistry , Polylysine/pharmacology
19.
Biomater Adv ; 160: 213863, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642516

ABSTRACT

To obtain the collaborative antifungal potential of nanocomposites conjugated with graphene oxide (GO), a combination of GO with chitosan (CS/GO) and GO with chitosan (CS) and polyaniline (PANI/CS/GO) was carried out. The synthesized GO-nanocomposites were recognized by several techniques. Vanillin (Van.) and cinnamaldehyde (Cinn.) were loaded on the prepared nanocomposites as antioxidants through a batch adsorption process. In vitro release study of Van. and Cinn. from the nanocomposites was accomplished at pH 7 and 25°C. The antimicrobial activity of GO, CS/GO, and PANI/CS/GO was studied against tomato Fusarium oxysporum (FOL) and Pythium debaryanum (PYD) pathogens. The loaded ternary composite PANI/CS/GO exhibited the best percent of reduction against the two pathogens in vitro studies. The Greenhouse experiment revealed that seedlings' treatment by CS/GO/Van. and PANI/CS/GO/Van significantly lowered both disease index and disease incidence. The loaded CS/GO and PANI/CS/GO nanocomposites had a positive effect on lengthening shoots. Additionally, when CS/GO/Cinn., CS/GO/Van. and PANI/CS/GO/Van. were used, tomato seedlings' photosynthetic pigments dramatically increased as compared to infected control. The results show that these bio-nanocomposites can be an efficient, sustainable, nontoxic, eco-friendly, and residue-free approach for fighting fungal pathogens and improving plant growth.


Subject(s)
Acrolein/analogs & derivatives , Antifungal Agents , Benzaldehydes , Chitosan , Fusarium , Graphite , Nanocomposites , Solanum lycopersicum , Graphite/pharmacology , Graphite/chemistry , Solanum lycopersicum/microbiology , Nanocomposites/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Fusarium/drug effects , Chitosan/pharmacology , Chitosan/chemistry , Benzaldehydes/pharmacology , Benzaldehydes/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Pythium/drug effects , Aniline Compounds/pharmacology , Aniline Compounds/chemistry , Acrolein/pharmacology , Acrolein/chemistry
20.
Ultrason Sonochem ; 106: 106884, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677267

ABSTRACT

The purpose of this study was to investigate ferroptosis in Escherichia coli O157:H7 caused by ferrous sulfate (FeSO4) and to examine the synergistic effectiveness of FeSO4 combined with ultrasound-emulsified cinnamaldehyde nanoemulsion (CALNO) on inactivation of E. coli O157:H7 in vitro and in vivo. The results showed that FeSO4 could cause ferroptosis in E. coli O157:H7 via generating reactive oxygen species (ROS) and exacerbating lipid peroxidation. In addition, the results indicated that FeSO4 combined with CALNO had synergistic bactericidal effect against E. coli O157:H7 and the combined treatment could lead considerable nucleic acids and protein to release by damaging the cell membrane of E. coli O157:H7. Besides, FeSO4 combined with CALNO had a strong antibiofilm ability to inhibit E. coli O157:H7 biofilm formation by reducing the expression of genes related on biofilm formation. Finally, FeSO4 combined with CALNO exhibited the significant antibacterial activity against E. coli O157:H7 in hami melon and cherry tomato.


Subject(s)
Acrolein , Emulsions , Escherichia coli O157 , Ferroptosis , Ferrous Compounds , Escherichia coli O157/drug effects , Acrolein/analogs & derivatives , Acrolein/pharmacology , Acrolein/chemistry , Ferrous Compounds/pharmacology , Ferrous Compounds/chemistry , Ferroptosis/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Ultrasonic Waves , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL