Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38.577
Filter
1.
Nat Commun ; 15(1): 5521, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951553

ABSTRACT

The microgeometry of the cellular microenvironment profoundly impacts cellular behaviors, yet the link between it and the ubiquitously expressed mechanosensitive ion channel PIEZO1 remains unclear. Herein, we describe a fluorescent micropipette aspiration assay that allows for simultaneous visualization of intracellular calcium dynamics and cytoskeletal architecture in real-time, under varied micropipette geometries. By integrating elastic shell finite element analysis with fluorescent lifetime imaging microscopy and employing PIEZO1-specific transgenic red blood cells and HEK cell lines, we demonstrate a direct correlation between the microscale geometry of aspiration and PIEZO1-mediated calcium signaling. We reveal that increased micropipette tip angles and physical constrictions lead to a significant reorganization of F-actin, accumulation at the aspirated cell neck, and subsequently amplify the tension stress at the dome of the cell to induce more PIEZO1's activity. Disruption of the F-actin network or inhibition of its mobility leads to a notable decline in PIEZO1 mediated calcium influx, underscoring its critical role in cellular mechanosensing amidst geometrical constraints.


Subject(s)
Actins , Calcium , Cytoskeleton , Ion Channels , Mechanotransduction, Cellular , Humans , Ion Channels/metabolism , Actins/metabolism , HEK293 Cells , Cytoskeleton/metabolism , Calcium/metabolism , Calcium Signaling/physiology , Finite Element Analysis , Animals , Microscopy, Fluorescence/methods
2.
PLoS One ; 19(7): e0306515, 2024.
Article in English | MEDLINE | ID: mdl-38954721

ABSTRACT

BACKGROUND: Bicuspid aortic valves (BAV) are frequently associated with ascending aortic aneurysms. The etiology is incompletely understood, but genetic factors, in addition to flow perturbations, are likely involved. Since loss of contractility and elaboration of extracellular matrix in the vessel wall are features of BAV-associated aortopathy, phenotypic modulation of smooth muscle cells (SMCs) may play a role. METHODS: Ascending aortic tissue was collected intra-operatively from 25 individuals with normal (i.e., tricuspid) aortic valves (TAV) and from 25 individuals with BAVs. For both TAV and BAV, 10 patients had non-dilated (ND) and 15 patients had dilated (D) aortas. SMCs were isolated and cultured from a subset of patients from each group. Aortic tissue and SMCs were fluorescently immunolabeled for SMC phenotypic markers (i.e., alpha-smooth muscle actin (ASMA, contractile), vimentin (synthetic) and p16INK4a and p21Cip1 (senescence). SMCs were also analyzed for replicative senescence in culture. RESULTS: In normal-sized and dilated BAV aortas, SMCs switched from the contractile state to either synthetic or senescent phenotypes, as observed by loss of ASMA (ND: P = 0.001, D: P = 0.002) and associated increases in vimentin (ND: P = 0.03, D: P = 0.004) or p16/p21 (ND: P = 0.03, D: P<0.0001) compared to TAV. Dilatation of the aorta exacerbated SMC phenotypic switching in both BAV and TAV aortas (all P<0.05). In SMCs cultured from normal and dilated aortas, those isolated from BAV reached replicative senescence faster than those from TAV aortas (all P = 0.02). Furthermore, there was a stark inverse correlation between ASMA and cell passage number in BAV SMCs (ND: P = 0.0006, D: P = 0.01), but not in TAV SMCs (ND: P = 0.93, D: P = 0.20). CONCLUSIONS: The findings of this study provide direct evidence from cell culture studies implying that SMCs switch from the contractile state to either synthetic or senescent phenotypes in the non-dilated BAV aorta. In cultured SMCs from both non-dilated and dilated aortas, we found that this process may precede dilatation and accompany aneurysm development in BAV. Our findings suggest that therapeutically targeting SMC phenotypic modulation in BAV patients may be a viable option to prevent or delay ascending aortic aneurysm formation.


Subject(s)
Aorta , Aortic Valve , Bicuspid Aortic Valve Disease , Heart Valve Diseases , Myocytes, Smooth Muscle , Phenotype , Humans , Aortic Valve/pathology , Aortic Valve/metabolism , Aortic Valve/abnormalities , Bicuspid Aortic Valve Disease/pathology , Bicuspid Aortic Valve Disease/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Heart Valve Diseases/metabolism , Heart Valve Diseases/pathology , Aorta/pathology , Aorta/metabolism , Male , Middle Aged , Female , Dilatation, Pathologic , Adult , Cellular Senescence , Cells, Cultured , Aged , Actins/metabolism , Aortic Aneurysm/metabolism , Aortic Aneurysm/pathology , Vimentin/metabolism
3.
Cell Mol Biol Lett ; 29(1): 94, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956497

ABSTRACT

BACKGROUND: We have previously identified an unsuspected role for GJB3 showing that the deficiency of this connexin protein induces aneuploidy in human and murine cells and accelerates cell transformation as well as tumor formation in xenograft models. The molecular mechanisms by which loss of GJB3 leads to aneuploidy and cancer initiation and progression remain unsolved. METHODS: GJB3 expression levels were determined by RT-qPCR and Western blot. The consequences of GJB3 knockdown on genome instability were assessed by metaphase chromosome counting, multinucleation of cells, by micronuclei formation and by the determination of spindle orientation. Interactions of GJB3 with α-tubulin and F-actin was analyzed by immunoprecipitation and immunocytochemistry. Consequences of GJB3 deficiency on microtubule and actin dynamics were measured by live cell imaging and fluorescence recovery after photobleaching experiments, respectively. Immunohistochemistry was used to determine GJB3 levels on human and murine bladder cancer tissue sections. Bladder cancer in mice was chemically induced by BBN-treatment. RESULTS: We find that GJB3 is highly expressed in the ureter and bladder epithelium, but it is downregulated in invasive bladder cancer cell lines and during tumor progression in both human and mouse bladder cancer. Downregulation of GJB3 expression leads to aneuploidy and genomic instability in karyotypically stable urothelial cells and experimental modulation of GJB3 levels alters the migration and invasive capacity of bladder cancer cell lines. Importantly, GJB3 interacts both with α-tubulin and F-actin. The impairment of these interactions alters the dynamics of these cytoskeletal components and leads to defective spindle orientation. CONCLUSION: We conclude that deregulated microtubule and actin dynamics have an impact on proper chromosome separation and tumor cell invasion and migration. Consequently, these observations indicate a possible role for GJB3 in the onset and spreading of bladder cancer and demonstrate a molecular link between enhanced aneuploidy and invasive capacity cancer cells during tumor cell dissemination.


Subject(s)
Actins , Aneuploidy , Neoplasm Invasiveness , Tubulin , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Humans , Animals , Tubulin/metabolism , Tubulin/genetics , Cell Line, Tumor , Mice , Actins/metabolism , Actins/genetics , Urothelium/pathology , Urothelium/metabolism , Cell Movement/genetics , Microtubules/metabolism , Genomic Instability , Protein Binding
4.
Sci Rep ; 14(1): 15304, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961188

ABSTRACT

Inflammation, corticosteroids, and loading all affect tendon healing, with an interaction between them. However, underlying mechanisms behind the effect of corticosteroids and the interaction with loading remain unclear. The aim of this study was to investigate the role of dexamethasone during tendon healing, including specific effects on tendon cells. Rats (n = 36) were randomized to heavy loading or mild loading, the Achilles tendon was transected, and animals were treated with dexamethasone or saline. Gene and protein analyses of the healing tendon were performed for extracellular matrix-, inflammation-, and tendon cell markers. We further tested specific effects of dexamethasone on tendon cells in vitro. Dexamethasone increased mRNA levels of S100A4 and decreased levels of ACTA2/α-SMA, irrespective of load level. Heavy loading + dexamethasone reduced mRNA levels of FN1 and TenC (p < 0.05), while resolution-related genes were unaltered (p > 0.05). In contrast, mild loading + dexamethasone increased mRNA levels of resolution-related genes ANXA1, MRC1, PDPN, and PTGES (p < 0.03). Altered protein levels were confirmed in tendons with mild loading. Dexamethasone treatment in vitro prevented tendon construct formation, increased mRNA levels of S100A4 and decreased levels of SCX and collagens. Dexamethasone during tendon healing appears to act through immunomodulation by promoting resolution, but also through an effect on tendon cells.


Subject(s)
Achilles Tendon , Dexamethasone , Tendon Injuries , Wound Healing , Dexamethasone/pharmacology , Animals , Rats , Wound Healing/drug effects , Tendon Injuries/drug therapy , Tendon Injuries/metabolism , Achilles Tendon/drug effects , Achilles Tendon/metabolism , Achilles Tendon/injuries , Achilles Tendon/pathology , S100 Calcium-Binding Protein A4/metabolism , S100 Calcium-Binding Protein A4/genetics , Male , Annexin A1/metabolism , Annexin A1/genetics , Actins/metabolism , Actins/genetics , Collagen/metabolism , Rats, Sprague-Dawley , Tendons/drug effects , Tendons/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , RNA, Messenger/metabolism , RNA, Messenger/genetics , Basic Helix-Loop-Helix Transcription Factors
5.
Funct Integr Genomics ; 24(4): 120, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38960936

ABSTRACT

The Drosophila egg chamber (EC) starts as a spherical tissue at the beginning. With maturation, the outer follicle cells of EC collectively migrate in a direction perpendicular to the anterior-posterior axis, to shape EC from spherical to ellipsoidal. Filamentous actin (F-actin) plays a significant role in shaping individual migratory cells to the overall EC shape, like in every cell migration. The primary focus of this article is to unveil the function of different Actin Binding Proteins (ABPs) in regulating mature Drosophila egg shape. We have screened 66 ABPs, and the genetic screening data revealed that individual knockdown of Arp2/3 complex genes and the "capping protein ß" (cpb) gene have severely altered the egg phenotype. Arpc1 and cpb RNAi mediated knockdown resulted in the formation of spherical eggs which are devoid of dorsal appendages. Studies also showed the role of Arpc1 and cpb on the number of laid eggs and follicle cell morphology. Furthermore, the depletion of Arpc1 and cpb resulted in a change in F-actin quantity. Together, the data indicate that Arpc1 and cpb regulate Drosophila egg shape, F-actin management, egg-laying characteristics and dorsal appendages formation.


Subject(s)
Actins , Drosophila Proteins , Morphogenesis , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Actins/metabolism , Actins/genetics , Female , Morphogenesis/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Actin-Related Protein 2-3 Complex/metabolism , Actin-Related Protein 2-3 Complex/genetics , Actin Capping Proteins/metabolism , Actin Capping Proteins/genetics , Ovum/metabolism , Ovum/growth & development
6.
Cell Mol Life Sci ; 81(1): 291, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970683

ABSTRACT

Plakophilin 4 (PKP4) is a component of cell-cell junctions that regulates intercellular adhesion and Rho-signaling during cytokinesis with an unknown function during epidermal differentiation. Here we show that keratinocytes lacking PKP4 fail to develop a cortical actin ring, preventing adherens junction maturation and generation of tissue tension. Instead, PKP4-depleted cells display increased stress fibers. PKP4-dependent RhoA localization at AJs was required to activate a RhoA-ROCK2-MLCK-MLC2 axis and organize actin into a cortical ring. AJ-associated PKP4 provided a scaffold for the Rho activator ARHGEF2 and the RhoA effectors MLCK and MLC2, facilitating the spatio-temporal activation of RhoA signaling at cell junctions to allow cortical ring formation and actomyosin contraction. In contrast, association of PKP4 with the Rho suppressor ARHGAP23 reduced ARHGAP23 binding to RhoA which prevented RhoA activation in the cytoplasm and stress fiber formation. These data identify PKP4 as an AJ component that transduces mechanical signals into cytoskeletal organization.


Subject(s)
Actins , Adherens Junctions , Plakophilins , rhoA GTP-Binding Protein , Plakophilins/metabolism , Plakophilins/genetics , rhoA GTP-Binding Protein/metabolism , Adherens Junctions/metabolism , Humans , Actins/metabolism , Keratinocytes/metabolism , Keratinocytes/cytology , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Signal Transduction , Stress Fibers/metabolism , Cells, Cultured , Animals
7.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000353

ABSTRACT

Connexins (Cxs) are transmembrane proteins that assemble into gap junction channels (GJCs) and hemichannels (HCs). Previous researches support the involvement of Rho GTPases and actin microfilaments in the trafficking of Cxs, formation of GJCs plaques, and regulation of channel activity. Nonetheless, it remains uncertain whether distinct types of Cxs HCs and GJCs respond differently to Rho GTPases or changes in actin polymerization/depolymerization dynamics. Our investigation revealed that inhibiting RhoA, a small GTPase that controls actin polymerization, or disrupting actin microfilaments with cytochalasin B (Cyto-B), resulted in reduced GJCs plaque size at appositional membranes and increased transport of HCs to non-appositional plasma membrane regions. Notably, these effects were consistent across different Cx types, since Cx26 and Cx43 exhibited similar responses, despite having distinct trafficking routes to the plasma membrane. Functional assessments showed that RhoA inhibition and actin depolymerization decreased the activity of Cx43 GJCs while significantly increasing HC activity. However, the functional status of GJCs and HCs composed of Cx26 remained unaffected. These results support the hypothesis that RhoA, through its control of the actin cytoskeleton, facilitates the transport of HCs to appositional cell membranes for GJCs formation while simultaneously limiting the positioning of free HCs at non-appositional cell membranes, independently of Cx type. This dynamic regulation promotes intercellular communications and reduces non-selective plasma membrane permeability through a Cx-type dependent mechanism, whereby the activity of Cx43 HCs and GJCs are differentially affected but Cx26 channels remain unchanged.


Subject(s)
Actin Cytoskeleton , Connexin 26 , Connexin 43 , Gap Junctions , rhoA GTP-Binding Protein , Actin Cytoskeleton/metabolism , rhoA GTP-Binding Protein/metabolism , Gap Junctions/metabolism , Connexin 43/metabolism , Connexin 26/metabolism , Humans , Animals , Cell Membrane/metabolism , Actins/metabolism
8.
Bull Exp Biol Med ; 177(1): 74-78, 2024 May.
Article in English | MEDLINE | ID: mdl-38955854

ABSTRACT

Activated hepatic stellate cells differentiate into myofibroblasts, which synthesize and secrete extracellular matrix (ECM) leading to liver fibrosis. It was previously demonstrated that bulleyaconitine A (BLA), an alkaloid from Aconitum bulleyanum, inhibits proliferation and promotes apoptosis of human hepatic Lieming Xu-2 (LX-2) cells. In this study, we analyzed the effect of BLA on the production of ECM and related proteins by LX-2 cells activated with acetaldehyde (AA). The cells were randomized into the control group, AA group (cells activated with 400 µM AA), and BLA+AA group (cells cultured in the presence of 400 µM AA and 18.75 µg/ml BLA). In the BLA+AA group, the contents of collagens I and III and the expression of α-smooth muscle actin and transforming growth factor-ß1 (TGF-ß1) were statistically significantly higher than in the control, but lower than in the AA group. Expression of MMP-1 in the BLA+AA group was also significantly higher than in the AA group, but lower than in the control. Expression of TIMP-1 in the BLA+AA group was significantly higher than in the control, but lower than in the AA group. Thus, BLA suppressed activation and proliferation of LX-2 cells by inhibiting TGF-ß1 signaling pathway and decreasing the content of collagens I and III by reducing the MMP-1/TIMP-1 ratio.


Subject(s)
Acetaldehyde , Aconitine , Actins , Collagen Type I , Extracellular Matrix , Hepatic Stellate Cells , Tissue Inhibitor of Metalloproteinase-1 , Transforming Growth Factor beta1 , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Humans , Acetaldehyde/pharmacology , Acetaldehyde/analogs & derivatives , Aconitine/pharmacology , Aconitine/analogs & derivatives , Collagen Type I/metabolism , Collagen Type I/genetics , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Actins/metabolism , Actins/genetics , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/genetics , Cell Line , Collagen Type III/metabolism , Collagen Type III/genetics , Cell Proliferation/drug effects , Aconitum/chemistry , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology
9.
Int J Mol Sci ; 25(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38999987

ABSTRACT

The actin cytoskeleton is one of the most important players in cell motility, adhesion, division, and functioning. The regulation of specific microfilament formation largely determines cellular functions. The main actin-binding protein in animal cells is tropomyosin (Tpm). The unique structural and functional diversity of microfilaments is achieved through the diversity of Tpm isoforms. In our work, we studied the properties of the cytoplasmic isoforms Tpm1.8 and Tpm1.9. The results showed that these isoforms are highly thermostable and differ in the stability of their central and C-terminal fragments. The properties of these isoforms were largely determined by the 6th exons. Thus, the strength of the end-to-end interactions, as well as the affinity of the Tpm molecule for F-actin, differed between the Tpm1.8 and Tpm1.9 isoforms. They were determined by whether an alternative internal exon, 6a or 6b, was included in the Tpm isoform structure. The strong interactions of the Tpm1.8 and Tpm1.9 isoforms with F-actin led to the formation of rigid actin filaments, the stiffness of which was measured using an optical trap. It is quite possible that the structural and functional features of the Tpm isoforms largely determine the appearance of these isoforms in the rigid actin structures of the cell cortex.


Subject(s)
Actin Cytoskeleton , Actins , Protein Isoforms , Tropomyosin , Tropomyosin/metabolism , Tropomyosin/chemistry , Tropomyosin/genetics , Protein Isoforms/metabolism , Protein Isoforms/chemistry , Protein Isoforms/genetics , Actin Cytoskeleton/metabolism , Animals , Actins/metabolism , Actins/chemistry , Cytoplasm/metabolism , Humans , Exons , Protein Binding , Protein Stability
10.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000102

ABSTRACT

Aberrant expression of the double homeobox 4 (DUX4) gene in skeletal muscle predominantly drives the pathogenesis of facioscapulohumeral muscular dystrophy (FSHD). We recently demonstrated that berberine, an herbal extract known for its ability to stabilize guanine-quadruplex structures, effectively downregulates DUX4 expression in FSHD patient-derived myoblasts and in mice overexpressing exogenous DUX4 after viral vector-based treatment. Here, we sought to confirm berberine's inhibitory efficacy on DUX4 in the widely used FSHD-like transgenic mouse model, ACTA1-MCM/FLExDUX4, where DUX4 is induced at pathogenic levels using tamoxifen. Animals repeatedly treated with berberine via intraperitoneal injections for 4 weeks exhibited significant reductions in both mRNA and protein levels of DUX4, and in mRNA expression of murine DUX4-related genes. This inhibition translated into improved forelimb muscle strength and positive alterations in important FSHD-relevant cellular pathways, although its impact on muscle mass and histopathology was less pronounced. Collectively, our data confirm the efficacy of berberine in downregulating DUX4 expression in the most relevant FSHD mouse model. However, further optimization of dosing regimens and new studies to enhance the bioavailability of berberine in skeletal muscle are warranted to fully leverage its therapeutic potential for FSHD treatment.


Subject(s)
Berberine , Disease Models, Animal , Homeodomain Proteins , Mice, Transgenic , Muscle, Skeletal , Muscular Dystrophy, Facioscapulohumeral , Animals , Muscular Dystrophy, Facioscapulohumeral/drug therapy , Muscular Dystrophy, Facioscapulohumeral/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/pathology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Berberine/pharmacology , Actins/metabolism , Actins/genetics , Humans
11.
Cell Rep Methods ; 4(7): 100815, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38986612

ABSTRACT

The ability of cells to sense and respond to mechanical forces is critical in many physiological and pathological processes. However, determining the mechanisms by which forces affect protein function inside cells remains challenging. Motivated by in vitro demonstrations of fluorescent proteins (FPs) undergoing reversible mechanical switching of fluorescence, we investigated whether force-sensitive changes in FP function could be visualized in cells. Guided by a computational model of FP mechanical switching, we develop a formalism for its detection in Förster resonance energy transfer (FRET)-based biosensors and demonstrate its occurrence in cellulo within a synthetic actin crosslinker and the mechanical linker protein vinculin. We find that in cellulo mechanical switching is reversible and altered by manipulation of cell force generation, external stiffness, and force-sensitive bond dynamics of the biosensor. This work describes a framework for assessing FP mechanical stability and provides a means of probing force-sensitive protein function inside cells.


Subject(s)
Biosensing Techniques , Fluorescence Resonance Energy Transfer , Luminescent Proteins , Fluorescence Resonance Energy Transfer/methods , Luminescent Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/chemistry , Biosensing Techniques/methods , Humans , Vinculin/metabolism , Vinculin/chemistry , Actins/metabolism , Actins/chemistry , Biomechanical Phenomena
12.
Nat Cell Biol ; 26(7): 1062-1076, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38951708

ABSTRACT

Ras has been extensively studied as a promoter of cell proliferation, whereas few studies have explored its role in migration. To investigate the direct and immediate effects of Ras activity on cell motility or polarity, we focused on RasGAPs, C2GAPB in Dictyostelium amoebae and RASAL3 in HL-60 neutrophils and macrophages. In both cellular systems, optically recruiting the respective RasGAP to the cell front extinguished pre-existing protrusions and changed migration direction. However, when these respective RasGAPs were recruited uniformly to the membrane, cells polarized and moved more rapidly, whereas targeting to the back exaggerated these effects. These unexpected outcomes of attenuating Ras activity naturally had strong, context-dependent consequences for chemotaxis. The RasGAP-mediated polarization depended critically on myosin II activity and commenced with contraction at the cell rear, followed by sustained mTORC2-dependent actin polymerization at the front. These experimental results were captured by computational simulations in which Ras levels control front- and back-promoting feedback loops. The discovery that inhibiting Ras activity can produce counterintuitive effects on cell migration has important implications for future drug-design strategies targeting oncogenic Ras.


Subject(s)
Actomyosin , Cell Movement , Cell Polarity , Dictyostelium , ras Proteins , Dictyostelium/metabolism , Dictyostelium/genetics , HL-60 Cells , Actomyosin/metabolism , Humans , ras Proteins/metabolism , ras Proteins/genetics , Macrophages/metabolism , Myosin Type II/metabolism , Myosin Type II/genetics , Neutrophils/metabolism , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/genetics , Animals , Chemotaxis , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Actins/metabolism , Computer Simulation , Mice , Signal Transduction
13.
Nat Commun ; 15(1): 5840, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992021

ABSTRACT

Within a shared cytoplasm, filamentous actin (F-actin) plays numerous and critical roles across the cell body. Cells rely on actin-binding proteins (ABPs) to organize F-actin and to integrate its polymeric characteristics into diverse cellular processes. Yet, the multitude of ABPs that engage with and shape F-actin make studying a single ABP's influence on cellular activities a significant challenge. Moreover, without a means of manipulating actin-binding subcellularly, harnessing the F-actin cytoskeleton for synthetic biology purposes remains elusive. Here, we describe a suite of designed proteins, Controllable Actin-binding Switch Tools (CASTs), whose actin-binding behavior can be controlled with external stimuli. CASTs were developed that respond to different external inputs, providing options for turn-on kinetics and enabling orthogonality and multiplexing. Being genetically encoded, we show that CASTs can be inserted into native protein sequences to control F-actin association locally and engineered into structures to control cell and tissue shape and behavior.


Subject(s)
Actin Cytoskeleton , Actins , Microfilament Proteins , Protein Binding , Actins/metabolism , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Actin Cytoskeleton/metabolism , Humans , Animals , Kinetics , Protein Engineering/methods
14.
Commun Biol ; 7(1): 830, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992143

ABSTRACT

Decidualization of the human endometrium is critical for establishing pregnancy and is entailed by differentiation of endometrial stromal cells (ESCs) into decidual cells. During decidualization, the actin cytoskeleton is dynamically reorganized for the ESCs' morphological and functional changes. Although actin dynamically alters its polymerized state upon external stimuli not only in the cytoplasm, but also in the nucleus, nuclear actin dynamics during decidualization have not been elucidated. Here, we show that nuclear actin was specifically assembled during decidualization of human ESCs. This decidualization-specific formation of nuclear actin filaments was disassembled following the withdrawal of the decidualization stimulus, suggesting its reversible process. Mechanistically, RNA-seq analyses revealed that the forced disassembly of nuclear actin resulted in the suppression of decidualization, accompanied with the abnormal upregulation of cell proliferation genes, leading to incomplete cell cycle arrest. CCAAT/enhancer-binding protein beta (C/EBPß), an important regulator for decidualization, was responsible for downregulation of the nuclear actin exporter, thus accelerating nuclear actin accumulation and its assembly for decidualization. Taken together, we demonstrate that decidualization-specific nuclear actin assembly induces cell cycle arrest for establishing the decidualized state of ESCs. We propose that not only the cytoplasmic actin, but also nuclear actin dynamics profoundly affect decidualization process in humans for ensuring pregnancy.


Subject(s)
Actins , Cell Nucleus , Decidua , Endometrium , Stromal Cells , Humans , Female , Stromal Cells/metabolism , Actins/metabolism , Endometrium/cytology , Endometrium/metabolism , Decidua/metabolism , Decidua/cytology , Cell Nucleus/metabolism , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Protein-beta/genetics , Pregnancy , Cell Differentiation , Cell Proliferation , Actin Cytoskeleton/metabolism
15.
Cells ; 13(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38994946

ABSTRACT

Although more difficult to detect than in the cytoplasm, it is now clear that actin polymerization occurs in the nucleus and that it plays a role in the specific processes of the nucleus such as transcription, replication, and DNA repair. A number of studies suggest that nuclear actin polymerization is promoting precise DNA repair by homologous recombination, which could potentially be of help for precise genome editing and gene therapy. This review summarizes the findings and describes the challenges and chances in the field.


Subject(s)
Actins , Cell Nucleus , DNA Repair , Genetic Therapy , Polymerization , Humans , Actins/metabolism , Cell Nucleus/metabolism , Genetic Therapy/methods , Animals
16.
Commun Biol ; 7(1): 840, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987288

ABSTRACT

The architecture of the actin cortex determines the generation and transmission of stresses, during key events from cell division to migration. However, its impact on myosin-induced cell shape changes remains unclear. Here, we reconstitute a minimal model of the actomyosin cortex with branched or linear F-actin architecture within giant unilamellar vesicles (GUVs, liposomes). Upon light activation of myosin, neither the branched nor linear F-actin architecture alone induces significant liposome shape changes. The branched F-actin network forms an integrated, membrane-bound "no-slip boundary" -like cortex that attenuates actomyosin contractility. By contrast, the linear F-actin network forms an unintegrated "slip boundary" -like cortex, where actin asters form without inducing membrane deformations. Notably, liposomes undergo significant deformations at an optimized balance of branched and linear F-actin networks. Our findings highlight the pivotal roles of branched F-actin in force transmission and linear F-actin in force generation to yield membrane shape changes.


Subject(s)
Actins , Cell Membrane , Myosins , Actins/metabolism , Cell Membrane/metabolism , Myosins/metabolism , Cell Shape , Animals , Actomyosin/metabolism , Unilamellar Liposomes/metabolism , Unilamellar Liposomes/chemistry , Biomimetics , Liposomes/metabolism , Liposomes/chemistry , Models, Biological , Actin Cytoskeleton/metabolism
17.
Proc Natl Acad Sci U S A ; 121(29): e2408156121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38980907

ABSTRACT

After ATP-actin monomers assemble filaments, the ATP's [Formula: see text]-phosphate is hydrolyzedwithin seconds and dissociates over minutes. We used all-atom molecular dynamics simulations to sample the release of phosphate from filaments and study residues that gate release. Dissociation of phosphate from Mg2+ is rate limiting and associated with an energy barrier of 20 kcal/mol, consistent with experimental rates of phosphate release. Phosphate then diffuses within an internal cavity toward a gate formed by R177, as suggested in prior computational studies and cryo-EM structures. The gate is closed when R177 hydrogen bonds with N111 and is open when R177 forms a salt bridge with D179. Most of the time, interactions of R177 with other residues occlude the phosphate release pathway. Machine learning analysis reveals that the occluding interactions fluctuate rapidly, underscoring the secondary role of backdoor gate opening in Pi release, in contrast with the previous hypothesis that gate opening is the primary event.


Subject(s)
Actin Cytoskeleton , Adenosine Triphosphate , Molecular Dynamics Simulation , Phosphates , Phosphates/metabolism , Phosphates/chemistry , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/chemistry , Adenosine Triphosphate/metabolism , Actins/metabolism , Actins/chemistry , Hydrogen Bonding , Magnesium/metabolism , Magnesium/chemistry , Cryoelectron Microscopy
18.
Bull Exp Biol Med ; 177(1): 39-43, 2024 May.
Article in English | MEDLINE | ID: mdl-38955853

ABSTRACT

Female C57BL/J mice with pulmonary fibrosis induced by injections of bleomycin (20 mg/kg intraperitoneally, 8 times for 4 weeks) were treated with a lignin derivative-based composition BP-C3 (80 mg/kg, daily intragastric administrations for 4 weeks). Bleomycin treatment increased the severity of pulmonary fibrosis (Ashcroft score increased from 1.43±0.20 to 4.17±0.48) and the percentage of α-SMA+ tissue (from 15.22±1.01 to 33.12±2.30%) and DNA-synthetizing nuclei (from 1.05±0.14 to 3.38±0.375). After treatment with BP-C3, we observed a tendency to a decrease in Ashcroft score (to 3.40±0.51) and a significant decrease in the percentage of α-SMA+ tissue to 24.30±1.70%; the percentage of DNA-synthetizing nuclei decreased to a lesser extent (to 3.03±0.22%). These results suggest that BP-C3 has a moderate antifibrotic activity.


Subject(s)
Bleomycin , Lignin , Mice, Inbred C57BL , Pulmonary Fibrosis , Animals , Bleomycin/toxicity , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Mice , Female , Lignin/pharmacology , Lignin/chemistry , Lung/drug effects , Lung/pathology , Actins/metabolism , Actins/genetics
19.
Nat Commun ; 15(1): 5953, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009586

ABSTRACT

The intracellular bacterial pathogen Legionella pneumophila modulates host cell functions by secreting multiple effectors with diverse biochemical activities. In particular, effectors of the SidE family interfere with host protein ubiquitination in a process that involves production of phosphoribosyl ubiquitin (PR-Ub). Here, we show that effector LnaB converts PR-Ub into ADP-ribosylated ubiquitin, which is further processed to ADP-ribose and functional ubiquitin by the (ADP-ribosyl)hydrolase MavL, thus maintaining ubiquitin homeostasis in infected cells. Upon being activated by actin, LnaB also undergoes self-AMPylation on tyrosine residues. The activity of LnaB requires a motif consisting of Ser, His and Glu (SHxxxE) present in a large family of toxins from diverse bacterial pathogens. Thus, our study sheds light on the mechanisms by which a pathogen maintains ubiquitin homeostasis and identifies a family of enzymes capable of protein AMPylation.


Subject(s)
Bacterial Proteins , Homeostasis , Legionella pneumophila , Ubiquitin , Ubiquitination , Ubiquitin/metabolism , Legionella pneumophila/metabolism , Legionella pneumophila/pathogenicity , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , ADP-Ribosylation , Host-Pathogen Interactions , Adenosine Diphosphate Ribose/metabolism , Legionnaires' Disease/metabolism , Legionnaires' Disease/microbiology , HEK293 Cells , Actins/metabolism , HeLa Cells
20.
J Cell Biol ; 223(10)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39012625

ABSTRACT

The GTPase Cdc42 regulates polarized growth in most eukaryotes. In the bipolar yeast Schizosaccharomyces pombe, Cdc42 activation cycles periodically at sites of polarized growth. These periodic cycles are caused by alternating positive feedback and time-delayed negative feedback loops. At each polarized end, negative feedback is established when active Cdc42 recruits the Pak1 kinase to prevent further Cdc42 activation. It is unclear how Cdc42 activation returns to each end after Pak1-dependent negative feedback. We find that disrupting branched actin-mediated endocytosis disables Cdc42 reactivation at the cell ends. Using experimental and mathematical approaches, we show that endocytosis-dependent Pak1 removal from the cell ends allows the Cdc42 activator Scd1 to return to that end to enable reactivation of Cdc42. Moreover, we show that Pak1 elicits its own removal via activation of endocytosis. These findings provide a deeper insight into the self-organization of Cdc42 regulation and reveal previously unknown feedback with endocytosis in the establishment of cell polarity.


Subject(s)
Actin-Related Protein 2-3 Complex , Cell Polarity , Endocytosis , Feedback, Physiological , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , cdc42 GTP-Binding Protein , p21-Activated Kinases , Schizosaccharomyces/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , Actin-Related Protein 2-3 Complex/metabolism , Actin-Related Protein 2-3 Complex/genetics , cdc42 GTP-Binding Protein/metabolism , cdc42 GTP-Binding Protein/genetics , Actins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...